1
|
Semerci Sevimli T, Inan U, Qomi Ekenel E, Ozgul C, Danaci CO, Cetinkaya S, Ahmadova Z. Synovial fluid mesenchymal stem cell-derived microRNA-127-5p can modulate transforming growth factor-β signaling after in vitro chondrogenic induction. Cytotechnology 2025; 77:8. [PMID: 39619880 PMCID: PMC11602905 DOI: 10.1007/s10616-024-00660-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/28/2024] [Indexed: 03/08/2025] Open
Abstract
MicroRNA profiling in human cartilage is necessary for chondrogenesis. The study aimed to compare microRNA 127-5p (miR-127-5p) and TGF-β signaling pathway gene expressions of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and synovial fluid-derived stem cells (hSF-MSCs) after induced chondrogenesis. MSCs induced into chondrogenic differentiation. Alcian Blue and Safranin O staining were performed to determine chondrogenic differentiation. The RT-qPCR determined the expression levels of miR-127-5p and TGF-β signaling pathway genes. miR-127-5p expression was significantly higher in chondrogenic differentiated hSF-MSCs (dhSF-MSCs) (p < 0.05). TGF-β, SMAD2, and SMAD3 expressions were substantially higher in dhSF-MSCs (all p < 0.001), while SMAD4, and ACAN expressions were downregulated (all p < 0.001). No difference was detected between COL1A2 expression levels. This study suggests that miR-127-5p derived from hSF-MSCs may regulate chondrogenesis, thereby inducing the TGF-β pathway activation, and also presents, for the first time, a comparative analysis of the expression of miR-127-5p and the TGF-β signaling pathway genes of hSF-MSCs and hAT-MSCs concerning differences in chondrogenic potential. Graphical abstract
Collapse
Affiliation(s)
- Tugba Semerci Sevimli
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskişehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Ulukan Inan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey
| | - Emilia Qomi Ekenel
- Graduate School of İnformatics, Middle East Technical University, Ankara, Turkey
| | - Cemre Ozgul
- Department of Molecular Biology and Genetics, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Cem Ozgur Danaci
- Department of Biology, Hacettepe University, 06100 Ankara, Turkey
| | - Sevval Cetinkaya
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25100 Erzurum, Turkey
| | - Zarifa Ahmadova
- Department of Surgery, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
2
|
Mata M, Salvador-Clavell R, Ródenas-Rochina J, Sancho-Tello M, Gallego Ferrer G, Gómez Ribelles JL. Mesenchymal Stem Cells Cultured in a 3D Microgel Environment Containing Platelet-Rich Plasma Significantly Modify Their Chondrogenesis-Related miRNA Expression. Int J Mol Sci 2024; 25:937. [PMID: 38256011 PMCID: PMC10815493 DOI: 10.3390/ijms25020937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this work is to study the effect of platelet factors on the differentiation of mesenchymal stem cells (MSCs) to hyaline cartilage chondrocytes in a three-dimensional environment. MSCs were cultured in a microgel environment with a chondrogenic medium. The microgel consisted of microspheres that combine gelatin and platelet-rich plasma (PRP). The gelatin/PRP microdroplets were produced by emulsion. The gelatin containing the microdroplets was enzymatically gelled, retaining PRP and, just before seeding the cells, platelets were activated by adding calcium chloride so that platelet growth factors were released into the culture media but not before. Platelet activation was analyzed before activation to rule out the possibility that the gelatin cross-linking process itself activated the platelets. The gene expression of characteristic chondrogenic markers and miRNA expression were analyzed in cells cultured in a differentiation medium and significant differences were found between gelation/PRP microgels and those containing only pure gelatin. In summary, the gelatin microspheres effectively encapsulated platelets that secreted and released factors that significantly contributed to cellular chondrogenic differentiation. At the same time, the microgel constituted a 3D medium that provided the cells with adherent surfaces and the possibility of three-dimensional cell-cell contact.
Collapse
Affiliation(s)
- Manuel Mata
- Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; (R.S.-C.); (M.S.-T.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
| | - Rubén Salvador-Clavell
- Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; (R.S.-C.); (M.S.-T.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Joaquín Ródenas-Rochina
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
| | - María Sancho-Tello
- Departamento de Patología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; (R.S.-C.); (M.S.-T.)
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Gloria Gallego Ferrer
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
| | - José Luis Gómez Ribelles
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.R.-R.); (G.G.F.); (J.L.G.R.)
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
3
|
Zheng T, Li Y, Zhang X, Xu J, Luo M. Exosomes Derived From miR-212-5p Overexpressed Human Synovial Mesenchymal Stem Cells Suppress Chondrocyte Degeneration and Inflammation by Targeting ELF3. Front Bioeng Biotechnol 2022; 10:816209. [PMID: 35284413 PMCID: PMC8908902 DOI: 10.3389/fbioe.2022.816209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Excessive chondrocyte degeneration and inflammation are the pathological features of osteoarthritis (OA), and altered miR-212-5p may contribute to meniscus and cartilage degeneration. Whether exosomes derived from miR-212-5p overexpressed synovial mesenchymal stem cells (SMSC-212-5p-Exos) could be utilized to treat degenerative chondrocytes is investigated in this study. Down-regulated miR-212-5p and up-regulated E74 Like ETS Transcription Factor 3 (ELF3) expression were detected in OA synovial tissues, which showed a negative correlation (r = −0.55, p = 0.002). miR-212-5p directly targeted ELF3 and regulated the relative expression of ELF3 in SMSCs as indicated by luciferase reporter assay and RT-PCR. The relative expression of ELF3, chondrocyte degeneration-related molecules, matrix metalloproteinase, and inflammatory molecules were detected in chondrocytes stimulated with interleukin (IL)-1β or co-incubated with SMSC-212-5p-Exos or SMSCs-derived exosomes (SMSC-Exos). IL-1β induced up-regulation of ELF3, down-regulation of degeneration molecules (Collagen II, Aggrecan, and Sox9), up-regulation of matrix metalloproteinase (MMP-1, MMP-3, and MMP-13), and up-regulation of inflammatory molecules (IL-6, MCP-1, TNF-α, COX-2, and iNOS) could be inhibited by SMSC-212-5p-Exos or SMSC-Exos administration. When compared with the SMSC-Exos, SMSC-212-5p-Exos showed more treatment benefits. All of these indicate that SMSC-212-5p-Exos could suppress chondrocyte degeneration and inflammation by targeting ELF3, which can be considered as a disease-modifying strategy.
Collapse
Affiliation(s)
- Tianlei Zheng
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yan Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaozai Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jia Xu
- Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Ming Luo
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Ming Luo,
| |
Collapse
|
4
|
Conservation of Zebrafish MicroRNA-145 and Its Role during Neural Crest Cell Development. Genes (Basel) 2021; 12:genes12071023. [PMID: 34209401 PMCID: PMC8306979 DOI: 10.3390/genes12071023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The neural crest is a multipotent cell population that develops from the dorsal neural fold of vertebrate embryos in order to migrate extensively and differentiate into a variety of tissues. A number of gene regulatory networks coordinating neural crest cell specification and differentiation have been extensively studied to date. Although several publications suggest a common role for microRNA-145 (miR-145) in molecular reprogramming for cell cycle regulation and/or cellular differentiation, little is known about its role during in vivo cranial neural crest development. By modifying miR-145 levels in zebrafish embryos, abnormal craniofacial development and aberrant pigmentation phenotypes were detected. By whole-mount in situ hybridization, changes in expression patterns of col2a1a and Sry-related HMG box (Sox) transcription factors sox9a and sox9b were observed in overexpressed miR-145 embryos. In agreement, zebrafish sox9b expression was downregulated by miR-145 overexpression. In silico and in vivo analysis of the sox9b 3′UTR revealed a conserved potential miR-145 binding site likely involved in its post-transcriptional regulation. Based on these findings, we speculate that miR-145 participates in the gene regulatory network governing zebrafish chondrocyte differentiation by controlling sox9b expression.
Collapse
|
5
|
Visconti VV, Cariati I, Fittipaldi S, Iundusi R, Gasbarra E, Tarantino U, Botta A. DNA Methylation Signatures of Bone Metabolism in Osteoporosis and Osteoarthritis Aging-Related Diseases: An Updated Review. Int J Mol Sci 2021; 22:ijms22084244. [PMID: 33921902 PMCID: PMC8072687 DOI: 10.3390/ijms22084244] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023] Open
Abstract
DNA methylation is one of the most studied epigenetic mechanisms that play a pivotal role in regulating gene expression. The epigenetic component is strongly involved in aging-bone diseases, such as osteoporosis and osteoarthritis. Both are complex multi-factorial late-onset disorders that represent a globally widespread health problem, highlighting a crucial point of investigations in many scientific studies. In recent years, new findings on the role of DNA methylation in the pathogenesis of aging-bone diseases have emerged. The aim of this systematic review is to update knowledge in the field of DNA methylation associated with osteoporosis and osteoarthritis, focusing on the specific tissues involved in both pathological conditions.
Collapse
Affiliation(s)
- Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Ida Cariati
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (R.I.); (E.G.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (V.V.V.); (I.C.); (S.F.); (A.B.)
| |
Collapse
|
6
|
Xiao P, Zhu Z, Du C, Zeng Y, Liao J, Cheng Q, Chen H, Zhao C, Huang W. Silencing Smad7 potentiates BMP2-induced chondrogenic differentiation and inhibits endochondral ossification in human synovial-derived mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:132. [PMID: 33588941 PMCID: PMC7885459 DOI: 10.1186/s13287-021-02202-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/31/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 2 (BMP2) is a promising chondrogenic growth factor for cartilage tissue-engineering, but it also induces robust endochondral ossification. Human synovial-derived mesenchymal stromal cells (hSMSCs) have attracted great interest due to their poor potential for differentiation into osteogenic lineages. Smad7 plays a significant in the endochondral ossification. In this study, we explored a new method to amplify the BMP2-induced chondrogenic differentiation of hSMSCs by downregulating Smad7 and applying a cellular scaffold. METHODS hSMSCs were isolated from human knee joint synovium from 3 donors through adhesion growth. In vitro and in vivo models of the chondrogenic differentiation of hSMSCs were established. Transgenic expression of BMP2 and silencing of Smad7 and Smad7 was achieved by adenoviral vectors. The osteogenic differentiation was detected by alkaline phosphatase staining, alizarin red staining, and RT-PCR analysis of the osteogenic genes RUNX2, Osterix, and Osteocalcin. The chondrogenic differentiation was detected by Alcian blue staining and RT-PCR analysis of the chondrogenic genes SOX9, COL2, and aggrecan. Hypertrophic differentiation was detected by the markers COL10 and MMP13. A subcutaneous stem cell implantation model was established with polyethylene glycol citrate-co-N-isopropylacrylamide (PPCN) scaffolds and athymic nude mice (3/group, 4-6 week-old female) and evaluated by micro-CT, H&E staining, and Alcian blue staining. An immunohistochemistry assay was used to detected COL1 and COL2, and an immunofluorescence assay was used to detect COL10 and MMP13. RESULTS These hSMSCs identified by flow cytometry. These hSMSCs exhibited lower osteo-differentiation potential than iMads and C3H10T1/2-cells. When Smad7 was silenced in BMP2-induced hSMSCs, the chondrogenic differentiation genes SOX9, COL2, and aggrecan were enhanced in vitro. Additionally, it silencing Smad7 led to a decrease in the hypertrophic differentiation genes COL10 and MMP13. In subcutaneous stem cell implantation assays, immunofluorescence and immunohistochemical staining demonstrated that silencing Smad7 increased the number of COL2-positive cells and decreased the expression of COL1, COL10, and MMP13. CONCLUSION This study suggests that the application of hSMSCs, cell scaffolds, and silencing Smad7 can potentiate BMP2-induced chondrogenic differentiation and inhibit endochondral ossification. Thus, inhibiting the expression of Smad7 in BMP2-induced hSMSC differentiation may be a new strategy for cartilage tissue-engineering.
Collapse
Affiliation(s)
- Pengcheng Xiao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenglin Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongsheng Zeng
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junyi Liao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiang Cheng
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Urdinez J, Boro A, Mazumdar A, Arlt MJ, Muff R, Botter SM, Bode-Lesniewska B, Fuchs B, Snedeker JG, Gvozdenovic A. The miR-143/145 Cluster, a Novel Diagnostic Biomarker in Chondrosarcoma, Acts as a Tumor Suppressor and Directly Inhibits Fascin-1. J Bone Miner Res 2020; 35:1077-1091. [PMID: 32027760 DOI: 10.1002/jbmr.3976] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
Chondrosarcoma is the second most frequent bone sarcoma. Due to the inherent chemotherapy and radiotherapy resistance and absence of known therapeutic targets, clinical management is limited to surgical resection. Consequently, patients with advanced disease face a poor prognosis. Hence, elucidating regulatory networks governing chondrosarcoma pathogenesis is vital for development of effective therapeutic strategies. Here, miRNA and mRNA next generation sequencing of different subtypes of human chondrogenic tumors in combination with in silico bioinformatics tools were performed with the aim to identify key molecular factors. We identified miR-143/145 cluster levels to inversely correlate with tumor grade. This deregulation was echoed in the miRNA plasma levels of patients and we provided the first evidence that circulating miR-145 is a potential noninvasive diagnostic biomarker and can be valuable as an indicator to improve the currently challenging diagnosis of cartilaginous bone tumors. Additionally, artificial upregulation of both miRNAs impelled a potent tumor suppressor effect in vitro and in vivo in an orthotopic xenograft mouse model. A combined in silico/sequencing approach revealed FSCN1 as a direct target of miR-143/145, and its depletion phenotypically resembled miR-143/145 upregulation in vitro. Last, FSCN1 is a malignancy-promoting factor associated with aggressive chondrosarcoma progression. Our findings underscore miR-143/145/FSCN1 as important players in chondrosarcoma and may potentially open new avenues for specific therapeutic intervention options. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Joaquin Urdinez
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Aleksandar Boro
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Alekhya Mazumdar
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Matthias Je Arlt
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Roman Muff
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Sander M Botter
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Beata Bode-Lesniewska
- Institute for Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bruno Fuchs
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Shi L, Li B, Zhang B, Zhen C, Zhou J, Tang S. Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway. Stem Cell Res Ther 2019; 10:217. [PMID: 31358051 PMCID: PMC6664599 DOI: 10.1186/s13287-019-1340-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/21/2019] [Accepted: 07/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Both genetic and environmental factors are implicated in the pathogenesis of cleft palate. However, the molecular and cellular mechanisms that regulate the development of palatal shelves, which are composed of mesenchymal cells, have not yet been fully elucidated. This study aimed to determine the stemness and multilineage differentiation potential of mouse embryonic palatal mesenchyme (MEPM) cells in palatal shelves and to explore the underlying regulatory mechanism associated with cleft palate formation. METHODS Palatal shelves excised from mice models were cultured in vitro to ascertain whether MEPM are stem cells through immunofluorescence and flow cytometry. The osteogenic, adipogenic, and chondrogenic differentiation potential of MEPM cells were also determined to characterize MEPM stemness. In addition, the role of the PTEN-Akt-mTOR autophagic pathway was investigated using quantitative RT-PCR, Western blotting, and transmission electron microscopy. RESULTS MEPM cells in culture exhibited cell surface marker expression profiles similar to that of mouse bone marrow stem cells and exhibited positive staining for vimentin (mesodermal marker), nestin (ectodermal marker), PDGFRα, Efnb1, Osr2, and Meox2 (MEPM cells markers). In addition, exposure to PDGFA stimulated chemotaxis of MEPM cells. MEPM cells exhibited stronger potential for osteogenic differentiation as compared to that for adipogenic and chondrogenic differentiation. Undifferentiated MEPM cells displayed a high concentration of autophagosomes, which disappeared after differentiation (at passage four), indicating the involvement of PTEN-Akt-mTOR signaling. CONCLUSIONS Our findings suggest that MEPM cells are ectomesenchymal stem cells with a strong osteogenic differentiation potential and that maintenance of their stemness via PTEN/AKT/mTOR autophagic signaling prevents cleft palate development.
Collapse
Affiliation(s)
- Lungang Shi
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Binchen Li
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Binna Zhang
- Center for Translational Medicine, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| | - Congyuan Zhen
- Shantou University Medical College, No. 22 Xinling road, Shantou, 515041 Guangdong China
| | - Jianda Zhou
- Department of Plastic Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, the Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041 Guangdong China
| |
Collapse
|
9
|
Papathanasiou I, Trachana V, Mourmoura E, Tsezou A. DNA methylation regulates miR-140-5p and miR-146a expression in osteoarthritis. Life Sci 2019; 228:274-284. [PMID: 31077718 DOI: 10.1016/j.lfs.2019.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
AIMS Previous studies have demonstrated that transcriptional silencing of miRNAs due to DNA hypermethylation is associated with different pathologies. It has also been reported that abnormal expression of miR-140-5p and miR-146a is linked to osteoarthritis (OA) progression. In this study, we investigated the role of DNA methylation on miR-140-5p and miR-146a expression in OA. MAIN METHODS miR-140-5p and miR-146a expression was investigated by qRT-PCR. The methylation status of miR-140 and miR-146a regulatory regions was analyzed using qMSP and bisulfite sequencing analysis. SMAD-3 and NF-kB binding to miR-140 and miR-146a regulatory regions was assessed by ChIP assay and knockdown experiments. OA-related genes' expression was evaluated in 5-AzadC, miRNAs inhibitor and 5-AzadC/miRNAs inhibitor-treated cells. KEY FINDINGS Hypermethylation of specific CpG sites in miR-140 and miR-146a regulatory regions was associated with downregulation of miR-140-5p and miR-146a in OA chondrocytes and synoviocytes, respectively. 5-AzadC-induced miR-140-5p and miR-146a upregulation was observed in OA chondrocytes and synoviocytes. Moreover, we found decreased binding affinity of SMAD-3 and NF-kB transcription factors on the hypermethylated miR-140-5p and miR-146a regulatory regions, respectively. Downregulation of MMP-13 and ADAMTS-5 in 5-AzadC-treated OA chondrocytes was prevented by miR-140-5p inhibitor transfection. Similarly, 5-AzadC-treated OA synoviocytes showed decreased expression of IRAK-1, IL1Β and IL-6, which was reversed following 5-AzadC-/miR-146a inhibitor treatment. SIGNIFICANCE Our results strongly suggest the impact of DNA methylation on miR-140-5p and miR-146a suppression in OA chondrocytes and synoviocytes, contributing to OA pathogenesis.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- University of Thessaly, Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, Biopolis 41500, Larissa, Greece
| | - Varvara Trachana
- University of Thessaly, Faculty of Medicine, Department of Biology, Biopolis 41500, Larissa, Greece
| | - Evanthia Mourmoura
- University of Thessaly, Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, Biopolis 41500, Larissa, Greece
| | - Aspasia Tsezou
- University of Thessaly, Faculty of Medicine, Laboratory of Cytogenetics and Molecular Genetics, Biopolis 41500, Larissa, Greece; University of Thessaly, Faculty of Medicine, Department of Biology, Biopolis 41500, Larissa, Greece.
| |
Collapse
|
10
|
miR-134 inhibits chondrogenic differentiation of bone marrow mesenchymal stem cells by targetting SMAD6. Biosci Rep 2019; 39:BSR20180921. [PMID: 30135141 PMCID: PMC6356013 DOI: 10.1042/bsr20180921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023] Open
Abstract
Various miRNAs have been reported to regulate the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs); however, whether miR-134 plays a role in this biological process remains undetermined. In the present study, we first evaluated the chondrogenic differentiation of BMSCs by Alcian blue staining, and examined the miR-134 expression by quantitative real-time PCR (qRT-PCR) during this process. And miR-134 inhibitor was used to investigate the functions of miR-134 in chondrogenic differentiation of BMSCs by Alcian blue staining, qRT-PCR, and Western blot. Subsequently, the correlation between miR-134 and SMAD6 was assessed via bioinformatics analysis and dual-luciferase reporter assay. Finally, the role of SMAD6 in chondrogenic differentiation of BMSCs was also determined through Alcian blue staining, qRT-PCR, and Western blot. As results showed that miR-134 expression was significantly down-regulated during chondrogenic differentiation, and inhibition of miR-134 obviously promoted chondrogenic differentiation. Dual-luciferase reporter assay indicated that miR-134 could directly target the 3′-UTRs of SMAD6, inhibit miR-134 expression in BMSCs, and up-regulate SMAD6 expression. Moreover, we found that overexpression of SMAD6 significantly promoted chondrogenic differentiation, and that SMAD6-induced promotion of chondrogenic differentiation could be reversed by miR-134 mimics. In conclusion, our findings suggest that miR-134 may act as a negative regulator during chondrogenic differentiation of BMSCs by interacting with SMAD6.
Collapse
|
11
|
Zhou X, Wang J, Sun H, Qi Y, Xu W, Luo D, Jin X, Li C, Chen W, Lin Z, Li F, Zhang R, Li G. MicroRNA-99a regulates early chondrogenic differentiation of rat mesenchymal stem cells by targeting the BMPR2 gene. Cell Tissue Res 2016; 366:143-53. [PMID: 27177866 DOI: 10.1007/s00441-016-2416-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are candidates for the regeneration of articular cartilage as they possess the potential for chondrogenic differentiation. MSCs are easily obtained and expanded in vitro. Specific microRNAs (miRNAs) that regulate chondrogenesis have yet to be identified and the mechanisms involved remain to be defined. The miRNAs regulate biological processes by binding target mRNA to reduce protein synthesis. In this study, we show that expression of miR-99a and miR-125b-3p were increased during early chondrogenic differentiation of MSCs (rMSCs) derived from the Norwegian brown rat (Rattus norvegicus). MiR-99a knockdown promoted proteoglycan deposition and increased the expression of ACAN and COL2A1 during early chondrogenic differentiation. MiR-99a knockdown promoted early chondrogenic differentiation of rMSCs. A dual-luciferase reporter gene assay showed that miR-99a targeted a putative binding site in the 3'-UTR of bone morphogenetic protein (BMP) receptor type 2 (BMPR2). Overexpression of miR-99a reduced the expression levels of BMPR2 protein. The expression of total p38 and p-p38 increased at 7 and 14 days during early chondrogenic differentiation of rMSCs. Reduction in levels of total p38 and p-p38 protein followed miR-99a overexpression during early chondrogenic differentiation of rMSCs. BMPR2 silencing reversed the effects of miR-99a inhibition on proteoglycan deposition and protein expression of ACAN, COL2A1, total p38 and p-p38 during early chondrogenic differentiation of rMSCs. In conclusion, the findings of these in vitro studies in rat MSCs support a role for miR-99a as a negative regulator of early chondrogenic differentiation by directly targeting the BMPR2 gene at an early stage.
Collapse
Affiliation(s)
- Xiaozhong Zhou
- University of South China, Hengyang, Hunan, 421001, China
| | - Jing Wang
- Zhongshan Torch Development Zone Hospital, Zhongshan, Guangdong, 528437, China
| | - Hongtao Sun
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Yong Qi
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Wangyang Xu
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Dixin Luo
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Xunjie Jin
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Chao Li
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Weijian Chen
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Zhousheng Lin
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Feimeng Li
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Ran Zhang
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China
| | - Guitao Li
- Guangdong No.2 Provincial People's Hospital, Guanzhou, Guangdong, 510317, China.
| |
Collapse
|
12
|
Tian Y, Guo R, Shi B, Chen L, Yang L, Fu Q. MicroRNA-30a promotes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression. Life Sci 2016; 148:220-8. [PMID: 26872979 DOI: 10.1016/j.lfs.2016.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/27/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
AIMS MicroRNAs (miRNAs) play important roles in chondrogenic differentiation of mesenchymal stem cells (MSCs). However, the regulation of miR-30a during such process has not yet been well understood. The aim of the study was to investigate the effects of miR-30a on chondrogenic differentiation of MSCs and explore the underlying mechanisms. MATERIALS AND METHODS MSCs were isolated from rat bone marrow, and their immunophenotypes and multilineage differentiation potentials were identified. MiR-30a mimics or inhibitor were transfected into rat MSCs and SW1353 cells, respectively, and then the effects of miR-30a on chondrogenic differentiation were detected. The predicted target gene Delta-like 4 (DLL4, a ligand of the Notch signaling family) was verified by luciferase reporter assay, quantitative real time PCR and western blot. KEY FINDINGS MiR-30a was significantly up-regulated during chondrogenic differentiation of rat MSCs. Additionally, transfection of miR-30a mimics remarkably promoted the differentiation of rat MSCs into chondrocytes as evidence by the notably increased mRNA and protein expression levels of chondrogenic markers Collagen II and aggrecan as well as the enhanced alcian blue staining intensity, whereas inhibition of miR-30a obviously suppressed such process. Furthermore, during chondrogenesis, DLL4 expression was found to significantly decrease at both mRNA and protein levels, which was negatively regulated by miR-30a through directly targeting the 3'UTR of DLL4. SIGNIFICANCE Our results indicate that miR-30a acts as a key promoter for chondrogenic differentiation of MSCs by down-regulating DLL4 expression, and provide a novel insight on miRNA-mediated MSC therapy for cartilage-related disorders including osteoarthritis.
Collapse
Affiliation(s)
- Ye Tian
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ran Guo
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bin Shi
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Longgang Chen
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liqing Yang
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Qin Fu
- Department of Orthopaedics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
13
|
Green JD, Tollemar V, Dougherty M, Yan Z, Yin L, Ye J, Collier Z, Mohammed MK, Haydon RC, Luu HH, Kang R, Lee MJ, Ho SH, He TC, Shi LL, Athiviraham A. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering. Genes Dis 2015; 2:307-327. [PMID: 26835506 PMCID: PMC4730920 DOI: 10.1016/j.gendis.2015.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/16/2015] [Indexed: 01/08/2023] Open
Abstract
Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering.
Collapse
Affiliation(s)
- Jordan D. Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mark Dougherty
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhengjian Yan
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liangjun Yin
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zachary Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
14
|
MicroRNAs' Involvement in Osteoarthritis and the Prospects for Treatments. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:236179. [PMID: 26587043 PMCID: PMC4637488 DOI: 10.1155/2015/236179] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a chronic disease and its etiology is complex. With increasing OA incidence, more and more people are facing heavy financial and social burdens from the disease. Genetics-related aspects of OA pathogenesis are not well understood. Recent reports have examined the molecular mechanisms and genes related to OA. It has been realized that genetic changes in articular cartilage and bone may contribute to OA's development. Osteoclasts, osteoblasts, osteocytes, and chondrocytes in joints must express appropriate genes to achieve tissue homeostasis, and errors in this can cause OA. MicroRNAs (miRNAs) are small noncoding RNAs that have been discovered to be overarching regulators of gene expression. Their ability to repress many target genes and their target-binding specificity indicate a complex network of interactions, which is still being defined. Many studies have focused on the role of miRNAs in bone and cartilage and have identified numbers of miRNAs that play important roles in regulating bone and cartilage homeostasis. Those miRNAs may also be involved in the pathology of OA, which is the focus of this review. Future studies on the role of miRNAs in OA will provide important clues leading to a better understanding of the mechanism(s) of OA and, more particularly, to the development of therapeutic targets for OA.
Collapse
|
15
|
Abstract
Preclinical Research Bone is a rigid and dynamic organ that undergoes continuous turnover. Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The interruption of this balance can cause various diseases, including osteoporosis a public health issue due to the rate of hip fracture, the most serious outcome of osteoporosis. The bone loss in osteoporosis results from an increase in bone resorption versus bone formation. Thus, regulation of osteoblast and osteoclast activity is a main focus in the treatment of osteoporosis. MicroRNAs (miRNAs) are a class of single stranded noncoding RNAs consisting of 18-22 nucleotides that have an important role in cell differentiation, cell fate, apoptosis, and pathogenesis in various disease states. The potential therapeutic and biomarker function of miRNAs in treating bone disorders is receiving more attention. The current review summarizes the role of miRNAs in bone function at a cellular level in the context of their therapeutic potential.
Collapse
Affiliation(s)
- Junying Chen
- Department of Pathology, 324 Hospital of People's Liberation Army, Chongqing, China
| | - Min Qiu
- Department of Pathology, 324 Hospital of People's Liberation Army, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Ragni E, Parazzi V, Crosti M, Moro M, Giordano R, Lazzari L. Diet composition transiently modulates proliferative and potency features of human cord blood-derived mesenchymal stem cells. Int J Biochem Cell Biol 2014; 55:269-78. [PMID: 25256683 DOI: 10.1016/j.biocel.2014.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/30/2022]
Abstract
Mesenchymal stem cells (MSC) emerged in the last few years as a promise in regenerative medicine and have been actively tested in several clinical trials worldwide. However, the lack of common standards and a precise definition of MSC preparations remain a major obstacle in research and application. In this study, we compared the effects during culture of two different MSC commercial media (aMEM and SPE-IV) on the proliferative capacities, phenotypic and molecular features in human cord blood derived-MSC lines. Moreover, as miRNA are markers of stem cell multipotency and regulators of somatic cell reprogramming, we performed a miRNome analysis in both conditions. As a result, we observed that SPE-IV promoted a faster growth and modulated stemness and proliferation associated genes such as PDGFRB, p16 and p21. Notably, in aMEM miR-335 and miR-302b, both proposed as putative stemness markers, were upregulated together with miRNAs reported to decrease adipo- and osteogenesis confirming the observed reduced differentiation potential after growth in this condition. Intriguingly, phenotypic divergences were entirely due to culturing conditions and, most importantly, completely transitory since, after medium switch, the cells were able to revert their signatures. Thus, it emerges as crucial keeping constant the experimental settings, starting from culturing conditions, to avoid misleading characterization of stemness and/or potency markers when the eventual goal is unequivocal definition of such parameters for future clinical choice.
Collapse
Affiliation(s)
- Enrico Ragni
- Cell Factory, Unit for Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Parazzi
- Cell Factory, Unit for Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Mariacristina Crosti
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Monica Moro
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), Milano, Italy
| | - Rosaria Giordano
- Cell Factory, Unit for Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Lorenza Lazzari
- Cell Factory, Unit for Cellular Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
17
|
Huang K, Fu J, Zhou W, Li W, Dong S, Yu S, Hu Z, Wang H, Xie Z. MicroRNA-125b regulates osteogenic differentiation of mesenchymal stem cells by targeting Cbfβ in vitro. Biochimie 2014; 102:47-55. [PMID: 24560795 DOI: 10.1016/j.biochi.2014.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Differentiation of mesenchymal stem cells (MSCs) into a specific lineage is firmly and precisely regulated via crucial transcription factors and signaling cascades, but the accurate mechanisms still need to be revealed. MicroRNAs (miRNA) negativity regulates the target mRNA protein synthesis to regulate various kinds of biological processes. In the present study we investigate miRNAs mediated regulatory mechanisms of osteoblastic differentiation in C3H10T1/2 cells and we identified that the level of miR-125b expression was obviously decreased compared with undifferentiated ones during differentiation process. Subsequently, dual-luciferase reporter gene assay data demonstrated that miR-125b targets a putative binding site in the 3'-UTR of Cbfβ gene, a key transcription factor for osteogenesis. We observed over and interferential expression of miR-125b down-regulate for Cbfβ protein in C3H10T1/2 cells and the over-expression decrease the mRNA levels of three osteoblastic marker genes, alkaline phosphatase (ALP), osteocalcin (OCN), osteopontin (OPN) by BMP-2-induced, whereas, anti-miR-125b increased the expression of these marker genes and hence up-regulated mRNA levels of Cbfβ. It is concluded from the result that miR-125b is a key regulatory factor of osteoblastic differentiation by directly targeting Cbfβ and indirectly acting on Runx2 at an early stage osteoblastic differentiation.
Collapse
Affiliation(s)
- Ke Huang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jingshu Fu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Zhou
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Li
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Shengpeng Yu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zongkai Hu
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huaqing Wang
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhao Xie
- National & Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
18
|
Shang J, Liu H, Zhou Y. Roles of microRNAs in prenatal chondrogenesis, postnatal chondrogenesis and cartilage-related diseases. J Cell Mol Med 2013; 17:1515-24. [PMID: 24373548 PMCID: PMC3914653 DOI: 10.1111/jcmm.12161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022] Open
Abstract
Cartilage has limited repair and regeneration capacity, thus damage of cartilage often results in its dysfunction and even chronic diseases like osteoarthritis (OA). Chondrogenesis induced by tissue-engineering methods is essential to treating cartilage-related diseases. MicroRNAs (miRNAs) are a class of small non-coding single-stranded RNAs which exert their biological effects by binding to the target messenger RNAs (mRNAs), resulting in decay or translation suppression of target mRNAs. There are emerging evidence indicating that miRNAs may play important roles in regulating both prenatal and postnatal chondrogenesis. During embryonic skeletal development, prenatal chondrogenesis is thought to be a precondition for formation of cartilage in developing limbs. Plenty of studies on different types of stem cells have undoubtedly proven their capacity of differentiating into chondrocytes. MiRNAs are found to comprehensively modulate these processes by establishing an interaction network with target genes, transcription factors and cytokines et al. In addition, translational application of miRNA technology has also been explored. In this review, we focus on the up-dated progress on regulatory mechanisms of miRNAs in prenatal and postnatal chondrogenesis. In addition, several miRNA target genes and roles of miRNAs in cartilage-related diseases are also discussed. This will contribute to studies of chondrogenesis mechanisms and development of new treating methods.
Collapse
Affiliation(s)
- Jin Shang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
19
|
Le LTT, Swingler TE, Clark IM. Review: the role of microRNAs in osteoarthritis and chondrogenesis. ACTA ACUST UNITED AC 2013; 65:1963-74. [PMID: 23666813 DOI: 10.1002/art.37990] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 04/23/2013] [Indexed: 12/21/2022]
|
20
|
Liu AR, Liu L, Chen S, Yang Y, Zhao HJ, Liu L, Guo FM, Lu XM, Qiu HB. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro. J Cell Physiol 2013; 228:1270-83. [PMID: 23154940 DOI: 10.1002/jcp.24282] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 11/02/2012] [Indexed: 01/31/2023]
Abstract
The differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells in vivo and in vitro, is critical for reepithelization and recovery in acute lung injury (ALI), but the mechanisms responsible for differentiation are unclear. In the present study, we investigated the role of the canonical wnt pathway in the differentiation of mouse bone marrow-derived MSCs (mMSCs) into AT II cells. Using a modified co-culture system with murine lung epithelial-12 (MLE-12) cells and small airway growth media (SAGM) to efficiently drive mMSCs differentiation, we found that GSK 3β and β-catenin in the canonical wnt pathway were up-regulated during differentiation. The levels of surfactant protein (SP) C, SPB, and SPD, the specific markers of AT II cells, correspondingly increased in mMSCs when Wnt3a or LiCl was added to the co-culture system to activate wnt/β-catenin signaling. The expression of these factors was depressed to some extent by inhibiting the pathway with the addition of DKK 1. The differentiation rate of mMSCs also depends on their abilities to accumulate and survive in inflammatory tissue. Our results suggested that the activation of wnt/β-catenin signaling promoted mMSCs migration towards ALI mouse-derived lung tissue in a Transwell assay, and ameliorated the cell death and the reduction of Bcl-2/Bax induced by H(2) O(2), which simultaneously caused reduced GSK 3β and β-catenin in mMSCs. These data supports a potential mechanism for the differentiation of mMSCs into AT II cells involving canonical wnt pathway activation, which may be significant to their application in ALI.
Collapse
Affiliation(s)
- Ai-Ran Liu
- Department of Critical Care Medicine, Zhong-da Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wu R, Wang N, Li M, Zang W, Xu Y. Experimental study on the facilitative effects of miR-125b on the differentiation of rat bone marrow mesenchymal stem cells into neuron-like cells. Cell Biol Int 2013; 37:812-9. [DOI: 10.1002/cbin.10103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 03/09/2013] [Indexed: 12/17/2022]
Affiliation(s)
| | - Na Wang
- Department of Microbiology and Immunology; College of Basic Medical Sciences, Zhengzhou University; Zhengzhou; 450001; P.R.; China
| | - Min Li
- Department of Microbiology and Immunology; College of Basic Medical Sciences, Zhengzhou University; Zhengzhou; 450001; P.R.; China
| | - Wenqiao Zang
- Department of Microbiology and Immunology; College of Basic Medical Sciences, Zhengzhou University; Zhengzhou; 450001; P.R.; China
| | - Yuming Xu
- Department of Neurology; the First Affiliated Hospital of Zhengzhou University; Zhengzhou; 450052; P.R.; China
| |
Collapse
|
22
|
Xu J, Kang Y, Liao WM, Yu L. MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS One 2012; 7:e31861. [PMID: 22396742 PMCID: PMC3291608 DOI: 10.1371/journal.pone.0031861] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 01/13/2012] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis, also known as degenerative arthritis or degenerative joint disease, causes pain and disability worldwide. Cartilage regeneration is key to finding a cure for this disease. Adipose-derived stem cells (ASCs) are capable of differentiating into cartilage lineages in vitro and they have shown promise in the field of regenerative medicine. However, the underlying mechanisms remain unclear. In this study, we demonstrated that miR-194 levels gradually decreased during the chondrogenic differentiation of human ASCs (hASCs). After predicting the target of miR-194 using Pictar and Targetscan, we hypothesized that Sox5 is potentially the key link between miR-194 and the chondrogenesis of ASCs. Initially, we demonstrated that Sox5 is a target of miR194 according to luciferase assay analysis. We further demonstrated that the differentiation of ASCs can be controlled by miR-194 through gain or loss of function experiments, and we observed that the down-regulation of miR-194 increases its direct target gene, Sox5, and results in enhanced chondrogenic differentiation of hASCs, whereas up-regulation decreases Sox5 and inhibits chondrogenesis. We also found that miR-194 correlates with Sox5 in osteoarthritis. These findings, taken together, are the first to illustrate the critical role of miR-194 in hASC chondrogenesis, and may provide novel insight beneficial to cell manipulation methods during cartilage regeneration.
Collapse
Affiliation(s)
- Jun Xu
- Department of Orthopedics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yan Kang
- Department of Orthopedics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wei-ming Liao
- Department of Orthopedics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
- * E-mail:
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
23
|
Dong S, Yang B, Guo H, Kang F. MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun 2012; 418:587-91. [PMID: 22306817 DOI: 10.1016/j.bbrc.2012.01.075] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/14/2012] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.
Collapse
Affiliation(s)
- Shiwu Dong
- Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing, China.
| | | | | | | |
Collapse
|
24
|
Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One 2011; 6:e21679. [PMID: 21799743 PMCID: PMC3140487 DOI: 10.1371/journal.pone.0021679] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 06/08/2011] [Indexed: 12/21/2022] Open
Abstract
Chondrogenic differentiation of mesenchymal stem cells (MSCs) is accurately regulated by essential transcription factors and signaling cascades. However, the precise mechanisms involved in this process still remain to be defined. MicroRNAs (miRNAs) regulate various biological processes by binding target mRNA to attenuate protein synthesis. To investigate the mechanisms for miRNAs-mediated regulation of chondrogenic differentiation, we identified that miR-145 was decreased during transforming growth factor beta 3 (TGF-β3)-induced chondrogenic differentiation of murine MSCs. Subsequently, dual-luciferase reporter gene assay data demonstrated that miR-145 targets a putative binding site in the 3'-UTR of SRY-related high mobility group-Box gene 9 (Sox9) gene, the key transcription factor for chondrogenesis. In addition, over-expression of miR-145 decreased expression of Sox9 only at protein levels and miR-145 inhibition significantly elevated Sox9 protein levels. Furthermore, over-expression of miR-145 decreased mRNA levels for three chondrogenic marker genes, type II collagen (Col2a1), aggrecan (Agc1), cartilage oligomeric matrix protein (COMP), type IX collagen (Col9a2) and type XI collagen (Col11a1) in C3H10T1/2 cells induced by TGF-β3, whereas anti-miR-145 inhibitor increased the expression of these chondrogenic marker genes. Thus, our studies demonstrated that miR-145 is a key negative regulator of chondrogenic differentiation by directly targeting Sox9 at early stage of chondrogenic differentiation.
Collapse
Affiliation(s)
- Bo Yang
- Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing, People's Republic of China
| | - Hongfeng Guo
- Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing, People's Republic of China
| | - Yulan Zhang
- Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing, People's Republic of China
- Department of Anesthesiology, Chengdu Military General Hospital, Chengdu, People's Republic of China
| | - Lei Chen
- Department of Orthopaedics, Southwest Hospital, Chongqing, People's Republic of China
| | - Dajun Ying
- Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing, People's Republic of China
| | - Shiwu Dong
- Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
25
|
|