1
|
Laird J, Perera G, Batorsky R, Wang H, Arkun K, Chin MT. Spatial Transcriptomic Analysis of Focal and Normal Areas of Myocyte Disarray in Human Hypertrophic Cardiomyopathy. Int J Mol Sci 2023; 24:12625. [PMID: 37628806 PMCID: PMC10454036 DOI: 10.3390/ijms241612625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder that can lead to heart failure and sudden cardiac death, characterized at the histological level by focal areas of myocyte disarray, hypertrophy and fibrosis, and only a few disease-targeted therapies exist. To identify the focal and spatially restricted alterations in the transcriptional pathways and reveal novel therapeutic targets, we performed a spatial transcriptomic analysis of the areas of focal myocyte disarray compared to areas of normal tissue using a commercially available platform (GeoMx, nanoString). We analyzed surgical myectomy tissue from four patients with HCM and the control interventricular septum tissue from two unused organ donor hearts that were free of cardiovascular disease. Histological sections were reviewed by an expert pathologist, and 72 focal areas with varying degrees of myocyte disarray (normal, mild, moderate, severe) were chosen for analysis. Areas of interest were interrogated with the Human Cancer Transcriptome Atlas designed to profile 1800 transcripts. Differential expression analysis revealed significant changes in gene expression between HCM and the control tissue, and functional enrichment analysis indicated that these genes were primarily involved in interferon production and mitochondrial energetics. Within the HCM tissue, differentially expressed genes between areas of normal and severe disarray were enriched for genes related to mitochondrial energetics and the extracellular matrix in severe disarray. An analysis of the gene expression of the ligand-receptor pair revealed that the HCM tissue exhibited downregulation of platelet-derived growth factor (PDGF), NOTCH, junctional adhesion molecule, and CD46 signaling while showing upregulation of fibronectin, CD99, cadherin, and amyloid precursor protein signaling. A deconvolution analysis utilizing the matched single nuclei RNA-sequencing (snRNA-seq) data to determine cell type composition in areas of interest revealed significant differences in fibroblast and vascular cell composition in areas of severe disarray when compared to normal areas in HCM samples. Cell composition in the normal areas of the control tissue was also divergent from the normal areas in HCM samples, which was consistent with the differential expression results. Overall, our data identify novel and potential disease-modifying targets for therapy in HCM.
Collapse
Affiliation(s)
- Jason Laird
- Research Technology, Tufts University, Medford, MA 02144, USA;
| | - Gayani Perera
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA;
| | - Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA; (R.B.); (H.W.)
| | - Hongjie Wang
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA; (R.B.); (H.W.)
| | - Knarik Arkun
- Department of Pathology, Tufts Medical Center, Boston, MA 02111, USA;
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA;
| |
Collapse
|
2
|
Lee KM, Seo EC, Lee JH, Kim HJ, Hwangbo C. The Multifunctional Protein Syntenin-1: Regulator of Exosome Biogenesis, Cellular Function, and Tumor Progression. Int J Mol Sci 2023; 24:ijms24119418. [PMID: 37298370 DOI: 10.3390/ijms24119418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Syntenin acts as an adaptor and scaffold protein through its two PSD-95, Dlg, and ZO-1 (PDZ) domains, participating in multiple signaling pathways and modulating cellular physiology. It has been identified as an oncogene, promoting cancer development, metastasis, and angiogenesis in various carcinomas. Syntenin-1 is also associated with the production and release of exosomes, small extracellular vesicles that play a significant role in intercellular communication by containing bioactive molecules such as proteins, lipids, and nucleic acids. The trafficking of exosomes involves a complex interplay of various regulatory proteins, including syntenin-1, which interacts with its binding partners, syndecan and activated leukocyte cell adhesion molecule (ALIX). Exosomal transfer of microRNAs, a key cargo, can regulate the expression of various cancer-related genes, including syntenin-1. Targeting the mechanism involving the regulation of exosomes by syntenin-1 and microRNAs may provide a novel treatment strategy for cancer. This review highlights the current understanding of syntenin-1's role in regulating exosome trafficking and its associated cellular signaling pathways.
Collapse
Affiliation(s)
- Kwang-Min Lee
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Eun-Chan Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry (BK21 Four), College of Natural Sciences, Kangwon National University, Chuncheon 24414, Republic of Korea
| | - Hyo-Jin Kim
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Applied Life Science (BK21 Four), Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Ebadi M, Jonart LM, Ostergaard J, Gordon PM. CD99 antibody disrupts T-cell acute lymphoblastic leukemia adhesion to meningeal cells and attenuates chemoresistance. Sci Rep 2021; 11:24374. [PMID: 34934147 PMCID: PMC8692434 DOI: 10.1038/s41598-021-03929-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Central nervous system (CNS) relapse is a significant cause of treatment failure among patients with acute lymphoblastic leukemia. In prior work we found that the meninges, the thin layer of tissue that covers the brain and spinal cord, harbor leukemia cells in the CNS. Importantly, direct interactions between leukemia and meningeal cells enabled leukemia chemoresistance. Herein, we show that an antibody targeting CD99, a transmembrane protein expressed on meningeal cells and many leukemia cells, disrupts adhesion between leukemia and meningeal cells and restores sensitivity of the leukemia cells to chemotherapy. This work identifies a mechanism regulating critical intercellular interactions within the CNS leukemia niche and may lead to novel therapeutic approaches for overcoming niche-mediated chemoresistance.
Collapse
Affiliation(s)
- Maryam Ebadi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE, MMC 366, Minneapolis, MN, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Leslie M Jonart
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE, MMC 366, Minneapolis, MN, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jason Ostergaard
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE, MMC 366, Minneapolis, MN, 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter M Gordon
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Minnesota, 420 Delaware St SE, MMC 366, Minneapolis, MN, 55455, USA. .,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
CD99-PTPN12 Axis Suppresses Actin Cytoskeleton-Mediated Dimerization of Epidermal Growth Factor Receptor. Cancers (Basel) 2020; 12:cancers12102895. [PMID: 33050232 PMCID: PMC7599698 DOI: 10.3390/cancers12102895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The epidermal growth factor receptor (EGFR) is activated through growth factor-dependent dimerization accompanied by functional reorganization of the actin cytoskeleton. Lee et al. demonstrate that CD99 activation by agonist ligands inhibits epidermal growth factor (EGF)-induced EGFR dimerization through impairment of cytoskeletal reorganization by protein tyrosine phosphatase non-receptor type 12 (PTPN12)-dependent c-Src/focal adhesion kinase (FAK) inactivation, thereby suppressing breast cancer growth. Abstract The epidermal growth factor receptor (EGFR), a member of ErbB receptor tyrosine kinase (RTK) family, is activated through growth factor-induced reorganization of the actin cytoskeleton and subsequent dimerization. We herein explored the molecular mechanism underlying the suppression of ligand-induced EGFR dimerization by CD99 agonists and its relevance to tumor growth in vivo. Epidermal growth factor (EGF) activated the formation of c-Src/focal adhesion kinase (FAK)-mediated intracellular complex and subsequently induced RhoA-and Rac1-mediated actin remodeling, resulting in EGFR dimerization and endocytosis. In contrast, CD99 agonist facilitated FAK dephosphorylation through the HRAS/ERK/PTPN12 signaling pathway, leading to inhibition of actin cytoskeletal reorganization via inactivation of the RhoA and Rac1 signaling pathways. Moreover, CD99 agonist significantly suppressed tumor growth in a BALB/c mouse model injected with MDA-MB-231 human breast cancer cells. Taken together, these results indicate that CD99-derived agonist ligand inhibits epidermal growth factor (EGF)-induced EGFR dimerization through impairment of cytoskeletal reorganization by PTPN12-dependent c-Src/FAK inactivation, thereby suppressing breast cancer growth.
Collapse
|
5
|
CD99-Derived Agonist Ligands Inhibit Fibronectin-Induced Activation of β1 Integrin through the Protein Kinase A/SHP2/Extracellular Signal-Regulated Kinase/PTPN12/Focal Adhesion Kinase Signaling Pathway. Mol Cell Biol 2017; 37:MCB.00675-16. [PMID: 28483911 DOI: 10.1128/mcb.00675-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 01/13/2023] Open
Abstract
The human CD99 protein is a 32-kDa glycosylated transmembrane protein that regulates various cellular responses, including cell adhesion and leukocyte extravasation. We previously reported that CD99 activation suppresses β1 integrin activity through dephosphorylation of focal adhesion kinase (FAK) at Y397. We explored a molecular mechanism underlying the suppression of β1 integrin activity by CD99 agonists and its relevance to tumor growth in vivo CD99-Fc fusion proteins or a series of CD99-derived peptides suppressed β1 integrin activity by specifically interacting with three conserved motifs of the CD99 extracellular domain. CD99CRIII3, a representative CD99-derived 3-mer peptide, facilitated protein kinase A-SHP2 interaction and subsequent activation of the HRAS/RAF1/MEK/ERK signaling pathway. Subsequently, CD99CRIII3 induced FAK phosphorylation at S910, which led to the recruitment of PTPN12 and PIN1 to FAK, followed by FAK dephosphorylation at Y397. Taken together, these results indicate that CD99-derived agonist ligands inhibit fibronectin-mediated β1 integrin activation through the SHP2/ERK/PTPN12/FAK signaling pathway.
Collapse
|
6
|
Lee KJ, Lim D, Yoo YH, Park EJ, Lee SH, Yadav BK, Lee YK, Park JH, Kim D, Park KH, Hahn JH. Paired Ig-Like Type 2 Receptor-Derived Agonist Ligands Ameliorate Inflammatory Reactions by Downregulating β1 Integrin Activity. Mol Cells 2016; 39:557-65. [PMID: 27306643 PMCID: PMC4959021 DOI: 10.14348/molcells.2016.0079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/27/2022] Open
Abstract
The paired immunoglobulin-like type 2 receptor (PILR) family consists of two functionally opposite members, inhibitory PILRα and activating PILRβ receptors. PILRs are widely expressed in various immune cells and interact with their ligands, especially CD99 expressed on activated T cells, to participate in immune responses. Here we investigated whether PILR-derived agonists inhibit β1 integrin activity as ligands for CD99. PILR-derived peptides as well as PILR-Fc fusion proteins prevented cell adhesion to fibronectin through the regulation of β1 integrin activity. Especially, PILRpep3, a representative 3-mer peptide covering the conserved motifs of the PILR extracellular domain, prevented the clustering and activation of β1 integrin by dephosphorylating FAK and vinculin, which are major components of focal adhesion. In addition, PILRpep3 inhibited transendothelial migration of monocytes as well as endothelial cell tube formation. Furthermore, upon intraperitoneal injection of PILRpep3 into mice with collagen-induced arthritis, the inflammatory response of rheumatoid arthritis was strongly suppressed. Taken together, these results suggest that PILR-derived agonist ligands may prevent the inflammatory reactions of rheumatoid arthritis by activating CD99.
Collapse
Affiliation(s)
- Kyoung-Jin Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Dongyoung Lim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Yeon Ho Yoo
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Eun-Ji Park
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Sun-Hee Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Birendra Kumar Yadav
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Yong-Ki Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Jeong Hyun Park
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Daejoong Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Kyeong Han Park
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| | - Jang-Hee Hahn
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701,
Korea
| |
Collapse
|
7
|
Lee KJ, Yoo YH, Kim MS, Yadav BK, Kim Y, Lim D, Hwangbo C, Moon KW, Kim D, Jeoung D, Lee H, Lee JH, Hahn JH. CD99 inhibits CD98-mediated β1 integrin signaling through SHP2-mediated FAK dephosphorylation. Exp Cell Res 2015; 336:211-22. [PMID: 26172215 DOI: 10.1016/j.yexcr.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/28/2015] [Accepted: 07/10/2015] [Indexed: 01/18/2023]
Abstract
The human CD99 protein is a 32-kDa type I transmembrane glycoprotein, while CD98 is a disulfide-linked 125-kDa heterodimeric type II transmembrane glycoprotein. It has been previously shown that CD99 and CD98 oppositely regulate β1 integrin signaling, though the mechanisms by which this regulation occurs are not known. Our results revealed that antibody-mediated crosslinking of CD98 induced FAK phosphorylation at Y397 and facilitated the formation of the protein kinase Cα (PKCα)-syntenin-focal adhesion kinase (FAK), focal adhesions (FAs), and IPP-Akt1-syntenin complex, which mediates β1 integrin signaling. In contrast, crosslinking of CD99 disrupted the formation of the PKCα-syntenin-FAK complex as well as FA via FAK dephosphorylation. The CD99-induced dephosphorylation of FAK was apparently mediated by the recruitment of Src homology region 2 domain-containing phosphatase-2 (SHP2) to the plasma membrane and subsequent activation of its phosphatase activity. Further consequences of the activation of SHP2 included the disruption of FAK-talin and talin-β1 integrin interactions and attenuation in the formation of the IPP-Akt1-syntenin complex at the plasma membrane, which resulted in reduced cell-ECM adhesion. This report uncovers the molecular mechanisms underlying the inverse regulation of β1 integrin signaling by CD99 and CD98 and may provide a novel therapeutic approach to treat inflammation and cancer.
Collapse
Affiliation(s)
- Kyoung Jin Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yeon Ho Yoo
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Min Seo Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Birendra Kumar Yadav
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yuri Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Dongyoung Lim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Cheol Hwangbo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ki Won Moon
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Daejoong Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hansoo Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Jang-Hee Hahn
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|