1
|
Grgurević L, Novak R, Jambrošić L, Močibob M, Jaganjac M, Halasz M, Salai G, Hrkač S, Milošević M, Vlahović T, Romić J, Matičić D, Vidović D. Systemic Lipid Metabolism Dysregulation as a Possible Driving Force of Fracture Non-Unions? Bioengineering (Basel) 2024; 11:1135. [PMID: 39593795 PMCID: PMC11592249 DOI: 10.3390/bioengineering11111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Non-unions are fractures that do not heal properly, resulting in a false joint formation at the fracture site. This condition leads to major health issues and imposes a burden on national healthcare systems. The etiology of non-unions is still not fully understood; therefore, we aimed to identify potential systemic factors that may contribute to their formation. MATERIALS AND METHODS We conducted a cross-sectional concomitant proteomic and metabolomic pilot study of blood plasma in patients with non-unions (N = 11) and compared them with patients with bone fracture in the normal active healing phase (N = 12). RESULTS We found five significantly upregulated proteins in the non-union group: immunoglobulin heavy variable 3-74, immunoglobulin lambda variable 2-18, low-density lipoprotein receptor-related protein 4, zinc-alpha-2-glycoprotein, and serum amyloid A-1 protein; and we found one downregulated protein: cystatin-C. The metabolomic study found differences in alanine, aspartate and glutamate metabolism pathways between two groups. CONCLUSIONS The combined results of proteomic and metabolomic analyses suggest that the dysregulation of lipid metabolism may contribute to non-union formation.
Collapse
Affiliation(s)
- Lovorka Grgurević
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (R.N.)
- Department of Anatomy, “Drago Perovic”, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Biomedical Research Center Salata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ruđer Novak
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (R.N.)
- Biomedical Research Center Salata, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Lucija Jambrošić
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (R.N.)
| | - Marko Močibob
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Mirna Halasz
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Grgur Salai
- Department of Pulmonology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Stela Hrkač
- Department of Clinical Immunology, Allergology and Rheumatology, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Milan Milošević
- Department for Environmental and Occupational Health, Andrija Stampar School of Public Health, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Vlahović
- Clinic of Traumatology, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
| | - Jeronim Romić
- Clinic of Traumatology, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
| | - Dražen Matičić
- Clinics for Surgery, Orthopedics and Ophthalmology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dinko Vidović
- Clinic of Traumatology, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Szeliga A, Grymowicz M, Kostrzak A, Smolarczyk R, Bala G, Smolarczyk K, Meczekalski B, Suchta K. Bone: A Neglected Endocrine Organ? J Clin Med 2024; 13:3889. [PMID: 38999458 PMCID: PMC11242793 DOI: 10.3390/jcm13133889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Bone has traditionally been viewed in the context of its structural contribution to the human body. Foremost providing necessary support for mobility, its roles in supporting calcium homeostasis and blood cell production are often afterthoughts. Recent research has further shed light on the ever-multifaceted role of bone and its importance not only for structure, but also as a complex endocrine organ producing hormones responsible for the autoregulation of bone metabolism. Osteocalcin is one of the most important substances produced in bone tissue. Osteocalcin in circulation increases insulin secretion and sensitivity, lowers blood glucose, and decreases visceral adipose tissue. In males, it has also been shown to enhance testosterone production by the testes. Neuropeptide Y is produced by various cell types including osteocytes and osteoblasts, and there is evidence suggesting that peripheral NPY is important for regulation of bone formation. Hormonal disorders are often associated with abnormal levels of bone turnover markers. These include commonly used bone formation markers (bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide) and commonly used resorption markers (serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen, and tartrate-resistant acid phosphatase type 5b). Bone, however, is not exclusively comprised of osseous tissue. Bone marrow adipose tissue, an endocrine organ often compared to visceral adipose tissue, is found between trabecula in the bone cortex. It secretes a diverse range of hormones, lipid species, cytokines, and other factors to exert diverse local and systemic effects.
Collapse
Affiliation(s)
- Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | | | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Suchta
- Department of Gynecological Endocrinology, Warsaw Medical University, 00-315 Warsaw, Poland
| |
Collapse
|
3
|
Khoswanto C, Dewi IK. The role of Wnt signaling on Tooth Extraction Wound Healing: Narrative review. Saudi Dent J 2024; 36:516-520. [PMID: 38690381 PMCID: PMC11056418 DOI: 10.1016/j.sdentj.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 05/02/2024] Open
Abstract
Compared to an incisional skin or mucosal wound, a tooth extraction wound results in far more soft tissue loss. A blood clot instantly fills the gap left by the extracted tooth. An embryonic type of bone forms during the healing of extraction wounds, and mature bone only later replaces it. Osteocytes in embryonic bone, also known as coarse fibrillar bone or immature bone, differ from those in adult bone in terms of number, size, and irregular arrangement. This immature bone is more radiolucent than mature bone due to the higher cell density and the smaller volume of calcified intercellular material. The Wnt gene family contains genes that encode secreted signaling proteins that have good promise for promoting bone regeneration. However, we still have a limited understanding the interplay of the molecular elements of the Wnt pathway in signal transduction, from ligand detection on the cell surface to transcription of target genes in the nucleus. We discuss the function of Wnt signaling molecules in this review, in tissue repair following tooth extraction and present recent results about these molecules. Conclusions: Wnt signaling activity helps to hasten bone regeneration while bone healing is slowed down by mutations in LRP5/6 or β-catenin.
Collapse
Affiliation(s)
- Christian Khoswanto
- Department of Oral Biology Faculty of Dentistry, Airlangga University Surabaya, Indonesia
| | | |
Collapse
|
4
|
Lalayiannis AD, Soeiro EMD, Moysés RMA, Shroff R. Chronic kidney disease mineral bone disorder in childhood and young adulthood: a 'growing' understanding. Pediatr Nephrol 2024; 39:723-739. [PMID: 37624528 PMCID: PMC10817832 DOI: 10.1007/s00467-023-06109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Chronic kidney disease (CKD) mineral and bone disorder (MBD) comprises a triad of biochemical abnormalities (of calcium, phosphate, parathyroid hormone and vitamin D), bone abnormalities (turnover, mineralization and growth) and extra-skeletal calcification. Mineral dysregulation leads to bone demineralization causing bone pain and an increased fracture risk compared to healthy peers. Vascular calcification, with hydroxyapatite deposition in the vessel wall, is a part of the CKD-MBD spectrum and, in turn, leads to vascular stiffness, left ventricular hypertrophy and a very high cardiovascular mortality risk. While the growing bone requires calcium, excess calcium can deposit in the vessels, such that the intake of calcium, calcium- containing medications and high calcium dialysate need to be carefully regulated. Normal physiological bone mineralization continues into the third decade of life, many years beyond the rapid growth in childhood and adolescence, implying that skeletal calcium requirements are much higher in younger people compared to the elderly. Much of the research into the link between bone (de)mineralization and vascular calcification in CKD has been performed in older adults and these data must not be extrapolated to children or younger adults. In this article, we explore the physiological changes in bone turnover and mineralization in children and young adults, the pathophysiology of mineral bone disease in CKD and a potential link between bone demineralization and vascular calcification.
Collapse
Affiliation(s)
- Alexander D Lalayiannis
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK.
- University College London Great Ormond Street Hospital Institute of Child Health, London, UK.
| | | | - Rosa M A Moysés
- Sao Paulo University Faculty of Medicine, Universidade de Sao Paulo Faculdade de Medicina, São Paulo, Brazil
| | - Rukshana Shroff
- University College London Great Ormond Street Hospital Institute of Child Health, London, UK
| |
Collapse
|
5
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
6
|
Toledano-Osorio M, de Luna-Bertos E, Toledano M, Manzano-Moreno FJ, Costela-Ruiz V, Ruiz C, Gil J, Osorio R. Dexamethasone and doxycycline functionalized nanoparticles enhance osteogenic properties of titanium surfaces. Dent Mater 2023:S0109-5641(23)00114-8. [PMID: 37173196 DOI: 10.1016/j.dental.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVES To evaluate the effect of doxycycline and dexamethasone doped nanoparticles covering titanium surfaces, on osteoblasts proliferation and differentiation. METHODS Doxycycline and dexamethasone doped polymeric nanoparticles were applied on titanium discs (Ti-DoxNPs and Ti-DexNPs). Undoped NPs and uncovered Ti discs were used as control. Human MG-63 osteoblast-like cells were cultured. Osteoblasts proliferation was tested by MTT assay. Alkaline phosphatase activity was analyzed. Differentiation gene expression was assessed by real-time quantitative polymerase chain reaction. Scanning Electron Microscopy was performed to assess osteoblasts morphology. Mean comparisons were conducted by ANOVA and Wilcoxon or Tukey tests (p < 0.05). RESULTS No differences in osteoblasts proliferation were found. Osteoblasts grown on Ti-DoxNPs significantly increased alkaline phosphatase activity. Doxycycline and dexamethasone nanoparticles produced an over-expression of the main osteogenic proliferative genes (TGF-β1, TGF-βR1 and TGF-βR2). The expression of Runx-2 was up-regulated. The osteogenic proteins (AP, OSX and OPG) were also overexpressed on osteoblasts cultured on Ti-DoxNPs and Ti-DexNPs. The OPG/RANKL ratio was the highest when DoxNPs were present (75-fold increase with respect to the control group). DexNPs also produced a significantly higher OPG/RANKL ratio with respect to the control (20 times higher). Osteoblasts grown on titanium discs were mainly flat and polygonal in shape, with inter-cellular connections. In contrast, osteoblasts cultured on Ti-DoxNPs or Ti-DexNPs were found to be spindle-shaped and had abundant secretions on their surfaces. SIGNIFICANCE DoxNPs and DexNPs were able to stimulate osteoblasts differentiation when applied on titanium surfaces, being considered potential inducers of osteogenic environment when performing regenerative procedures around titanium dental implants.
Collapse
Affiliation(s)
- Manuel Toledano-Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Medicina Clínica y Salud Pública PhD Programme, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277). Department of Nursing, Faculty of Health Sciences. University of Granada, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain.
| | - Manuel Toledano
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain
| | - Francisco Javier Manzano-Moreno
- Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain; Biomedical Group (BIO277). Department of Stomatology, School of Dentistry, University of Granada, Spain
| | - Victor Costela-Ruiz
- Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain; Biomedical Group (BIO277). Department of Nursing, Faculty of Health Sciences, Campus de Ceuta. University of Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277). Department of Nursing, Faculty of Health Sciences. University of Granada, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain; Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM). Parque de Tecnológico de la Salud (PTS), Granada, Spain
| | - Javier Gil
- International University of Cataluña (UIC), Barcelona, Spain
| | - Raquel Osorio
- University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain; Instituto Investigación Biosanitaria, IBS. Granada, Granada, Spain
| |
Collapse
|
7
|
Nelson AL, Fontana G, Miclau E, Rongstad M, Murphy W, Huard J, Ehrhart N, Bahney C. Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration. J Tissue Eng Regen Med 2022; 16:961-976. [PMID: 36112528 PMCID: PMC9826348 DOI: 10.1002/term.3349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
Activation of the canonical Wingless-related integration site (Wnt) pathway has been shown to increase bone formation and therefore has therapeutic potential for use in orthopedic conditions. However, attempts at developing an effective strategy to achieve Wnt activation has been met with several challenges. The inherent hydrophobicity of Wnt ligands makes isolating and purifying the protein difficult. To circumvent these challenges, many have sought to target extracellular inhibitors of the Wnt pathway, such as Wnt signaling pathway inhibitors Sclerostin and Dickkopf-1, or to use small molecules, ions and proteins to increase target Wnt genes. Here, we review systemic and localized bioactive approaches to enhance bone formation or improve bone repair through antibody-based therapeutics, synthetic Wnt surrogates and scaffold doping to target canonical Wnt. We conclude with a brief review of emerging technologies, such as mRNA therapy and Clustered Regularly Interspaced Short Palindromic Repeats technology, which serve as promising approaches for future clinical translation.
Collapse
Affiliation(s)
- Anna Laura Nelson
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA
| | - GianLuca Fontana
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Elizabeth Miclau
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA
| | - Mallory Rongstad
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - William Murphy
- Department of Orthopedics and RehabilitationUniversity of Wisconsin‐MadisonMadisonWisconsinUSA,Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Johnny Huard
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Nicole Ehrhart
- School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Chelsea Bahney
- Center for Regenerative and Personalized MedicineSteadman Philippon Research Institute (SPRI)VailColoradoUSA,School of Biomedical EngineeringColorado State UniversityFort CollinsColoradoUSA,Department of Clinical SciencesColorado State UniversityFort CollinsColoradoUSA,Orthopaedic Trauma InstituteUniversity of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Li J, Han Q, Chen H, Liu T, Song J, Hou M, Wei L, Song H. Carbon Monoxide-Releasing Molecule-3 Enhances Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells via miR-195-5p/Wnt3a Pathway. Drug Des Devel Ther 2022; 16:2101-2117. [PMID: 35812136 PMCID: PMC9259429 DOI: 10.2147/dddt.s367277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/25/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Bone marrow-derived mesenchymal stem cells (BMSCs) are hopeful in promoting bone regeneration as their pluripotency in differentiation. Our previous study showed that carbon monoxide-releasing molecule-3 (CORM-3) increased the osteogenic differentiation of rat BMSCs in vitro. However, the mechanism remained unclear. MicroRNAs (miRNAs) play a very important role in modulating the osteogenic differentiation of BMSCs. Therefore, we researched the miRNAs involved in CORM-3-stimulated osteogenic differentiation. Methods The CORM-3-stimulated osteogenic differentiation of rat BMSCs was further studied in vivo. Based on the gene sequencing experiment, the rat BMSCs were transfected with miR-195-5p mimics and inhibitor, pcDNA3.1-Wnt3a and Wnt3a siRNA. The osteogenic differentiation of rat BMSCs was measured by quantitative real-time polymerase chain reaction, Western blot and alizarin red staining. Additionally, the targeting relationship between miR-195-5p and Wnt3a was confirmed by the dual-luciferase assay. Results MiR-195-5p was down-expressed during the CORM-3-stimulated osteogenic differentiation of rat BMSCs. CORM-3-stimulated osteogenic differentiation of rat BMSCs was inhibited with miR-195-5p overexpression, evidenced by significantly reduced mRNA and protein expressions of runt-related transcription factor 2 and osteopontin, and matrix mineralization demonstrated. On the contrary, the osteogenic differentiation was enhanced with inhibition of miR-195-5p. CORM-3-stimulated osteogenic differentiation of rat BMSCs was increased by overexpression of Wnt3a, while the opposite was observed in the Wnt3a-deficient cells. Moreover, the decreased osteogenic differentiation capacity by increased expression of miR-195-5p was rescued by Wnt3a overexpression, showing miR-195-5p directly targeted Wnt3a. Conclusion These results demonstrate that CORM-3 promoted osteogenic differentiation of rat BMSCs via miR-195-5p/Wnt3a, which bodes well for the application of CORM-3 in the treatment of periodontal disease and other bone-defect diseases.
Collapse
Affiliation(s)
- Jingyuan Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
| | - Qingbin Han
- Department of Oral and Maxillofacial Surgery, Shandong Linyi People’s Hospital, Linyi, People’s Republic of China
| | - Hui Chen
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, People’s Republic of China
| | - Tingting Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
| | - Jiahui Song
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
| | - Meng Hou
- School of Stomatology, Jining Medical College, Jining, People’s Republic of China
| | - Lingling Wei
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
| | - Hui Song
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, People’s Republic of China
- Correspondence: Hui Song, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, 250012, People’s Republic of China, Tel +86-531-88382912, Fax +86-531-88382923, Email
| |
Collapse
|
9
|
Krüger TB, Syversen U, Herlofson BB, Lian AM, Reseland JE. Targeting a therapeutically relevant concentration of alendronate for in vitro studies on osteoblasts. Acta Odontol Scand 2022; 80:619-625. [PMID: 35605138 DOI: 10.1080/00016357.2022.2072522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Bisphosphonates like alendronate mainly exert their effects on osteoclasts. However, osteoblasts are also affected, but exposed to a much lower concentration in vivo than the osteoclasts. Given that the effects are dose-dependent, the intention of the study was to identify a therapeutically relevant concentration of alendronate for in vitro studies on osteoblasts. MATERIALS AND METHODS Primary human osteoblasts were incubated with alendronate (5, 20 and 100 µM) for 1, 3, 7 and 14 days. Proliferation and viability were assessed, and the effects on cellular growth and function were evaluated by multianalyte profiling of selected proteins in cell culture media using the Luminex 200TM. RESULTS The viability was not affected by any of the dosages. Exposure to 5 µM alendronate had a neutral effect on osteoblast proliferation, and on secretion of osteogenic and inflammatory markers, while enhancing synthesis of a marker of angiogenesis. 20 µM alendronate induced a decline in proliferation and affected angiogenic and osteogenic biomarkers adversely. 100 µM alendronate reduced proliferation dramatically, and this dosage was excluded from further experiments. CONCLUSION A concentration of 5 µM alendronate exerted effects on human osteoblasts that may translate to those observed in vivo and could therefore be relevant for in vitro studies.
Collapse
Affiliation(s)
- Tormod B. Krüger
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Unni Syversen
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Bente B. Herlofson
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Aina M. Lian
- Oral Research Laboratory, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Janne E. Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Rajpar I, Tomlinson RE. Function of peripheral nerves in the development and healing of tendon and bone. Semin Cell Dev Biol 2022; 123:48-56. [PMID: 33994302 PMCID: PMC8589913 DOI: 10.1016/j.semcdb.2021.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 01/03/2023]
Abstract
Although the functions of the peripheral nervous system in whole body homeostasis and sensation have been understood for many years, recent investigation has uncovered new roles for innervation in the musculoskeletal system. This review centers on advances regarding the function of nerves in the development and repair of two connected tissues: tendon and bone. Innervation in healthy tendons is generally confined to the tendon sheaths, and tendon-bone attachment units are typically aneural. In contrast to tendon, bone is an innervated and vascularized structure. Historically, the function of abundant peripheral nerves in bone has been limited to pain and some non-painful sensory perception in disease and injury. Indeed, much of our understanding of peripheral nerves in tendons, bones, and entheses is limited to the source and type of innervation in healthy and injured tissues. However, more recent studies have made important observations regarding the appearance, type, and innervation patterns of nerves during embryonic and postnatal development and in response to injury, which suggest a more expansive role for peripheral nerves in the formation of musculoskeletal tissues. Indeed, tendons and bones develop in a close spatiotemporal relationship in the embryonic mesoderm. Models of limb denervation have shed light on the importance of sensory innervation in bone and to a lesser extent, tendon development, and more recent work has unraveled key nerve signaling pathways. Furthermore, loss of sensory innervation also impairs healing of bone fractures and may contribute to chronic tendinopathy. However, more study is required to translate our knowledge of peripheral nerves to therapeutic strategies to combat bone and tendon diseases.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryan E Tomlinson
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Sheppard AJ, Barfield AM, Barton S, Dong Y. Understanding Reactive Oxygen Species in Bone Regeneration: A Glance at Potential Therapeutics and Bioengineering Applications. Front Bioeng Biotechnol 2022; 10:836764. [PMID: 35198545 PMCID: PMC8859442 DOI: 10.3389/fbioe.2022.836764] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although the complex mechanism by which skeletal tissue heals has been well described, the role of reactive oxygen species (ROS) in skeletal tissue regeneration is less understood. It has been widely recognized that a high level of ROS is cytotoxic and inhibits normal cellular processes. However, with more recent discoveries, it is evident that ROS also play an important, positive role in skeletal tissue repair, specifically fracture healing. Thus, dampening ROS levels can potentially inhibit normal healing. On the same note, pathologically high levels of ROS cause a sharp decline in osteogenesis and promote nonunion in fracture repair. This delicate balance complicates the efforts of therapeutic and engineering approaches that aim to modulate ROS for improved tissue healing. The physiologic role of ROS is dependent on a multitude of factors, and it is important for future efforts to consider these complexities. This review first discusses how ROS influences vital signaling pathways involved in the fracture healing response, including how they affect angiogenesis and osteogenic differentiation. The latter half glances at the current approaches to control ROS for improved skeletal tissue healing, including medicinal approaches, cellular engineering, and enhanced tissue scaffolds. This review aims to provide a nuanced view of the effects of ROS on bone fracture healing which will inspire novel techniques to optimize the redox environment for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Ann Marie Barfield
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Shane Barton
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Yufeng Dong
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
12
|
Yu H, Zhang J, Liu X, Li Y. microRNA-136-5p from bone marrow mesenchymal stem cell-derived exosomes facilitates fracture healing by targeting LRP4 to activate the Wnt/β-catenin pathway. Bone Joint Res 2021; 10:744-758. [PMID: 34847690 PMCID: PMC8712601 DOI: 10.1302/2046-3758.1012.bjr-2020-0275.r2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) have been reported to be a promising cellular therapeutic approach for various human diseases. The current study aimed to investigate the mechanism of BMSC-derived exosomes carrying microRNA (miR)-136-5p in fracture healing. Methods A mouse fracture model was initially established by surgical means. Exosomes were isolated from BMSCs from mice. The endocytosis of the mouse osteoblast MC3T3-E1 cell line was analyzed. CCK-8 and disodium phenyl phosphate microplate methods were employed to detect cell proliferation and alkaline phosphatase (ALP) activity, respectively. The binding of miR-136-5p to low-density lipoprotein receptor related protein 4 (LRP4) was analyzed by dual luciferase reporter gene assay. HE staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry were performed to evaluate the healing of the bone tissue ends, the positive number of osteoclasts, and the positive expression of β-catenin protein, respectively. Results miR-136-5p promoted fracture healing and osteoblast proliferation and differentiation. BMSC-derived exosomes exhibited an enriched miR-136-5p level, and were internalized by MC3T3-E1 cells. LRP4 was identified as a downstream target gene of miR-136-5p. Moreover, miR-136-5p or exosomes isolated from BMSCs (BMSC-Exos) containing miR-136-5p activated the Wnt/β-catenin pathway through the inhibition of LRP4 expression. Furthermore, BMSC-derived exosomes carrying miR-136-5p promoted osteoblast proliferation and differentiation, thereby promoting fracture healing. Conclusion BMSC-derived exosomes carrying miR-136-5p inhibited LRP4 and activated the Wnt/β-catenin pathway, thus facilitating fracture healing. Cite this article: Bone Joint Res 2021;10(12):744–758.
Collapse
Affiliation(s)
- Haichi Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jun Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoning Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Yingzhi Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Kim JH, Kim M, Hong S, Kim EY, Lee H, Jung HS, Sohn Y. Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures Through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Front Pharmacol 2021; 12:690113. [PMID: 34349649 PMCID: PMC8327266 DOI: 10.3389/fphar.2021.690113] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Fracture healing is related to osteogenic differentiation and mineralization. Recently, due to the unwanted side effects and clinical limitations of existing treatments, various natural product-based chemical studies have been actively conducted. Albiflorin is a major ingredient in Paeonia lactiflora, and this study investigated its ability to promote osteogenic differentiation and fracture healing. To demonstrate the effects of albiflorin on osteoblast differentiation and calcified nodules, alizarin red S staining and von Kossa staining were used in MC3T3-E1 cells. In addition, BMP-2/Smad and Wnt/β-catenin mechanisms known as osteoblast differentiation mechanisms were analyzed through RT-PCR and western blot. To investigate the effects of albiflorin on fracture healing, fractures were induced using a chainsaw in the femur of Sprague Dawley rats, and then albiflorin was intraperitoneally administered. After 1, 2, and 3 weeks, bone microstructure was analyzed using micro-CT. In addition, histological analysis was performed by staining the fractured tissue, and the expression of osteogenic markers in serum was measured. The results demonstrated that albiflorin promoted osteoblastogenesis and the expression of RUNX2 by activating BMP-2/Smad and Wnt/β-catenin signaling in MC3T3-E1 cells. In addition, albiflorin upregulated the expression of various osteogenic genes, such as alkaline phosphatase, OCN, bone sialoprotein, OPN, and OSN. In the femur fracture model, micro-CT analysis showed that albiflorin played a positive role in the formation of callus in the early stage of fracture recovery, and histological examination proved to induce the expression of osteogenic genes in femur tissue. In addition, the expression of bone-related genes in serum was also increased. This suggests that albiflorin promotes osteogenesis, bone calcification and bone formation, thereby promoting the healing of fractures in rats.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - SooYeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyangsook Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
14
|
Liu D, He S, Chen S, Yang L, Yang J, Bao Q, Qin H, Zhao Y, Zong Z. Wnt/β-catenin signalling promotes more effective fracture healing in aged mice than in adult mice by inducing angiogenesis and cell differentiation. Sci Prog 2021; 104:368504211013223. [PMID: 33950750 PMCID: PMC10358591 DOI: 10.1177/00368504211013223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To investigate whether activating the Wnt/β-catenin signalling pathway differentially promotes fracture healing in aged and adult individuals. CatnbTM2Kem, Catnblox(ex3) and wild-type adult and aged mice were used in this study. The femur was electroporated through a hole with a diameter of 0.6 mm. On the 7th, 14th and 21st days after fracture establishment, repair of the femoral diaphyseal bone was examined using X-ray and CT, the levels of mRNAs related to Wnt/β-catenin signalling were detected using real-time polymerase chain reaction (RT-PCR), and angiogenesis and cell differentiation were observed using immunohistochemistry. The numbers of osteoclasts were determined by TRAP staining. Wnt/β-catenin activation accelerated fracture healing in adult mice, with more pronounced effects on aged mice. Compared with wild-type mice at the corresponding ages, Wnt/β-catenin signalling activation induced higher levels of angiogenesis and cell differentiation in aged mice than in adult mice and promoted fracture healing. The administration of medications targeting Wnt/β-catenin signalling to aged patients may accelerate fracture healing to a greater extent.
Collapse
Affiliation(s)
| | - Sihao He
- Army Medical University, Chongqing, China
| | - Sixu Chen
- Army Medical University, Chongqing, China
| | - Lei Yang
- Army Medical University, Chongqing, China
| | | | | | - Hao Qin
- Army Medical University, Chongqing, China
| | | | | |
Collapse
|
15
|
Chua K, Lee VK, Chan C, Yew A, Yeo E, Virshup DM. Hematopoietic Wnts Modulate Endochondral Ossification During Fracture Healing. Front Endocrinol (Lausanne) 2021; 12:667480. [PMID: 34108937 PMCID: PMC8181731 DOI: 10.3389/fendo.2021.667480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Wnt signaling plays a critical role in bone formation, homeostasis, and injury repair. Multiple cell types in bone have been proposed to produce the Wnts required for these processes. The specific role of Wnts produced from cells of hematopoietic origin has not been previously characterized. Here, we examined if hematopoietic Wnts play a role in physiological musculoskeletal development and in fracture healing. Wnt secretion from hematopoietic cells was blocked by genetic knockout of the essential Wnt modifying enzyme PORCN, achieved by crossing Vav-Cre transgenic mice with Porcnflox mice. Knockout mice were compared with their wild-type littermates for musculoskeletal development including bone quantity and quality at maturation. Fracture healing including callus quality and quantity was assessed in a diaphyseal fracture model using quantitative micro computer-assisted tomographic scans, histological analysis, as well as biomechanical torsional and 4-point bending stress tests. The hematopoietic Porcn knockout mice had normal musculoskeletal development, with normal bone quantity and quality on micro-CT scans of the vertebrae. They also had normal gross skeletal dimensions and normal bone strength. Hematopoietic Wnt depletion in the healing fracture resulted in fewer osteoclasts in the fracture callus, with a resultant delay in callus remodeling. All calluses eventually progressed to full maturation. Hematopoietic Wnts, while not essential, modulate osteoclast numbers during fracture healing. These osteoclasts participate in callus maturation and remodeling. This demonstrates the importance of diverse Wnt sources in bone repair.
Collapse
Affiliation(s)
- Kenon Chua
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Orthopedic Surgery, Singapore General Hospital, Singapore, Singapore
- Programme in Musculoskeletal Sciences Academic Clinical Program, SingHealth/Duke-NUS, Singapore, Singapore
| | - Victor K. Lee
- Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Cheri Chan
- Programme in Musculoskeletal Sciences Academic Clinical Program, SingHealth/Duke-NUS, Singapore, Singapore
| | - Andy Yew
- Department of Orthopedic Surgery, Singapore General Hospital, Singapore, Singapore
| | - Eric Yeo
- Department of Pathology, National University of Singapore, Singapore, Singapore
| | - David M. Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Pediatrics, Duke University, Durham, NC, United States
- *Correspondence: David M. Virshup,
| |
Collapse
|
16
|
Comeau-Gauthier M, Tarchala M, Luna JLRG, Harvey E, Merle G. Unleashing β-catenin with a new anti-Alzheimer drug for bone tissue regeneration. Injury 2020; 51:2449-2459. [PMID: 32829895 DOI: 10.1016/j.injury.2020.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/18/2020] [Indexed: 02/02/2023]
Abstract
The Wnt/β-catenin signaling pathway is critical for bone differentiation and regeneration. Tideglusib, a selective FDA approved glycogen synthase kinase-3β (GSK-3β) inhibitor, has been shown to promote dentine formation, but its effect on bone has not been examined. Our objective was to study the effect of localized Tideglusib administration on bone repair. Bone healing between Tideglusib treated and control mice was analysed at 7, 14 and 28 days postoperative (PO) with microCT, dynamic histomorphometry and immunohistology. There was a local downregulation of GSK-3β in Tideglusib animals, resulting in a significant increase in the amount of new bone formation with both enhanced cortical bone bridging and medullary bone deposition. The bone formation in the Tideglusib group was characterized by early osteoblast differentiation with down-regulation of GSK-3β at day 7 and 14, and higher accumulation of active β-catenin at day 14. Here, for the first time, we show a positive effect of Tideglusib on bone formation through the inactivation of GSK-3β. Furthermore, the findings suggest that Tideglusib does not interfere with precursor cell recruitment and commitment, contrary to other GSK-3β antagonists such as lithium chloride. Taken together, the results indicate that Tideglusib could be used directly at a fracture site during the initial intraoperative internal fixation without the need for further surgery, injection or drug delivery system. This FDA-approved drug may be useful in the future for the prevention of non-union in patients presenting with a high risk for fracture-healing.
Collapse
Affiliation(s)
- Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, Canada; Experimental Surgery, Faculty of Medicine, McGill University. Rue de la Montaigne, Montreal, QC, Canada.
| | - Magdalena Tarchala
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, Canada; Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Qc., H3G 1A4 Canada.
| | - Jose Luis Ramirez-Garcia Luna
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, Canada; Experimental Surgery, Faculty of Medicine, McGill University. Rue de la Montaigne, Montreal, QC, Canada; Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Qc., H3G 1A4 Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal, Canada; Bone Engineering Labs, Montreal General Hospital, 1650 Cedar Avenue, Room C10-124, Montreal, Qc., H3G 1A4 Canada.
| | - Geraldine Merle
- Chemical Engineering Department, Polytechnique J.-A.-Bombardier building Polytechnique Montréal C.P. 6079, succ. Centre-ville, Montréal (Québec), H3C 3A7, Canada.
| |
Collapse
|
17
|
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing. Bone 2020; 138:115491. [PMID: 32569871 DOI: 10.1016/j.bone.2020.115491] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Genetic studies have been instrumental in the field of orthopaedics for finding tools to improve the standard management of fractures and delayed unions. The Wnt signaling pathway that is crucial for development and maintenance of many organs also has a very promising pathway for enhancement of bone regeneration. The Wnt pathway has been shown to have a direct effect on stem cells during bone regeneration, making Wnt a potential target to stimulate bone repair after trauma. A more complete view of how Wnt influences animal bone regeneration has slowly come to light. This review article provides an overview of studies done investigating the modulation of the canonical Wnt pathway in animal bone regeneration models. This not only includes a summary of the recent work done elucidating the roles of Wnt and β-catenin in fracture healing, but also the results of thirty transgenic studies, and thirty-eight pharmacological studies. Finally, we discuss the discontinuation of sclerostin clinical trials, ongoing clinical trials with lithium, the results of Dkk antibody clinical trials, the shift into combination therapies and the future opportunities to enhance bone repair and regeneration through the modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Drew Schupbach
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada.
| | - Geraldine Merle
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Department of Chemical Engineering, Polytechnique Montreal, 2500, chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
18
|
Hung CC, Chaya A, Liu K, Verdelis K, Sfeir C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater 2019; 98:246-255. [PMID: 31181262 DOI: 10.1016/j.actbio.2019.06.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Magnesium (Mg)-based implants have become of interest to both academia and the medical industry. The attraction largely is due to Mg's biodegradability and ability to enhance bone healing and formation. However, the underlying mechanism of how Mg regulates osteogenesis is still unclear. Based on our previous in vivo and molecular signaling work demonstrating the osteogenic effect of Mg, the current study aims to extend this work at the molecular level especially that we also observed and quantified mineral deposits in the bone marrow space in a rabbit ulna fracture model with Mg plates and screws. Histological analysis and quantitative results of micro-CT showed mineralized deposition and a significant increase in bone volume at 8 weeks and 16 weeks post-operative. These in vivo results led us to focus on studying the effect of Mg2+ on human bone marrow stromal cells (hBMSCs). The data presented in this manuscript demonstrate the activation of the canonical Wnt signaling pathway in hBMSCs when treated with 10 mM Mg2+. With additional Mg2+ present, the protein expression of active β-catenin was significantly increased to a level similar to that of the positive control. Immunocytochemistry and the increased expression of LEF1 and Dkk1, downstream target genes that are controlled directly by active β-catenin, demonstrated the protein translocation and the activation of transcription. Taken together, these data suggest that Mg2+ induces an osteogenic effect in the bone marrow space by activating the canonical Wnt signaling pathway, which in turn causes BMSCs to differentiate toward the osteoblast lineage. STATEMENT OF SIGNIFICANCE: Magnesium (Mg)-based alloys are being studied to be used in the field of implantable medical devices due to its natural biodegradability and the potential ability to promote bone regeneration. Despite many in vivo studies that demonstrated an increased new bone growth by implanting Mg-based devices, the underlying mechanism of this effect is still unclear. In order to safely use Mg-based implants on human and better control the osteogenic effect, it is necessary to understand the corresponding cellular response in the targeted area. The present study provides the rationale to study Mg ions on bone marrow stromal cells and shows the activation of canonical Wnt signaling pathway that promotes osteogenesis by in vivo and in vitro approaches.
Collapse
Affiliation(s)
- Chu-Chih Hung
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amy Chaya
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai Liu
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA
| | - Konstantinos Verdelis
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Endodontics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Sfeir
- The Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Periodontics and Preventive Dentistry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Jia HL, Zhou DS. Retracted: Downregulation of microRNA-367 promotes osteoblasts growth and proliferation of mice during fracture by activating the PANX3-mediated Wnt/β-catenin pathway. J Cell Biochem 2019; 120:8247-8258. [PMID: 30556206 DOI: 10.1002/jcb.28108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/29/2018] [Indexed: 02/02/2023]
Abstract
A majority of people suffering from bone fractures fail to heal and develop a nonunion, which is a challenging orthopedic complication requiring complex and expensive treatment. Previous data showed the inhibition of some microRNAs (miRNAs or miRs) can enhance fracture healing. The objective of the present study is to explore effects of miR-367 on the osteoblasts growth and proliferation of mouse during fracture via the Wnt/β-catenin pathway by targeting PANX3. Primarily, the femur fracture model was successfully established in 66 (C57BL/6) 6-week-old male mice. To verify whether miR-367 target PANX3, we used the target prediction program and performed luciferase activity determination. Subsequently, to figure out the underlying regulatory roles of miR-367 in fracture, osteoblasts were elucidated by treatment with miR-367 mimic, miR-367 inhibitor, or siRNA against PANX3 to determine the expression of miR-367, siPANX3, β-catenin, and Wnt5b as well as cell proliferation and apoptosis. The results demonstrated that PANX3 was verified as a target gene of miR-367. MiR-367 was found to highly expressed but PANX3, β-catenin, and Wnt5b were observed poorly expressed in fracture mice. downregulated miR-367 increased the mRNA and protein expression of PANX3, β-catenin, and Wnt5b, increased cell growth, proliferation, and migration, while decreased cell apoptosis in osteoblasts. Altogether, our study demonstrates that the downregulation of miR-367 may promote osteoblasts growth and proliferation in fracture through the activation of the PANX3-dependent Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Hong-Lei Jia
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Dong-Sheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
20
|
Mendoza L, Franck T, Lejeune JP, Caudron I, Detilleux J, Deliège B, Serteyn D. Is Sclerostin Glycoprotein a Suitable Biomarker for Equine Osteochondrosis? J Equine Vet Sci 2019; 64:27-33. [PMID: 30973148 DOI: 10.1016/j.jevs.2017.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
Osteochondrosis (OC) disease appears to be multifactorial in origin, including skeletal growth rates, nutrition, endocrinological factors, exercise, biomechanics, and other environmental factors. Endocrinological and metabolic factors seem to have an important role in the pathogeny of OC like the Wnt signaling pathway. One of the regulators in the Wnt signaling pathway is the sclerostin glycoprotein. The aim of this study was to investigate the sclerostin blood concentration according to the evolution of the disease, the environment, and the age but also its use as a possible biomarker for OC disease. Relation between age and sclerostin concentrations was calculated by a linear regression. A relation was found between age and sclerostin concentrations, but also a significant relation between age and the sclerostin concentrations was observed for two subgroups (OC affected and healthy). Evolution of the disease related to the sclerostin concentration was assessed with two logistic regressions (risk of developing OC and recovery of existing lesions), but not any significance was found. In conclusion, these results show that, despite the possible link of sclerostin with the OC pathogenesis through the Wnt pathway, circulating levels of this glycoprotein shall not be used as a biomarker for the disease. Besides, more studies are needed to fully understand the functions of sclerostin in the equine specie since it may play an important role in bone homeostasis.
Collapse
Affiliation(s)
- Luis Mendoza
- Anesthésiologie générale et pathologie chirurgicale des grands animaux. University of Liège, Liège, Belgium; Equine Research and Development Center, Mont-le-Soie, Belgium.
| | - Thierry Franck
- Centre for Oxygen Research and Development-CORD, Liège, Belgium
| | - Jean-Philippe Lejeune
- Anesthésiologie générale et pathologie chirurgicale des grands animaux. University of Liège, Liège, Belgium; Equine Research and Development Center, Mont-le-Soie, Belgium
| | | | - Johann Detilleux
- Anesthésiologie générale et pathologie chirurgicale des grands animaux. University of Liège, Liège, Belgium
| | | | - Didier Serteyn
- Anesthésiologie générale et pathologie chirurgicale des grands animaux. University of Liège, Liège, Belgium; Equine Research and Development Center, Mont-le-Soie, Belgium
| |
Collapse
|
21
|
Hu S, Yang L, Wu C, Liu TY. Regulation of Wnt signaling by physical exercise in the cell biological processes of the locomotor system. Physiol Int 2019; 106:1-20. [PMID: 30917670 DOI: 10.1556/2060.106.2019.07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the past decade, researches on Wnt signaling in cell biology have made remarkable progress regarding our understanding of embryonic development, bone formation, muscle injury and repair, neurogenesis, and tumorigenesis. The study also showed that physical activity can reverse age-dependent decline in skeletal muscle, preventing osteoporosis, regenerative neurogenesis, hippocampal function, cognitive ability, and neuromuscular junction formation, and the age-dependent recession is highly correlated with Wnt signaling pathways. However, how the biological processes in cell and physical activity during/following exercise affect the Wnt signaling path of the locomotor system is largely unknown. In this study, we first briefly introduce the important features of the cellular biological processes of exercise in the locomotor system. Then, we discuss Wnt signaling and review the very few studies that have examined Wnt signaling pathways in cellular biological processes of the locomotor system during physical exercise.
Collapse
Affiliation(s)
- S Hu
- 1 College of Physical Education and Sports Science, HengYang Normal University , Hengyang, Hunan, China
| | - L Yang
- 2 Department of Neuroscience and Regenerative Medicine, Augusta University , Augusta, GA, USA
| | - C Wu
- 3 Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University , Guangzhou, China
| | - Tc-Y Liu
- 3 Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University , Guangzhou, China
| |
Collapse
|
22
|
Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, Chelliah MP, Li J, Harati K, Wallner C, Rein S, Pförringer D, Reumuth G, Grieb G, Mouraret S, Dadras M, Wagner JM, Cha JY, Siemers F, Lehnhardt M, Behr B. Wnt Pathway in Bone Repair and Regeneration - What Do We Know So Far. Front Cell Dev Biol 2019; 6:170. [PMID: 30666305 PMCID: PMC6330281 DOI: 10.3389/fcell.2018.00170] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling plays a central regulatory role across a remarkably diverse range of functions during embryonic development, including those involved in the formation of bone and cartilage. Wnt signaling continues to play a critical role in adult osteogenic differentiation of mesenchymal stem cells. Disruptions in this highly-conserved and complex system leads to various pathological conditions, including impaired bone healing, autoimmune diseases and malignant degeneration. For reconstructive surgeons, critically sized skeletal defects represent a major challenge. These are frequently associated with significant morbidity in both the recipient and donor sites. The Wnt pathway is an attractive therapeutic target with the potential to directly modulate stem cells responsible for skeletal tissue regeneration and promote bone growth, suggesting that Wnt factors could be used to promote bone healing after trauma. This review summarizes our current understanding of the essential role of the Wnt pathway in bone regeneration and repair.
Collapse
Affiliation(s)
- Khosrow S Houschyar
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christian Tapking
- Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, Galveston, TX, United States.,Department of Hand, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Daniel Popp
- Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, Galveston, TX, United States.,Division of Hand, Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Dominik Duscher
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Malcolm P Chelliah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Jingtao Li
- State Key Laboratory of Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kamran Harati
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Susanne Rein
- Department of Plastic and Hand Surgery-Burn Center-Clinic St. Georg, Leipzig, Germany
| | - Dominik Pförringer
- Clinic and Policlinic of Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Georg Reumuth
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Teaching Hospital of the Charité Berlin, Berlin, Germany
| | - Sylvain Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States.,Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 - Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes M Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Jungul Y Cha
- Orthodontic Department, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Frank Siemers
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Bioinformatics Analysis of the Molecular Mechanism of Aging on Fracture Healing. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7530653. [PMID: 30643820 PMCID: PMC6311305 DOI: 10.1155/2018/7530653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 01/08/2023]
Abstract
Increasing age negatively affects different phases of bone fracture healing. The present study aimed to explore underlying mechanisms related to bone fracture repair in the elderly. GSE17825 public transcriptome data from the Gene Expression Omnibus database were used for analysis. First, raw data were normalized and differentially expressed genes (DEGs) were identified. Next, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were implemented to evaluate pathways and DEGs. A protein-protein interaction (PPI) network was then constructed. A total of 726, 861, and 432 DEGs were identified between the young and elderly individuals at 1, 3, and 5 days after fracture, respectively. The results of GO, KEGG, and PPI network analyses suggested that the inflammatory response, Wnt signaling pathway, vascularization-associated processes, and synaptic-related functions of the identified DEGs are markedly enriched, which may account for delayed fracture healing in the elderly. These findings provide valuable clues for investigating the effects of aging on fracture healing but should be validated through further experiments.
Collapse
|
24
|
Liu Y, Lin F, Fu Y, Chen W, Liu W, Chi J, Zhang X, Yin X. Cortistatin inhibits arterial calcification in rats via GSK3β/β-catenin and protein kinase C signalling but not c-Jun N-terminal kinase signalling. Acta Physiol (Oxf) 2018; 223:e13055. [PMID: 29436118 DOI: 10.1111/apha.13055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/27/2022]
Abstract
AIM Cortistatin (CST) is a newly discovered endogenous active peptide that exerts protective effects on the cardiovascular system. However, the relationship between CST and aortic calcification and the underlying mechanism remain obscure. Therefore, we investigated effects of CST on aortic calcification and its signalling pathways. METHODS Calcium content and alkaline phosphatase (ALP) activity were measured using the o-cresolphthalein colorimetric method and ALP assay kit respectively. Protein expression of smooth muscle (SM)-ɑ-actin, osteocalcin (OCN), β-catenin, glycogen synthase kinase 3β (GSK3β), p-GSK3β, protein kinase C (PKC), p-PKC, c-Jun N-terminal kinase (JNK) and p-JNK was determined using Western blotting. RESULTS In aorta from a rat vitamin D3 calcification model, CST abrogated calcium deposition and pathological damage, decreased the protein expression of OCN and β-catenin and increased SM-ɑ-actin expression. In a rat cultured vascular smooth muscular cell (VSMC) calcification model induced by β-glycerophosphate (β-GP), CST inhibited the increase in ALP activity, calcium content and OCN protein and the decrease in SM-α-actin expression. CST also inhibited the β-GP-induced increase in p-GSK3β and β-catenin protein (both P < .05). The inhibitory effects of CST on ALP activity, calcium deposition and β-catenin protein were abolished by pretreatment with lithium chloride, a GSK3β inhibitor. CST promoted the protein expression of p-PKC by 68.5% (P < .01), but not p-JNK. The ability of CST to attenuate β-GP-induced increase in ALP activity, calcium content and OCN expression in the VSMC model was abolished by pretreatment with the PKC inhibitor Go6976. CONCLUSION These results indicate that CST inhibits aortic calcification and osteogenic differentiation of VSMCs likely via the GSK3β/β-catenin and PKC signalling pathways, but not JNK signalling pathway.
Collapse
Affiliation(s)
- Y. Liu
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - F. Lin
- Department of Comprehensive Geriatric; Mianyang Central Hospital; Mianyang China
| | - Y. Fu
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - W. Chen
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - W. Liu
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - J. Chi
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - X. Zhang
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| | - X. Yin
- Department of Cardiology; the First Affiliated Hospital of Harbin Medical University; Harbin China
| |
Collapse
|
25
|
Gomes KDN, Alves APNN, Dutra PGP, Viana GSDB. Doxycycline induces bone repair and changes in Wnt signalling. Int J Oral Sci 2018; 9:158-166. [PMID: 28960195 PMCID: PMC5709545 DOI: 10.1038/ijos.2017.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 12/31/2022] Open
Abstract
Doxycycline (DOX) exhibits anti-inflammatory and MMP inhibitory properties. The objectives of this study were to evaluate the effects of DOX on alveolar bone repair. Controls (CTL) and DOX-treated (10 and 25 mg·kg-1) molars were extracted, and rats were killed 7 or 14 days later. The maxillae were processed and subjected to histological and immunohistochemical assays. Hematoxylin-eosin staining (7th day) revealed inflammation in the CTL group that was partly reversed after DOX treatment. On the 14th day, the CTL group exhibited bone neoformation, conjunctive tissue, re-epithelization and the absence of inflammatory infiltrate. DOX-treated groups exhibited complete re-epithelization, tissue remodelling and almost no inflammation. Picrosirius red staining in the DOX10 group (7th and 14th days) revealed an increased percentage of type I and III collagen fibres compared with the CTL and DOX25 groups. The DOX10 and DOX25 groups exhibited increases in osteoblasts on the 7th and 14th days. However, there were fewer osteoclasts in the DOX10 and DOX25 groups on the 7th and 14th days. Wnt-10b-immunopositive cells increased by 130% and 150% on the 7th and 14th days, respectively, in DOX-treated groups compared with the CTL group. On the 7th day, Dickkopf (Dkk)-1 immunostaining was decreased by 63% and 46% in the DOX10 and DOX25 groups, respectively. On the 14th day, 69% and 42% decreases in immunopositive cells were observed in the DOX10 and DOX25 groups, respectively, compared with the CTL group. By increasing osteoblasts, decreasing osteoclasts, activating Wnt 10b and neutralising Dkk, DOX is a potential candidate for bone repair in periodontal diseases.
Collapse
|
26
|
Yao CJ, Lv Y, Zhang CJ, Jin JX, Xu LH, Jiang J, Geng B, Li H, Xia YY, Wu M. MicroRNA-185 inhibits the growth and proliferation of osteoblasts in fracture healing by targeting PTH gene through down-regulating Wnt/β -catenin axis: In an animal experiment. Biochem Biophys Res Commun 2018; 501:55-63. [PMID: 29678580 DOI: 10.1016/j.bbrc.2018.04.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023]
Abstract
Fracture healing is a repair process of a mechanical discontinuity loss of force transmission, and pathological mobility of bone. Increasing evidence suggests that microRNA (miRNA) could regulate chondrocyte, osteoblast, and osteoclast differentiation and function, indicating miRNA as key regulators of bone formation, resorption, remodeling, and repair. Hence, during this study, we established a right femur fracture mouse model to explore the effect microRNA-185 (miR-185) has on osteoblasts in mice during fracture healing and its underlying mechanism. After successfully model establishment, osteoblasts were extracted and treated with a series of mimics or inhibitors of miR-185, or siRNA against PTH. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analysis were performed to determine the levels of miR-185, PTH, β-catenin and Wnt5b. Cell viability, cycle distribution and apoptosis were detected by means of MTT and flow cytometry assays. Dual luciferase reporter gene assay verified that PTH is a target gene of miR-185. Osteoblasts transfected with miR-185 mimics or siRNA against PTH presented with decreased levels of PTH, β-catenin and Wnt5b which indicated that miR-185 blocks the Wnt/β -catenin axis by inhibiting PTH. Moreover, miR-185 inhibitors promoted the osteoblast viability and reduced apoptosis with more cells arrested at the G1 stage. MiR-185 mimics were observed to have inhibitory effects on osteoblasts as opposed to those induced by miR-185 inhibitors. Above key results indicated that suppression of miR-185 targeting PTH could promote osteoblast growth and proliferation in mice during fracture healing through activating Wnt/β -catenin axis.
Collapse
Affiliation(s)
- Chang-Jiang Yao
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yang Lv
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Cheng-Jun Zhang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Xin Jin
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Hu Xu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Jin Jiang
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Geng
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Li
- Department of Ophthalmology, General Hospital of Lanzhou Military Command, Lanzhou, 730000, PR China; Department of Ophthalmology, Eye Institute of China PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ya-Yi Xia
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| | - Meng Wu
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, PR China; Department of Orthopaedics, The Second Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
27
|
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment. Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.
Collapse
Affiliation(s)
- X Peng
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| | - X Wu
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| | - J Zhang
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - G Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Baptist University Road, Kowloon Tong, Hong Kong, China
| | - G Li
- Department of Orthopaedics and Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - X Pan
- Department of Orthopaedics and Traumatology, People's Hospital of Bao'an District, Affiliated to Southern Medical University, and Affiliated to Guangdong Medical University, Longjing 2nd Rd, Bao'an District, Shenzhen, China
| |
Collapse
|
28
|
Wang Y, Newman MR, Benoit DSW. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review. Eur J Pharm Biopharm 2018; 127:223-236. [PMID: 29471078 DOI: 10.1016/j.ejpb.2018.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 01/09/2023]
Abstract
Impaired fracture healing is a major clinical problem that can lead to patient disability, prolonged hospitalization, and significant financial burden. Although the majority of fractures heal using standard clinical practices, approximately 10% suffer from delayed unions or non-unions. A wide range of factors contribute to the risk for nonunions including internal factors, such as patient age, gender, and comorbidities, and external factors, such as the location and extent of injury. Current clinical approaches to treat nonunions include bone grafts and low-intensity pulsed ultrasound (LIPUS), which realizes clinical success only to select patients due to limitations including donor morbidities (grafts) and necessity of fracture reduction (LIPUS), respectively. To date, therapeutic approaches for bone regeneration rely heavily on protein-based growth factors such as INFUSE, an FDA-approved scaffold for delivery of bone morphogenetic protein 2 (BMP-2). Small molecule modulators and RNAi therapeutics are under development to circumvent challenges associated with traditional growth factors. While preclinical studies has shown promise, drug delivery has become a major hurdle stalling clinical translation. Therefore, this review overviews current therapies employed to stimulate fracture healing pre-clinically and clinically, including a focus on drug delivery systems for growth factors, parathyroid hormone (PTH), small molecules, and RNAi therapeutics, as well as recent advances and future promise of fracture-targeted drug delivery.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Maureen R Newman
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, 308 Robert B. Goergen Hall, University of Rochester, Rochester, NY 14627, USA; Center for Musculoskeletal Research, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Chemical Engineering, 4517 Wegmans Hall, University of Rochester, Rochester, NY 14627, USA; Department of Orthopaedics, 601 Elmwood Ave, University of Rochester, Rochester, NY 14642, USA; Department of Biomedical Genetics, 601 Elmwood Ave, University of Rochester, Rochester, NY 14642, USA; Center for Oral Biology, 601 Elmwood Ave, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
29
|
Ling Z, Wu L, Shi G, Chen L, Dong Q. Increased Runx2 expression associated with enhanced Wnt signaling in PDLLA internal fixation for fracture treatment. Exp Ther Med 2017; 13:2085-2093. [PMID: 28565812 DOI: 10.3892/etm.2017.4216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/10/2016] [Indexed: 01/19/2023] Open
Abstract
Poly-D-L lactide (PDLLA) biodegradable implants to heal fractures are widely applied in orthopedic surgeries. However, whether the process of fracture healing is regulated differently when PDLLA is used compared with traditional metal materials remains unclear. Runt-related transcription factor 2 (Runx2) and canonical Wnt signaling are essential and may interact reciprocally in the regulation of osteogenesis during bone repair. In the present study, a rat femoral open osteotomy model was used to compare the curative efficacy of a PDLLA rod and Kirschner wire under intramedullary fixation for fracture treatment. The dynamic expression of Runx2 and key components of the canonical Wnt signaling in callus tissue during fracture healing was also investigated. The results of the current study indicate that at weeks 4 and 6 following fixation, the callus bone structural parameters of microCT were significantly improved by PDLLA rod compared to that of Kirschner wire. In addition, at weeks 4 and 6 after fixation, the protein and mRNA expression of Runx2 and the positive regulators of canonical Wnt signaling, such as Wnts and β-catenin, were significantly increased. However, the protein and mRNA expression levels of the negative regulators of canonical Wnt signaling, such as glycogen synthase kinase-3β, were significantly decreased in callus tissue when treated with PDLLA rod compared with Kirschner wire. Collectively, these data indicate that compared to the traditional metal material, using PDLLA internal fixation for fracture treatment may further improve bone formation, which is associated with the increased expression of Runx2 and the enhancement of canonical Wnt signaling.
Collapse
Affiliation(s)
- Zhuoyan Ling
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lei Wu
- Centers for Disease Control and Prevention of Suzhou Industrial Park, Suzhou, Jiangsu 215021, P.R. China.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Gaolong Shi
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Chen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
30
|
Zhou ZC, Che L, Kong L, Lei DL, Liu R, Yang XJ. CKIP-1 silencing promotes new bone formation in rat mandibular distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 123:e1-e9. [PMID: 27727105 DOI: 10.1016/j.oooo.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/24/2016] [Accepted: 07/22/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study investigated the effects and possible molecular mechanism of casein kinase-2 interacting protein-1 (CKIP-1) silencing on bone regeneration during rat mandibular distraction osteogenesis (DO). STUDY DESIGN CKIP-1 silencing by chitosan/si-CKIP-1 was employed and analyzed both in rat mandibular DO models in vivo and in cultured rat mandible bone marrow stromal cells (BMSCs) in vitro. RESULTS Gross observation, micro-computed tomography analysis, and hematoxylin and eosin (H&E) staining revealed that new bone formation in the distraction gap of the chitosan/si-CKIP-treated group was better compared with the chitosan/si-NC and phosphate buffered saline-treated groups in both quantity and quality. Proliferation assay, flow cytometry, and alizarin red staining indicated that CKIP-1 silencing significantly inhibited apoptosis, but promoted osteogenic differentiation of cultured BMSCs. Additionally, CKIP-1 silencing significantly promoted the expression of Wnt3 a, β-catenin, and osteocalcin both in new bone formation of DO models in vivo and in the osteogenic differentiation process of BMSCs in vitro. CONCLUSIONS Promotion of bone formation after CKIP-1 silencing in rat mandibular distraction osteogenesis appears to be mediated through the Wnt3 a/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zi-Chao Zhou
- First Cadet Brigade, Fourth Military Medical University, Xi'an, China
| | - Lei Che
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China; Department of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Liang Kong
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - De-Lin Lei
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Rui Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Nursing Department, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xin-Jie Yang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, and Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
31
|
Newman MR, Benoit DS. Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol 2016; 40:125-132. [PMID: 27064433 DOI: 10.1016/j.copbio.2016.02.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
While experimental bone regeneration approaches commonly employ cells, technological hurdles prevent translation of these therapies. Alternatively, emulating the spatiotemporal cascade of endogenous factors through controlled drug delivery may provide superior bone regenerative approaches. Surgically placed drug depots have clinical indications. Additionally, noninvasive systemic delivery can be used as needed for poorly healing bone injuries. However, a major hurdle for systemic delivery is poor bone biodistribution of drugs. Thus, peptides, aptamers, and phosphate-rich compounds with specificity toward proteins, cells, and molecules within the regenerative bone microenvironment may enable the design of targeted carriers with bone biodistribution greater than that achieved by drug alone. These carriers, combined with osteoregenerative drugs and/or stimuli-sensitive linkers, may enhance bone regeneration while minimizing off-target tissue effects.
Collapse
Affiliation(s)
- Maureen R Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle Sw Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
32
|
Mao L, Liu J, Zhao J, Chang J, Xia L, Jiang L, Wang X, Lin K, Fang B. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway. Int J Nanomedicine 2015; 10:7031-44. [PMID: 26648716 PMCID: PMC4648603 DOI: 10.2147/ijn.s90343] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The surface structure of bioceramic scaffolds is crucial for its bioactivity and osteoinductive ability, and in recent years, human periodontal ligament stem cells have been certified to possess high osteogenic and cementogenic differential ability. In the present study, hydroxyapatite (HA) bioceramics with micro-nano-hybrid surface (mnHA [the hybrid of nanorods and microrods]) were fabricated via hydrothermal reaction of the α-tricalcium phosphate granules as precursors in aqueous solution, and the effects of mnHA on the attachment, proliferation, osteogenic and cementogenic differentiations of human periodontal ligament stem cells as well as the related mechanisms were systematically investigated. The results showed that mnHA bioceramics could promote cell adhesion, proliferation, alkaline phosphatase (ALP) activity, and expression of osteogenic/cementogenic-related markers including runt-related transcription factor 2 (Runx2), ALP, osteocalcin (OCN), cementum attachment protein (CAP), and cementum protein (CEMP) as compared to the HA bioceramics with flat and dense surface. Moreover, mnHA bioceramics stimulated gene expression of low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin, which are the key genes of canonical Wnt signaling. Moreover, the stimulatory effect on ALP activity and osteogenic and cementogenic gene expression, including that of ALP, OCN, CAP, CEMP, and Runx2 of mnHA bioceramics could be repressed by canonical Wnt signaling inhibitor dickkopf1 (Dkk1). The results suggested that the HA bioceramics with mnHA could act as promising grafts for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lixia Mao
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jinglei Zhao
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Tongji University, Shanghai, People’s Republic of China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiuhui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Tongji University, Shanghai, People’s Republic of China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, People’s Republic of China
| | - Bing Fang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|