1
|
Petry R, de Almeida JM, Côa F, Crasto de Lima F, Martinez DST, Fazzio A. Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1297-1311. [PMID: 39498295 PMCID: PMC11533115 DOI: 10.3762/bjnano.15.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024]
Abstract
Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in C. elegans. Our findings contribute to a deeper understanding of GO's environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.
Collapse
Affiliation(s)
- Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| | - James M de Almeida
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Felipe Crasto de Lima
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Adalberto Fazzio
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| |
Collapse
|
2
|
Nikitin E, Fitsev I, Egorova A, Logvinenko L, Terenzhev D, Bekmuratova F, Rakhmaeva A, Shumatbaev G, Gatiyatullina A, Shevchuk O, Kalinnikova T. Five Different Artemisia L. Species Ethanol Extracts' Phytochemical Composition and Their Antimicrobial and Nematocide Activity. Int J Mol Sci 2023; 24:14372. [PMID: 37762675 PMCID: PMC10532408 DOI: 10.3390/ijms241814372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Among the plants that exhibit significant or established pharmacological activity, the genus Artemisia L. deserves special attention. This genus comprises over 500 species belonging to the largest Asteraceae family. Our study aimed at providing a comprehensive evaluation of the phytochemical composition of the ethanol extracts of five different Artemisia L. species (collected from the southwest of the Russian Federation) and their antimicrobial and nematocide activity as follows: A. annua cv. Novichok., A. dracunculus cv. Smaragd, A. santonica cv. Citral, A. abrotanum cv. Euxin, and A. scoparia cv. Tavrida. The study of the ethanol extracts of the five different Artemisia L. species using the methods of gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-MS/MS) allowed establishing their phytochemical profile. The obtained data on the of five different Artemisia L. species ethanol extracts' phytochemical composition were used to predict the antibacterial and antifungal activity against phytopathogenic microorganisms and nematocidal activity against the free-living soil nematode Caenorhabditis elegans. The major compounds found in the composition of the Artemisia L. ethanol extracts were monoterpenes, sesquiterpenes, flavonoids, flavonoid glycosides, coumarins, and phenolic acids. The antibacterial and antifungal activity of the extracts began to manifest at a concentration of 150 µg/mL. The A. dracunculus cv. Smaragd extract had a selective effect against Gram-positive R. iranicus and B. subtilis bacteria, whereas the A. scoparia cv. Tavrida extract had a selective effect against Gram-negative A. tumefaciens and X. arboricola bacteria and A. solani, R. solani and F. graminearum fungi. The A. annua cv. Novichok, A. dracunculus cv. Smaragd, and A. santonica cv. Citral extracts in the concentration range of 31.3-1000 µg/mL caused the death of nematodes. It was established that A. annua cv. Novichok affects the UNC-63 protein, the molecular target of which is the nicotine receptor of the N-subtype.
Collapse
Affiliation(s)
- Evgeny Nikitin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Igor Fitsev
- A.M. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| | - Anastasia Egorova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya Str. 28, 420087 Kazan, Russia
| | - Lidia Logvinenko
- Nikitsky Botanic Gardens, National Scientific Center of Russian Academy of Sciences, 298648 Yalta, Russia (O.S.)
| | - Dmitriy Terenzhev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Feruzakhon Bekmuratova
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, 420075 Kazan, Russia;
| | - Adelya Rakhmaeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Georgiy Shumatbaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia; (E.N.)
| | - Alsu Gatiyatullina
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya Str. 28, 420087 Kazan, Russia
| | - Oksana Shevchuk
- Nikitsky Botanic Gardens, National Scientific Center of Russian Academy of Sciences, 298648 Yalta, Russia (O.S.)
| | - Tatiana Kalinnikova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya Str. 28, 420087 Kazan, Russia
| |
Collapse
|
3
|
Tang M, Ding G, Li L, Xiao G, Wang D. Exposure to polystyrene nanoparticles at predicted environmental concentrations enhances toxic effects of Acinetobacter johnsonii AC15 infection on Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115131. [PMID: 37315368 DOI: 10.1016/j.ecoenv.2023.115131] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Nanoplastics and microbial pathogens are both widely distributed in the environment; however, their combined toxicity remains largely unclear. Using Caenorhabditis elegans as an animal model, we examined the possible effect of exposure to polystyrene nanoparticle (PS-NP) in Acinetobacter johnsonii AC15 (a bacterial pathogen) infected animals. Exposure to PS-NP at the concentrations of 0.1-10 μg/L significantly enhanced the toxicity of Acinetobacter johnsonii AC15 infection on lifespan and locomotion behaviors. In addition, after exposure to 0.1-10 μg/L PS-NP, the accumulation of Acinetobacter johnsonii AC15 in body of nematodes was also increased. Meanwhile, the innate immune response indicated by the increase of antimicrobial gene expressions in Acinetobacter johnsonii AC15 infected nematodes was suppressed by exposure to 0.1-10 μg/L PS-NP. Moreover, expressions of egl-1, dbl-1, bar-1, daf-16, pmk-1, and elt-2 governing the bacterial infection and immunity in Acinetobacter johnsonii AC15 infected nematodes were further inhibited by exposure to 0.1-10 μg/L PS-NP. Therefore, our data suggested the possible exposure risk of nanoplastic at predicted environmental concentrations in enhancing the toxic effects of bacterial pathogens on environmental organisms.
Collapse
Affiliation(s)
- Mingfeng Tang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guoying Ding
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Liane Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China.
| | - Dayong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, China; Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Liu X, Ge P, Lu Z, Cao M, Chen W, Yan Z, Chen M, Wang J. Ecotoxicity induced by total, water soluble and insoluble components of atmospheric fine particulate matter exposure in Caenorhabditis elegans. CHEMOSPHERE 2023; 316:137672. [PMID: 36587918 DOI: 10.1016/j.chemosphere.2022.137672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Although PM2.5 could cause toxicity in environmental organisms, the toxicity difference of PM2.5 under different solubilities is still poorly understood. To acquire a better knowledge of the ecotoxicity of PM2.5 under different solubilities, the model animal Caenorhabditis elegans (C. elegans) was exposed to Total-PM2.5, water insoluble components of PM2.5 (WIS-PM2.5) and water soluble components of PM2.5 (WS-PM2.5). The physiological (growth, locomotion behavior, and reproduction), biochemical (germline apoptosis, and reactive oxygen species (ROS) production) indices, and the related gene expression were examined. According to the findings, acute exposure to these three components caused adverse physiological effects on growth and locomotion behavior, and significantly induced germline apoptosis or ROS production. In contrast, prolonged exposure showed stronger adverse effects than acute exposure. Additionally, the results of multiple toxicological endpoints showed that the toxicity effects of WIS-PM2.5 are more intense than WS-PM2.5, which means that insoluble components contributed more to the toxicity of PM2.5. Prolonged exposure to 1000 mg/L WS-PM2.5, WIS-PM2.5, and Total-PM2.5 dramatically altered the expression of stress-related genes, which further indicated that apoptosis, DNA damage and oxidative stress play a crucial part in toxicity induced by PM2.5.
Collapse
Affiliation(s)
- Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenyu Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Maoyu Cao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wankang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhansheng Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
5
|
Hua X, Feng X, Liang G, Chao J, Wang D. Long-term exposure to tire-derived 6-PPD quinone causes intestinal toxicity by affecting functional state of intestinal barrier in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160591. [PMID: 36464050 DOI: 10.1016/j.scitotenv.2022.160591] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
2-((4-Methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione (6-PPDQ) is the ozonation product of 6-PPD, a commonly used tire preservative. Although the 6-PPDQ has been frequently detected in different environmental ecosystems, its long-term effects on organisms remain still largely unknown. We here used Caenorhabditis elegans as an experimental animal to investigate the toxic effect of prolonged exposure to 6-PPDQ (0.1-100 μg/L). After the exposure, we found that 100 μg/L 6-PPDQ caused the lethality. We further selected concentrations of 0.1-10 μg/L to examine the possible intestinal toxicity induced by 6-PPDQ. Although 0.1-10 μg/L 6-PPDQ could not influence intestinal morphology, the intestinal permeability was significantly enhanced by 1-10 μg/L 6-PPDQ as indicated by erioglaucine disodium staining. In addition, the expression of intestinal fatty acid transporter ACS-22 governing functional state of intestinal barrier was decreased by exposure to 1-10 μg/L 6-PPDQ. Meanwhile, intestinal reactive oxygen species (ROS) production was induced by 0.1-10 μg/L 6-PPDQ and lipofuscin accumulation reflected by intestinal autofluorescence was activated by 1-10 μg/L 6-PPDQ. Accompanied with activation of intestinal oxidative stress, expressions of some anti-oxidation related genes (ctl-2, sod-2, sod-3, and sod-4) were significantly increased by 0.1-10 μg/L 6-PPDQ. Moreover, intestinal RNAi of acs-22 strengthened the susceptibility of nematodes to intestinal toxicity of 6-PPDQ. Therefore, considering that the environmentally relevant concentrations of 6-PPDQ were ≤10 μg/L, our data suggested that long-term exposure to 6-PPDQ at environmentally relevant concentrations potentially results in intestinal toxicity by disrupting functional state of intestinal barrier in organisms.
Collapse
Affiliation(s)
- Xin Hua
- Medical School, Southeast University, Nanjing 210009, China
| | - Xiao Feng
- Medical School, Southeast University, Nanjing 210009, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing 210009, China
| | - Jie Chao
- Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Ficociello G, Inverni A, Massimi L, Buccini G, Canepari S, Uccelletti D. Assessment of the effects of atmospheric pollutants using the animal model Caenorhabditis elegans. ENVIRONMENTAL RESEARCH 2020; 191:110209. [PMID: 32937173 DOI: 10.1016/j.envres.2020.110209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Air pollution is recognized as the world's largest environmental health risk. In this work we evaluated in vivo the effects of three relevant components of atmospheric dusts (brake dust, wood pellet ash and Saharan dust) employing the animal model Caenorhabditis elegans. Main endpoints of C. elegans such as life span, brood size and oxidative stress were addressed by exposing the nematodes to different dust concentrations. Brake dust and pellet ash affected the life span and increased significantly the oxidative stress of exposed nematodes, while Saharan dust showed no effects. Water soluble and insoluble fractions of these dusts were used to investigate the impact of the single fraction on C. elegans. The two fractions of brake dust and pellet ash exerted different effects on C. elegans endpoints in terms of life span and oxidative stress response. These fractions acted in different ways on the worm susceptibility to infection of two human pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) affecting the sek-1 gene expression. In conclusion, our study showed that C. elegans is a valuable tool to investigate in vivo possible effects of atmospheric dusts.
Collapse
Affiliation(s)
- Graziella Ficociello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Agnese Inverni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy; Chemistry Department, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Lorenzo Massimi
- Chemistry Department, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Giulio Buccini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Silvia Canepari
- Chemistry Department, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
7
|
Synthesis, biological evaluation and QSAR studies of new thieno[2,3-d]pyrimidin-4(3H)-one derivatives as antimicrobial and antifungal agents. Bioorg Chem 2020; 106:104509. [PMID: 33288321 DOI: 10.1016/j.bioorg.2020.104509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 11/24/2022]
Abstract
A series of new thieno[2,3-d]pyrimidin-4(3H)-one derivatives were synthesized and evaluated for their activity against four gram-positive and four gram-negative bacterial and eight fungal species. The majority of the compounds exhibited excellent antimicrobial and antifungal activity, being more potent than the control compounds. Compound 22, bearing a m-methoxyphenyl group and an ethylenediamine side chain anchored at C-2 of the thienopyrimidinone core, is the most potent antibacterial compound with broad antimicrobial activity with MIC values in the range of 0.05-0.13 mM, being 6 to 15 fold more potent than the controls, streptomycin and ampicillin. Furthermore, compounds 14 and 15 which bear a p-chlorophenyl and m-methoxyphenyl group, respectively, and share a 2-(2-mercaptoethoxy)ethan-1-ol side chain showed the best antifungal activity, being 10-15 times more potent than ketoconazole or bifonazole with MIC values 0.013-0.026 and 0.027 mM, respectively. Especially in the case of compound 15 the low MIC values were accompanied by excellent MFC values ranging from 0.056 to 0.058 mM. Evaluation of toxicity in vitro on HFL-1 human embryonic primary cells and in vivo in the nematode C. elegans revealed no toxic effects for both compounds 15 and 22 tested at the MIC concentrations. Ligand-based similarity search and molecular docking predicted that the antibacterial activity of analogue 22 is related to inhibition of the topoisomerase II DNA gyrase enzyme and the antifungal activity of compound 15 to CYP51 lanosterol demethylase enzyme. R-Group analysis as a means of computational structure activity relationship tool, highlighted the compounds' crucial pharmacophore features and their impact on the antibacterial and antifungal activity. The presence of a N-methyl piperidine ring fused to the thienopyrimidinone core plays an important role in both activities.
Collapse
|
8
|
Rai N, Sjöberg V, Forsberg G, Karlsson S, Olsson PE, Jass J. Metal contaminated soil leachates from an art glass factory elicit stress response, alter fatty acid metabolism and reduce lifespan in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2218-2227. [PMID: 30326454 DOI: 10.1016/j.scitotenv.2018.10.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
The present study evaluated the toxicity of metal contamination in soils from an art glass factory in Småland Sweden using a Caenorhabditis elegans nematode model. The aim of the study was to chemically analyze the soil samples and study the biological effects of water-soluble leachates on the nematodes using different physiological endpoints. The total metal content showed that As, Cd and Pb were at levels above the guideline values for soils in areas around the factory. Less than 10% of the total metal content in the soil was found in the water-soluble leachates, however, Al, As, Fe and Pb remained higher than the guideline values for safe drinking water. Exposure of C. elegans to the water-soluble leachates, at both post-hatching larvae stage (L1-young adult) for 48 h and at the young adult stage (L4) for 6 h, showed significant gene alteration. Although the nematodes did not exhibit acute lethality, lifespan was significantly reduced upon exposure. C. elegans also showed altered gene expression associated with stress response and fat metabolism, as well as enhanced accumulation of body fat. The study highlighted the significance of assessing environmental samples using a combination of gene expression analysis, fatty acid metabolism and lifespan for providing valuable insight into the negative impact of metals. The altered fat metabolism and reduced lifespan on exposure to soil leachates motivates further studies to explore the mechanism of the toxicity associated with the metals present in the environment.
Collapse
Affiliation(s)
- Neha Rai
- The Life Science Centre - Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Viktor Sjöberg
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | | | - Stefan Karlsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Centre - Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden
| | - Jana Jass
- The Life Science Centre - Biology, School of Science and Technology, Örebro University, 701 82 Örebro, Sweden.
| |
Collapse
|