1
|
Birhanu AG, Riaz T, Støen M, Tønjum T. Differential Abundance of Protein Acylation in Mycobacterium tuberculosis Under Exposure to Nitrosative Stress. Proteomics Clin Appl 2024; 18:e202300212. [PMID: 39082596 DOI: 10.1002/prca.202300212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Human macrophages generate antimicrobial reactive nitrogen species in response to infection by Mycobacterium tuberculosis (Mtb). Exposure to these redox-reactive compounds induces stress response in Mtb, which can affect posttranslational modifications (PTM). METHODS Here, we present the global analysis of the PTM acylation of Mtb proteins in response to a sublethal dose of nitrosative stress in the form of nitric oxide (NO) using label free quantification. RESULTS A total of 6437 acylation events were identified on 1496 Mtb proteins, and O-acylation accounted for 92.2% of the events identified, while 7.8% were N-acylation events. About 22% of the sites identified were found to be acylated by more than one acyl-group. Furthermore, the abundance of each acyl-group decreased as their molecular weight increased. Quantitative PTM analysis revealed differential abundance of acylation in proteins involved in stress response, iron ion homeostasis, growth, energy metabolism, and antimicrobial resistance (AMR) induced by nitrosative stress over time. CONCLUSIONS The results reveal a potential role of Mtb protein acylation in the bacterial stress responses and AMR. To our knowledge, this is the first report on global O-acylation profile of Mtb in response to NO. This will significantly improve our understanding of the changes in Mtb acylation under nitrosative stress, highly relevant for global health.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
| | - Mari Støen
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Nydalen, Oslo, Norway
- Department of Microbiology, Oslo University Hospital, Nydalen, Oslo, Norway
| |
Collapse
|
2
|
Xie J, Yu Z, Zhu Y, Zheng M, Zhu Y. Functions of Coenzyme A and Acyl-CoA in Post-Translational Modification and Human Disease. FRONT BIOSCI-LANDMRK 2024; 29:331. [PMID: 39344325 DOI: 10.31083/j.fbl2909331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Coenzyme A (CoA) is synthesized from pantothenate, L-cysteine and adenosine triphosphate (ATP), and plays a vital role in diverse physiological processes. Protein acylation is a common post-translational modification (PTM) that modifies protein structure, function and interactions. It occurs via the transfer of acyl groups from acyl-CoAs to various amino acids by acyltransferase. The characteristics and effects of acylation vary according to the origin, structure, and location of the acyl group. Acetyl-CoA, formyl-CoA, lactoyl-CoA, and malonyl-CoA are typical acyl group donors. The major acyl donor, acyl-CoA, enables modifications that impart distinct biological functions to both histone and non-histone proteins. These modifications are crucial for regulating gene expression, organizing chromatin, managing metabolism, and modulating the immune response. Moreover, CoA and acyl-CoA play significant roles in the development and progression of neurodegenerative diseases, cancer, cardiovascular diseases, and other health conditions. The goal of this review was to systematically describe the types of commonly utilized acyl-CoAs, their functions in protein PTM, and their roles in the progression of human diseases.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Zhang Yu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Ying Zhu
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Mei Zheng
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, 435003 Huangshi, Hubei, China
| | - Yanfang Zhu
- Department of Critical Care Medicine, Huangshi Hospital of TCM (Infectious Disease Hospital), 435003 Huangshi, Hubei, China
| |
Collapse
|
3
|
Zheng C, Yao H, Lu L, Li H, Zhou L, He X, Xu X, Xia H, Ding S, Yang Y, Wang X, Wu M, Xue L, Chen S, Peng X, Cheng Z, Wang Y, He G, Fu S, Keller ET, Liu S, Jiang YZ, Deng X. Dysregulated Ribosome Biogenesis Is a Targetable Vulnerability in Triple-Negative Breast Cancer: MRPS27 as a Key Mediator of the Stemness-inhibitory Effect of Lovastatin. Int J Biol Sci 2024; 20:2130-2148. [PMID: 38617541 PMCID: PMC11008279 DOI: 10.7150/ijbs.94058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/16/2024] [Indexed: 04/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongqi Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Zhou
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xiaojun Peng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Evan T. Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yi-zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
4
|
Noh M, Sim JY, Kim J, Ahn JH, Min HY, Lee JU, Park JS, Jeong JY, Lee JY, Lee SY, Lee HJ, Park CS, Lee HY. Particulate matter-induced metabolic recoding of epigenetics in macrophages drives pathogenesis of chronic obstructive pulmonary disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132932. [PMID: 37988864 DOI: 10.1016/j.jhazmat.2023.132932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a group of illnesses associated with unresolved inflammation in response to toxic environmental stimuli. Persistent exposure to PM is a major risk factor for COPD, but the underlying mechanism remains unclear. Using our established mouse model of PM-induced COPD, we find that repeated PM exposure provokes macrophage-centered chronic inflammation and COPD development. Mechanistically, chronic PM exposure induces transcriptional downregulation of HAAO, KMO, KYNU, and QPRT in macrophages, which are the enzymes of de novo NAD+ synthesis pathway (kynurenine pathway; KP), via elevated chromatin binding of the CCCTC-binding factor (CTCF) near the transcriptional regulatory regions of the enzymes. Subsequent reduction of NAD+ and SIRT1 function increases histone acetylation, resulting in elevated expression of pro-inflammatory genes in PM-exposed macrophages. Activation of SIRT1 by nutraceutical resveratrol mitigated PM-induced chronic inflammation and COPD development. In agreement, increased levels of histone acetylation and decreased expression of KP enzymes were observed in pulmonary macrophages of COPD patients. We newly provide an evidence that dysregulated NAD+ metabolism and consecutive SIRT1 deficiency significantly contribute to the pathological activation of macrophages during PM-mediated COPD pathogenesis. Additionally, targeting PM-induced intertwined metabolic and epigenetic reprogramming in macrophages is an effective strategy for COPD treatment.
Collapse
Affiliation(s)
- Myungkyung Noh
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jeong Yeon Sim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jisung Kim
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Jee Hwan Ahn
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, South Korea
| | - Jong-Uk Lee
- Department of Medical Bioscience, Graduate School, Soonchunhyang University, 22, Soonchunhyang-ro, Asan 31538, South Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do 14584, South Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41944, South Korea
| | - Jae Young Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, South Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu 41944, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Gyeonggi do, South Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do 14584, South Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
5
|
Barutcu AR, Black MB, Nong A. Mining toxicogenomic data for dose-responsive pathways: implications in advancing next-generation risk assessment. FRONTIERS IN TOXICOLOGY 2023; 5:1272364. [PMID: 38046401 PMCID: PMC10691261 DOI: 10.3389/ftox.2023.1272364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: While targeted investigation of key toxicity pathways has been instrumental for biomarker discovery, unbiased and holistic analysis of transcriptomic data provides a complementary systems-level perspective. However, in a systematic context, this approach has yet to receive comprehensive and methodical implementation. Methods: Here, we took an integrated bioinformatic approach by re-analyzing publicly available MCF7 cell TempO-seq data for 44 ToxCast chemicals using an alternative pipeline to demonstrate the power of this approach. The original study has focused on analyzing the gene signature approach and comparing them to in vitro biological pathway altering concentrations determined from ToxCast HTS assays. Our workflow, in comparison, involves sequential differential expression, gene set enrichment, benchmark dose modeling, and identification of commonly perturbed pathways by network visualization. Results: Using this approach, we identified dose-responsive molecular changes, biological pathways, and points of departure in an untargeted manner. Critically, benchmark dose modeling based on pathways recapitulated points of departure for apical endpoints, while also revealing additional perturbed mechanisms missed by single endpoint analyses. Discussion: This systems-toxicology approach provides multifaceted insights into the complex effects of chemical exposures. Our work highlights the importance of unbiased data-driven techniques, alongside targeted methods, for comprehensively evaluating molecular initiating events, dose-response relationships, and toxicity pathways. Overall, integrating omics assays with robust bioinformatics holds promise for improving chemical risk assessment and advancing new approach methodologies (NAMs).
Collapse
|
6
|
Christopher JA, Galbada Liyanage SA, Nicholson EM, Kinney WD, Cropp TA. Genetic encoding of isobutyryl-, isovaleryl-, and β-hydroxybutryl-lysine in E. coli. RSC Adv 2022; 12:34142-34144. [PMID: 36545614 PMCID: PMC9706372 DOI: 10.1039/d2ra04898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/19/2022] [Indexed: 11/30/2022] Open
Abstract
Here we report the synthesis and genetic encoding of the lysine post translational modifications, β-hydroxybutyryl-lysine, isobutyryl-lysine and isovaleryl-lysine. The ability to obtain a homogenous protein samples with site-specific incorporation of these acylated lysine residues can serve as a powerful tool to study the biological role of lysine post translational modifications.
Collapse
Affiliation(s)
| | | | - Eve M. Nicholson
- Department of Chemistry, Virginia Commonwealth UniversityRichmondVA 23284USA
| | - William D. Kinney
- Department of Chemistry, Virginia Commonwealth UniversityRichmondVA 23284USA
| | - T. Ashton Cropp
- Department of Chemistry, Virginia Commonwealth UniversityRichmondVA 23284USA
| |
Collapse
|
7
|
Holdgate GA, Bardelle C, Lanne A, Read J, O'Donovan DH, Smith JM, Selmi N, Sheppard R. Drug discovery for epigenetics targets. Drug Discov Today 2021; 27:1088-1098. [PMID: 34728375 DOI: 10.1016/j.drudis.2021.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/19/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Abstract
Dysregulation of the epigenome is associated with the onset and progression of several diseases, including cancer, autoimmune, cardiovascular, and neurological disorders. Members from the three families of epigenetic proteins (readers, writers, and erasers) have been shown to be druggable using small-molecule inhibitors. Increasing knowledge of the role of epigenetics in disease and the reversibility of these modifications explain why pharmacological intervention is an attractive strategy for tackling epigenetic-based disease. In this review, we provide an overview of epigenetics drug targets, focus on approaches used for initial hit identification, and describe the subsequent role of structure-guided chemistry optimisation of initial hits to clinical candidates. We also highlight current challenges and future potential for epigenetics-based therapies.
Collapse
Affiliation(s)
- Geoffrey A Holdgate
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK.
| | - Catherine Bardelle
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Alice Lanne
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Jon Read
- Structure and Biophysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Nidhal Selmi
- iLAB, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert Sheppard
- Medicinal Chemistry, Cardiovascular, Renal, Metabolism R&D, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
8
|
Chaudhary S, Patidar A, Dhiman A, Chaubey GK, Dilawari R, Talukdar S, Modanwal R, Raje M. Exposure of a specific pleioform of multifunctional glyceraldehyde 3-phosphate dehydrogenase initiates CD14-dependent clearance of apoptotic cells. Cell Death Dis 2021; 12:892. [PMID: 34593755 PMCID: PMC8482365 DOI: 10.1038/s41419-021-04168-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Rapid clearance of apoptotic cells by phagocytes is crucial for organogenesis, tissue homeostasis, and resolution of inflammation. This process is initiated by surface exposure of various 'eat me' ligands. Though phosphatidylserine (PS) is the best recognized general recognition ligand till date, recent studies have shown that PS by itself is not sufficient for clearance of apoptotic cells. In this study, we have identified a specific pleioform of GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) that functions as an 'eat me' signal on apoptotic cell surface. This specific form of GAPDH which is exposed on surface of apoptotic cells was found to interact with CD14 present on plasma membrane of phagocytes leading to their engulfment. This is the first study demonstrating the novel interaction between multifunctional GAPDH and the phagocytic receptor CD14 resulting in apoptotic cell clearance (efferocytosis).
Collapse
Affiliation(s)
- Surbhi Chaudhary
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Anil Patidar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | | | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Sharmila Talukdar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Radheshyam Modanwal
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
9
|
Zheng C, Yan S, Lu L, Yao H, He G, Chen S, Li Y, Peng X, Cheng Z, Wu M, Zhang Q, Li G, Fu S, Deng X. Lovastatin Inhibits EMT and Metastasis of Triple-Negative Breast Cancer Stem Cells Through Dysregulation of Cytoskeleton-Associated Proteins. Front Oncol 2021; 11:656687. [PMID: 34150623 PMCID: PMC8212055 DOI: 10.3389/fonc.2021.656687] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is more aggressive and has poorer prognosis compared to other subtypes of breast cancer. Epithelial-to-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal-like cells capable of migration, invasion, and metastasis. Recently, we have demonstrated that lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor and a lipid-lowering drug, could inhibit stemness properties of cancer stem cells (CSCs) derived from TNBC cell in vitro and in vivo. This study is aimed at investigating whether lovastatin inhibits TNBC CSCs by inhibiting EMT and suppressing metastasis and the mechanism involved. In the present study, we found that lovastatin dysregulated lysine succinylation of cytoskeleton-associated proteins in CSCs derived from TNBC MDA-MB-231 cell. Lovastatin inhibited EMT as demonstrated by down-regulation of the protein levels of Vimentin and Twist in MDA-MB-231 CSCs in vitro and vivo and by reversal of TGF-β1-induced morphological change in MCF10A cells. Lovastatin also inhibited the migration of MDA-MB-231 CSCs. The disruption of cytoskeleton in TNBC CSCs by lovastatin was demonstrated by the reduction of the number of pseudopodia and the relocation of F-actin cytoskeleton. Combination of lovastatin with doxorubicin synergistically inhibited liver metastasis of MDA-MB-231 CSCs. Bioinformatics analysis revealed that higher expression levels of cytoskeleton-associated genes were characteristic of TNBC and predicted survival outcomes in breast cancer patients. These data suggested that lovastatin could inhibit the EMT and metastasis of TNBC CSCs in vitro and in vivo through dysregulation of cytoskeleton-associated proteins.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China.,Department of Preventive Medicine, Hunan Normal University School of Medicine, Changsha, China
| | - Shichao Yan
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Ying Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | | | | | - Mi Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Qiuting Zhang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Guifei Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Departments of Pathology and Pathophysiology, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Harjivan SG, Charneira C, Martins IL, Pereira SA, Espadas G, Sabidó E, Beland FA, Marques MM, Antunes AMM. Covalent Histone Modification by an Electrophilic Derivative of the Anti-HIV Drug Nevirapine. Molecules 2021; 26:1349. [PMID: 33802579 PMCID: PMC7961589 DOI: 10.3390/molecules26051349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Nevirapine (NVP), a non-nucleoside reverse transcriptase inhibitor widely used in combined antiretroviral therapy and to prevent mother-to-child transmission of the human immunodeficiency virus type 1, is associated with several adverse side effects. Using 12-mesyloxy-nevirapine, a model electrophile of the reactive metabolites derived from the NVP Phase I metabolite, 12-hydroxy-NVP, we demonstrate that the nucleophilic core and C-terminal residues of histones are targets for covalent adduct formation. We identified multiple NVP-modification sites at lysine (e.g., H2BK47, H4K32), histidine (e.g., H2BH110, H4H76), and serine (e.g., H2BS33) residues of the four histones using a mass spectrometry-based bottom-up proteomic analysis. In particular, H2BK47, H2BH110, H2AH83, and H4H76 were found to be potential hot spots for NVP incorporation. Notably, a remarkable selectivity to the imidazole ring of histidine was observed, with modification by NVP detected in three out of the 11 histidine residues of histones. This suggests that NVP-modified histidine residues of histones are prospective markers of the drug's bioactivation and/or toxicity. Importantly, NVP-derived modifications were identified at sites known to determine chromatin structure (e.g., H4H76) or that can undergo multiple types of post-translational modifications (e.g., H2BK47, H4H76). These results open new insights into the molecular mechanisms of drug-induced adverse reactions.
Collapse
Affiliation(s)
- Shrika G. Harjivan
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Catarina Charneira
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Inês L. Martins
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Sofia A. Pereira
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal;
| | - Guadalupe Espadas
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; (G.E.); (E.S.)
- Proteomics Unit, Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; (G.E.); (E.S.)
- Proteomics Unit, Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - M. Matilde Marques
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.G.H.); (C.C.); (I.L.M.); (M.M.M.)
| |
Collapse
|
11
|
Liu X, Yang M, Liu Y, Ge F, Zhao J. Structural and Functional Insights into a Lysine Deacylase in the Cyanobacterium Synechococcus sp. PCC 7002. PLANT PHYSIOLOGY 2020; 184:762-776. [PMID: 32719110 PMCID: PMC7536712 DOI: 10.1104/pp.20.00583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lys deacylases are essential regulators of cell biology in many contexts. Here, we have identified CddA (cyanobacterial deacetylase/depropionylase), a Lys deacylase enzyme expressed in the cyanobacterium Synechococcus sp. PCC 7002 that has both deacetylase and depropionylase activity. Loss of the gene cddA led to slower growth and impaired linear and cyclic photosynthetic electron transfer. We determined the crystal structure of this depropionylase/deacetylase at 2.1 Å resolution and established that it has a unique and characteristically folded α/β structure. We detected an acyl binding site within CddA via site-directed mutagenesis and demonstrated that this site is essential for the deproprionylase activity of this enzyme. Through a proteomic approach, we identified a total of 598 Lys residues across 382 proteins that were capable of undergoing propionylation. These propionylated proteins were highly enriched for photosynthetic and metabolic functionality. We additionally demonstrated that CddA was capable of catalyzing in vivo and in vitro Lys depropionylation and deacetylation of Fru-1,6-bisphosphatase, thereby regulating its enzymatic activity. Our identification of a Lys deacylase provides insight into the mechanisms globally regulating photosynthesis and carbon metabolism in cyanobacteria and potentially in other photosynthetic organisms as well.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yingfang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, School of Medicine, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Martinez-Moreno JM, Fontecha-Barriuso M, Martín-Sánchez D, Sánchez-Niño MD, Ruiz-Ortega M, Sanz AB, Ortiz A. The Contribution of Histone Crotonylation to Tissue Health and Disease: Focus on Kidney Health. Front Pharmacol 2020; 11:393. [PMID: 32308622 PMCID: PMC7145939 DOI: 10.3389/fphar.2020.00393] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are the most severe consequences of kidney injury. They are interconnected syndromes as CKD predisposes to AKI and AKI may accelerate CKD progression. Despite their growing impact on the global burden of disease, there is no satisfactory treatment for AKI and current therapeutic approaches to CKD remain suboptimal. Recent research has focused on the therapeutic target potential of epigenetic regulation of gene expression, including non-coding RNAs and the covalent modifications of histones and DNA. Indeed, several drugs targeting histone modifications are in clinical use or undergoing clinical trials. Acyl-lysine histone modifications (e.g. methylation, acetylation, and crotonylation) have modulated experimental kidney injury. Most recently, increased histone lysine crotonylation (Kcr) was observed during experimental AKI and could be reproduced in cultured tubular cells exposed to inflammatory stress triggered by the cytokine TWEAK. The degree of kidney histone crotonylation was modulated by crotonate availability and crotonate supplementation protected from nephrotoxic AKI. We now review the functional relevance of histone crotonylation in kidney disease and other pathophysiological contexts, as well as the implications for the development of novel therapeutic approaches. These studies provide insights into the overall role of histone crotonylation in health and disease.
Collapse
Affiliation(s)
- Julio M Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Diego Martín-Sánchez
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Maria D Sánchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain.,School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
| | - Ana B Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonomous University of Madrid (UAM), Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain.,School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.,IRSIN, Madrid, Spain
| |
Collapse
|
13
|
Ju Z, Wang SY. Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5-steps rule and general pseudo components. Genomics 2020; 112:859-866. [DOI: 10.1016/j.ygeno.2019.05.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
|
14
|
Kumar A, Phulera S, Rizvi A, Sonawane PJ, Panwar HS, Banerjee S, Sahu A, Mande SC. Structural basis of hypoxic gene regulation by the Rv0081 transcription factor ofMycobacterium tuberculosis. FEBS Lett 2019; 593:982-995. [DOI: 10.1002/1873-3468.13375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Ashwani Kumar
- National Centre for Cell Science SP Pune University Campus Pune India
| | - Swastik Phulera
- National Centre for Cell Science SP Pune University Campus Pune India
| | - Arshad Rizvi
- Department of Biochemistry University of Hyderabad Hyderabad India
| | | | | | | | - Arvind Sahu
- National Centre for Cell Science SP Pune University Campus Pune India
| | - Shekhar C. Mande
- National Centre for Cell Science SP Pune University Campus Pune India
| |
Collapse
|
15
|
McIntyre J, Sobolewska A, Fedorowicz M, McLenigan MP, Macias M, Woodgate R, Sledziewska-Gojska E. DNA polymerase ι is acetylated in response to S N2 alkylating agents. Sci Rep 2019; 9:4789. [PMID: 30886224 PMCID: PMC6423139 DOI: 10.1038/s41598-019-41249-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
DNA polymerase iota (Polι) belongs to the Y-family of DNA polymerases that are involved in DNA damage tolerance through their role in translesion DNA synthesis. Like all other Y-family polymerases, Polι interacts with proliferating cell nuclear antigen (PCNA), Rev1, ubiquitin and ubiquitinated-PCNA and is also ubiquitinated itself. Here, we report that Polι also interacts with the p300 acetyltransferase and is acetylated. The primary acetylation site is K550, located in the Rev1-interacting region. However, K550 amino acid substitutions have no effect on Polι's ability to interact with Rev1. Interestingly, we find that acetylation of Polι significantly and specifically increases in response to SN2 alkylating agents and to a lower extent to SN1 alkylating and oxidative agents. As we have not observed acetylation of Polι's closest paralogue, DNA polymerase eta (Polη), with which Polι shares many functional similarities, we believe that this modification might exclusively regulate yet to be determined, and separate function(s) of Polι.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| | - Aleksandra Sobolewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Mikolaj Fedorowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Mary P McLenigan
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-3371, USA
| | - Matylda Macias
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-3371, USA
| | - Ewa Sledziewska-Gojska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
16
|
Liu X, Yang M, Wang Y, Chen Z, Zhang J, Lin X, Ge F, Zhao J. Effects of PSII Manganese-Stabilizing Protein Succinylation on Photosynthesis in the Model Cyanobacterium Synechococcus sp. PCC 7002. PLANT & CELL PHYSIOLOGY 2018; 59:1466-1482. [PMID: 29912468 DOI: 10.1093/pcp/pcy080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Lysine succinylation is a newly identified protein post-translational modification and plays important roles in various biological pathways in both prokaryotes and eukaryotes, but its extent and function in photosynthetic organisms remain largely unknown. Here, we performed the first systematic studies of lysine succinylation in cyanobacteria, which are the only prokaryotes capable of oxygenic photosynthesis and the established model organisms for studying photosynthetic mechanisms. By using mass spectrometry analysis in combination with the enrichment of succinylated peptides from digested cell lysates, we identified 1,704 lysine succinylation sites on 691 proteins in a model cyanobacterium Synechococcus sp. PCC 7002. Bioinformatic analysis revealed that a large proportion of the succinylation sites were present on proteins in photosynthesis and metabolism. Among all identified succinylated proteins involved in photosynthesis, the PSII manganese-stabilizing protein (PsbO) was found to be succinylated on Lys99 and Lys234. Functional studies of PsbO were performed by site-directed mutagenesis, and mutants mimicking either constitutively succinylated (K99E and K234E) or non-succinylated states (K99R and K234R) were constructed. The succinylation-mimicking K234E mutant exhibited a decreased oxygen evolution rate of the PSII center and the efficiency of energy transfer during the photosynthetic reaction. Molecular dynamics simulations suggested a mechanism that may allow succinylation to influence the efficiency of photosynthesis by altering the conformation of PsbO, thereby hindering the interaction between PsbO and the PSII core. Our findings suggest that reversible succinylation may be an important regulatory mechanism during photosynthesis in Synechococcus, as well as in other photosynthetic organisms.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jia Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaohuang Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
17
|
Gaviard C, Broutin I, Cosette P, Dé E, Jouenne T, Hardouin J. Lysine Succinylation and Acetylation in Pseudomonas aeruginosa. J Proteome Res 2018; 17:2449-2459. [DOI: 10.1021/acs.jproteome.8b00210] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Charlotte Gaviard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Isabelle Broutin
- LCRB, UMR 8015, CNRS, University Paris Descartes, Sorbonne Paris City, 75270 Paris Cedex 06, France
| | - Pascal Cosette
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Emmanuelle Dé
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
18
|
Taherzadeh G, Yang Y, Xu H, Xue Y, Liew AWC, Zhou Y. Predicting lysine-malonylation sites of proteins using sequence and predicted structural features. J Comput Chem 2018; 39:1757-1763. [DOI: 10.1002/jcc.25353] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ghazaleh Taherzadeh
- School of Information and Communication Technology; Griffith University, Parklands Drive; Southport Queensland 4222 Australia
| | - Yuedong Yang
- School of Data and Computer Science; Sun Yat-sen University; Guangzhou 510275 China
| | - Haodong Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering; Huazhong University of Science and Technology; Wuhan Hubei 430074 China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology and the Collaborative Innovation Center for Biomedical Engineering; Huazhong University of Science and Technology; Wuhan Hubei 430074 China
| | - Alan Wee-Chung Liew
- School of Information and Communication Technology; Griffith University, Parklands Drive; Southport Queensland 4222 Australia
| | - Yaoqi Zhou
- School of Information and Communication Technology; Griffith University, Parklands Drive; Southport Queensland 4222 Australia
- Institute for Glycomics, Griffith University, Parklands Dr; Southport Queensland 4222 Australia
| |
Collapse
|
19
|
Zhou YY, Chun RKM, Wang JC, Zuo B, Li KK, Lam TC, Liu Q, To CH. Proteomic analysis of chick retina during early recovery from lens‑induced myopia. Mol Med Rep 2018; 18:59-66. [PMID: 29749514 PMCID: PMC6059693 DOI: 10.3892/mmr.2018.8954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Myopia development has been extensively studied from different perspectives. Myopia recovery is also considered important for understanding the development of myopia. However, despite several previous studies, retinal proteomics during recovery from myopia is still relatively unknown. Therefore, the aim of the present study was to investigate the changes in protein profiles of chicken retinas during early recovery from lens-induced myopia to evaluate the signals involved in the adjustment of this refractive disorder. Three-day old chickens wore glasses for 7 days (−10D lens over the right eye and a plano lens as control over the left eye), followed by 24 h without lenses. Protein expression in the retina was measured by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Pro-Q Diamond phosphoprotein staining 2D gel electrophoresis was used to analyze phosphoprotein profiles. Protein spots with significant differences (P<0.05) were analyzed by mass spectrometry. The minus lens-treated eye became myopic, however following 24 h recovery, less myopia was observed. 2D-DIGE proteomic analysis demonstrated that three identified protein spots were upregulated at least 1.2-fold in myopic recovery retinas compared with those of the controls, Ras related protein Rab-11B, S-antigen retina and pineal gland and 26S proteasome non-ATPase regulatory subunit 14. Pro-Q Diamond images further revealed three protein spots with significant changes (at least 1.8-fold): β-tubulin was downregulated, while peroxiredoxin 4 and ubiquitin carboxyl-terminal hydrolase-L1 were upregulated in the recovery retinas compared with the control eye retinas. The present study detected previously unreported protein changes in recovering eyes, therefore revealing their potential involvement in retinal remodeling during eye ball reforge.
Collapse
Affiliation(s)
- Yun Yun Zhou
- Refractive Surgery Department, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Rachel Ka Man Chun
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Jian Chao Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710049, P.R. China
| | - Bing Zuo
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - King Kit Li
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hong Kong 999077, SAR, P.R. China
| | - Quan Liu
- Refractive Surgery Department, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Chi-Ho To
- Refractive Surgery Department, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
20
|
Kwon OK, Kim SJ, Lee S. First profiling of lysine crotonylation of myofilament proteins and ribosomal proteins in zebrafish embryos. Sci Rep 2018. [PMID: 29483630 DOI: 10.1038/s41598018-22069-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Zebrafish embryos are translucent and develop rapidly in individual eggs ex utero; they are widely used as models for embryogenesis and organ development for human diseases and drug discovery. Lysine crotonylation (Kcr) is a type of histone post-translational modifications discovered in 2011. Kcr dynamics are involved in gene expression regulation and acute kidney injury; however, little is known about the effects of Kcr on non-histone proteins. In the present study, we conducted the first proteome-wide profiling of Kcr in zebrafish larvae and identified 557 Kcr sites on 218 proteins, representing the Kcr event in zebrafish. We identified two types of Kcr motifs containing hydrophobic (Leu, Ile, Val) and acidic (Asp and Glu) amino acids near the modified lysine residues. Our results show that both crotonylated proteins and sites of crotonylation were evolutionarily conserved between zebrafish embryos and humans. Specifically, Kcr on ribosomal proteins and myofilament proteins, including myosin, tropomyosin and troponin, were widely enriched. Interestingly, 55 lysine crotonylation sites on myosin were distributed throughout coiled coil regions. Therefore, Kcr may regulate muscle contraction and protein synthesis. Our results provide a foundation for future studies on the effects of lysine crotonylation on aging and heart failure.
Collapse
Affiliation(s)
- Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sun Joo Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
21
|
First profiling of lysine crotonylation of myofilament proteins and ribosomal proteins in zebrafish embryos. Sci Rep 2018; 8:3652. [PMID: 29483630 PMCID: PMC5827021 DOI: 10.1038/s41598-018-22069-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/15/2018] [Indexed: 01/31/2023] Open
Abstract
Zebrafish embryos are translucent and develop rapidly in individual eggs ex utero; they are widely used as models for embryogenesis and organ development for human diseases and drug discovery. Lysine crotonylation (Kcr) is a type of histone post-translational modifications discovered in 2011. Kcr dynamics are involved in gene expression regulation and acute kidney injury; however, little is known about the effects of Kcr on non-histone proteins. In the present study, we conducted the first proteome-wide profiling of Kcr in zebrafish larvae and identified 557 Kcr sites on 218 proteins, representing the Kcr event in zebrafish. We identified two types of Kcr motifs containing hydrophobic (Leu, Ile, Val) and acidic (Asp and Glu) amino acids near the modified lysine residues. Our results show that both crotonylated proteins and sites of crotonylation were evolutionarily conserved between zebrafish embryos and humans. Specifically, Kcr on ribosomal proteins and myofilament proteins, including myosin, tropomyosin and troponin, were widely enriched. Interestingly, 55 lysine crotonylation sites on myosin were distributed throughout coiled coil regions. Therefore, Kcr may regulate muscle contraction and protein synthesis. Our results provide a foundation for future studies on the effects of lysine crotonylation on aging and heart failure.
Collapse
|
22
|
Sajnani K, Islam F, Smith RA, Gopalan V, Lam AKY. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie 2017; 135:164-172. [PMID: 28219702 DOI: 10.1016/j.biochi.2017.02.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/26/2023]
Abstract
Cancer cells exhibit alterations in many cellular processes, including oxygen sensing and energy metabolism. Glycolysis in non-oxygen condition is the main energy production process in cancer rather than mitochondrial respiration as in benign cells. Genetic and epigenetic alterations of Krebs cycle enzymes favour the shift of cancer cells from oxidative phosphorylation to anaerobic glycolysis. Mutations in genes encoding aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, and citrate synthase are noted in many cancers. Abnormalities of Krebs cycle enzymes cause ectopic production of Krebs cycle intermediates (oncometabolites) such as 2-hydroxyglutarate, and citrate. These oncometabolites stabilize hypoxia inducible factor 1 (HIF1), nuclear factor like 2 (Nrf2), inhibit p53 and prolyl hydroxylase 3 (PDH3) activities as well as regulate DNA/histone methylation, which in turn activate cell growth signalling. They also stimulate increased glutaminolysis, glycolysis and production of reactive oxygen species (ROS). Additionally, genetic alterations in Krebs cycle enzymes are involved with increased fatty acid β-oxidations and epithelial mesenchymal transition (EMT) induction. These altered phenomena in cancer could in turn promote carcinogenesis by stimulating cell proliferation and survival. Overall, epigenetic and genetic changes of Krebs cycle enzymes lead to the production of oncometabolite intermediates, which are important driving forces of cancer pathogenesis and progression. Understanding and applying the knowledge of these mechanisms opens new therapeutic options for patients with cancer.
Collapse
Affiliation(s)
- Karishma Sajnani
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Farhadul Islam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
23
|
Suman S, Mishra S, Shukla Y. Toxicoproteomics in human health and disease: an update. Expert Rev Proteomics 2016; 13:1073-1089. [DOI: 10.1080/14789450.2016.1252676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shankar Suman
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Sanjay Mishra
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Yogeshwer Shukla
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| |
Collapse
|
24
|
Zhdanov R, Schirmer E, Venkatasubramani AV, Kerr A, Mandrou E, Rodriguez Blanco G, Kagansky A. Lipids contribute to epigenetic control via chromatin structure and functions. SCIENCEOPEN RESEARCH 2016. [DOI: 10.14293/s2199-1006.1.sor-life.auxytr.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Isolated cases of experimental evidence over the last few decades have shown that, where specifically tested, both prokaryotes and eukaryotes have specific lipid species bound to nucleoproteins of the genome. In vitro, some of these lipid species exhibit stoichiometric association with DNA polynucleotides with differential affinities toward certain secondary and tertiary structures. Hydrophobic interactions with inner nuclear membrane could provide attractive anchor points for lipid-modified nucleoproteins in organizing the dynamic genome and accordingly there are precedents for covalent bonds between lipids and core histones and, under certain conditions, even DNA. Advances in biophysics, functional genomics, and proteomics in recent years brought about the first sparks of light that promises to uncover some coherent new level of the epigenetic code governed by certain types of lipid–lipid, DNA–lipid, and DNA-protein–lipid interactions among other biochemical lipid transactions in the nucleus. Here, we review some of the older and more recent findings and speculate on how critical nuclear lipid transactions are for individual cells, tissues, and organisms.
Collapse
|
25
|
Liu Y, Perez L, Mettry M, Easley CJ, Hooley RJ, Zhong W. Self-Aggregating Deep Cavitand Acts as a Fluorescence Displacement Sensor for Lysine Methylation. J Am Chem Soc 2016; 138:10746-9. [DOI: 10.1021/jacs.6b05897] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yang Liu
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Lizeth Perez
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Magi Mettry
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Connor J. Easley
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Richard J. Hooley
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
26
|
Ringel AE, Wolberger C. Structural basis for acyl-group discrimination by human Gcn5L2. Acta Crystallogr D Struct Biol 2016; 72:841-8. [PMID: 27377381 PMCID: PMC4932917 DOI: 10.1107/s2059798316007907] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/13/2016] [Indexed: 11/10/2022] Open
Abstract
Gcn5 is a conserved acetyltransferase that regulates transcription by acetylating the N-terminal tails of histones. Motivated by recent studies identifying a chemically diverse array of lysine acyl modifications in vivo, the acyl-chain specificity of the acetyltransferase human Gcn5 (Gcn5L2) was examined. Whereas Gcn5L2 robustly catalyzes lysine acetylation, the acyltransferase activity of Gcn5L2 becomes progressively weaker with increasing acyl-chain length. To understand how Gcn5 discriminates between different acyl-CoA molecules, structures of the catalytic domain of human Gcn5L2 bound to propionyl-CoA and butyryl-CoA were determined. Although the active site of Gcn5L2 can accommodate propionyl-CoA and butyryl-CoA without major structural rearrangements, butyryl-CoA adopts a conformation incompatible with catalysis that obstructs the path of the incoming lysine residue and acts as a competitive inhibitor of Gcn5L2 versus acetyl-CoA. These structures demonstrate how Gcn5L2 discriminates between acyl-chain donors and explain why Gcn5L2 has weak activity for acyl moieties that are larger than an acetyl group.
Collapse
Affiliation(s)
- Alison E. Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Shen Z, Wang B, Luo J, Jiang K, Zhang H, Mustonen H, Puolakkainen P, Zhu J, Ye Y, Wang S. Global-scale profiling of differential expressed lysine acetylated proteins in colorectal cancer tumors and paired liver metastases. J Proteomics 2016; 142:24-32. [PMID: 27178108 DOI: 10.1016/j.jprot.2016.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Lysine acetylated modification was indicated to impact colorectal cancer (CRC)'s distant metastasis. However, the global acetylated proteins in CRC and the differential expressed acetylated proteins and acetylated sites between CRC primary and distant metastatic tumor remains unclear. Our aim was to construct a complete atlas of acetylome in CRC and paired liver metastases. Combining high affinity enrichment of acetylated peptides with high sensitive mass spectrometry, we identified 603 acetylation sites from 316 proteins, among which 462 acetylation sites corresponding to 243 proteins were quantified. We further classified them into groups according to cell component, molecular function and biological process and analyzed the metabolic pathways, domain structures and protein interaction networks. Finally, we evaluated the differentially expressed lysine acetylation sites and revealed that 31 acetylated sites of 22 proteins were downregulated in CRC liver metastases compared to that in primary CRC while 40 acetylated sites of 32 proteins were upregulated, of which HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. These results provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC. BIOLOGICAL SIGNIFICANCE This study described provides, for the first time, that full-scale profiling of lysine acetylated proteins were identified and quantified in colorectal cancer (CRC) and paired liver metastases. The novelty of the study is that we constructed a complete atlas of acetylome in CRC and paired liver metastases. Moreover, we analyzed these differentially expressed acetylated proteins in cell component, molecular function and biological process. In addition, metabolic pathways, domain structures and protein interaction networks of acetylated proteins were also investigated. Our approaches shows that of the differentially expressed proteins, HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. Our findings provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC.
Collapse
Affiliation(s)
- Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University Health Science Center, Beijing 100191, PR China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Hui Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Harri Mustonen
- Department of Surgery, Helsinki University Central Hospital and University of Helsinki, Helsinki 00290, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Helsinki University Central Hospital and University of Helsinki, Helsinki 00290, Finland
| | - Jun Zhu
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, PR China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China.
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China.
| |
Collapse
|
28
|
Marquez J, Lee SR, Kim N, Han J. Post-Translational Modifications of Cardiac Mitochondrial Proteins in Cardiovascular Disease: Not Lost in Translation. Korean Circ J 2016; 46:1-12. [PMID: 26798379 PMCID: PMC4720839 DOI: 10.4070/kcj.2016.46.1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/08/2023] Open
Abstract
Protein post-translational modifications (PTMs) are crucial in regulating cellular biology by playing key roles in processes such as the rapid on and off switching of signaling network and the regulation of enzymatic activities without affecting gene expressions. PTMs lead to conformational changes in the tertiary structure of protein and resultant regulation of protein function such as activation, inhibition, or signaling roles. PTMs such as phosphorylation, acetylation, and S-nitrosylation of specific sites in proteins have key roles in regulation of mitochondrial functions, thereby contributing to the progression to heart failure. Despite the extensive study of PTMs in mitochondrial proteins much remains unclear. Further research is yet to be undertaken to elucidate how changes in the proteins may lead to cardiovascular and metabolic disease progression in particular. We aimed to summarize the various types of PTMs that occur in mitochondrial proteins, which might be associated with heart failure. This study will increase the understanding of cardiovascular diseases through PTM.
Collapse
Affiliation(s)
- Jubert Marquez
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea
| | - Sung Ryul Lee
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.; National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Nari Kim
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.; National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Jin Han
- Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.; National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| |
Collapse
|
29
|
Zhdanov R, Schirmer E, Venkatasubramani AV, Kerr A, Mandrou E, Rodriguez Blanco G, Kagansky A. Lipids contribute to epigenetic control via chromatin structure and functions. SCIENCEOPEN RESEARCH 2015. [DOI: 10.14293/s2199-1006.1.sor-life.auxytr.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Isolated cases of experimental evidence over the last few decades have shown that, where specifically tested, both prokaryotes and eukaryotes have specific lipid molecules bound to nucleoproteins of the genome. In vitro, some of these lipids exhibit stoichiometric association with DNA polynucleotides with differential affinities toward certain secondary and tertiary structures. Hydrophobic interactions with inner nuclear membrane could provide attractive anchor points for lipid-modified nucleoproteins in organizing the dynamic genome and accordingly there are precedents for covalent bonds between lipids and core histones and, under certain conditions, even DNA. Advances in biophysics, functional genomics, and proteomics in recent years brought about the first sparks of light that promises to uncover some coherent new level of the epigenetic code governed by certain types of lipid–lipid, DNA–lipid, and protein–lipid interactions among other biochemical lipid transactions in the nucleus. Here, we review some of the older and more recent findings and speculate on how critical nuclear lipid transactions are for individual cells, tissues, and organisms.
Collapse
|
30
|
Singhal A, Arora G, Virmani R, Kundu P, Khanna T, Sajid A, Misra R, Joshi J, Yadav V, Samanta S, Saini N, Pandey AK, Visweswariah SS, Hentschker C, Becher D, Gerth U, Singh Y. Systematic Analysis of Mycobacterial Acylation Reveals First Example of Acylation-mediated Regulation of Enzyme Activity of a Bacterial Phosphatase. J Biol Chem 2015; 290:26218-34. [PMID: 26350458 DOI: 10.1074/jbc.m115.687269] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 02/02/2023] Open
Abstract
Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.
Collapse
Affiliation(s)
- Anshika Singhal
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Gunjan Arora
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India, the Translational Health Science and Technology Institute, Faridabad 121001, India
| | - Richa Virmani
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Parijat Kundu
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Tanya Khanna
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Andaleeb Sajid
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Richa Misra
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Jayadev Joshi
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Vikas Yadav
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Sintu Samanta
- the Indian Institute of Science, Bangalore 560012, India, and
| | - Neeru Saini
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Amit K Pandey
- the Translational Health Science and Technology Institute, Faridabad 121001, India,
| | | | - Christian Hentschker
- the Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany
| | - Dörte Becher
- the Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany
| | - Ulf Gerth
- the Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany
| | - Yogendra Singh
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India,
| |
Collapse
|
31
|
Basharat Z, Yasmin A. In silico assessment of phosphorylation and O-β-GlcNAcylation sites in human NPC1 protein critical for Ebola virus entry. INFECTION GENETICS AND EVOLUTION 2015; 34:326-38. [DOI: 10.1016/j.meegid.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 12/01/2022]
|
32
|
McIntyre J, Woodgate R. Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. DNA Repair (Amst) 2015; 29:166-79. [PMID: 25743599 PMCID: PMC4426011 DOI: 10.1016/j.dnarep.2015.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/30/2023]
Abstract
Posttranslational modification of proteins often controls various aspects of their cellular function. Indeed, over the past decade or so, it has been discovered that posttranslational modification of lysine residues plays a major role in regulating translesion DNA synthesis (TLS) and perhaps the most appreciated lysine modification is that of ubiquitination. Much of the recent interest in ubiquitination stems from the fact that proliferating cell nuclear antigen (PCNA) was previously shown to be specifically ubiquitinated at K164 and that such ubiquitination plays a key role in regulating TLS. In addition, TLS polymerases themselves are now known to be ubiquitinated. In the case of human polymerase η, ubiquitination at four lysine residues in its C-terminus appears to regulate its ability to interact with PCNA and modulate TLS. Within the past few years, advances in global proteomic research have revealed that many proteins involved in TLS are, in fact, subject to a previously underappreciated number of lysine modifications. In this review, we will summarize the known lysine modifications of several key proteins involved in TLS; PCNA and Y-family polymerases η, ι, κ and Rev1 and we will discuss the potential regulatory effects of such modification in controlling TLS in vivo.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| |
Collapse
|
33
|
Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1330-7. [PMID: 24699309 DOI: 10.1016/j.bbabio.2014.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
Abstract
Seventy years from the formalization of the Krebs cycle as the central metabolic turntable sustaining the cell respiratory process, key functions of several of its intermediates, especially succinate and fumarate, have been recently uncovered. The presumably immutable organization of the cycle has been challenged by a number of observations, and the variable subcellular location of a number of its constitutive protein components is now well recognized, although yet unexplained. Nonetheless, the most striking observations have been made in the recent period while investigating human diseases, especially a set of specific cancers, revealing the crucial role of Krebs cycle intermediates as factors affecting genes methylation and thus cell remodeling. We review here the recent advances and persisting incognita about the role of Krebs cycle acids in diverse aspects of cellular life and human pathology.
Collapse
|