1
|
Kemsawasd V, Inthachat W, Suttisansanee U, Temviriyanukul P. Road to The Red Carpet of Edible Crickets through Integration into the Human Food Chain with Biofunctions and Sustainability: A Review. Int J Mol Sci 2022; 23:ijms23031801. [PMID: 35163720 PMCID: PMC8836810 DOI: 10.3390/ijms23031801] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 02/07/2023] Open
Abstract
The Food and Agriculture Organization of the United Nations (FAO) estimates that more than 500 million people, especially in Asia and Africa, are suffering from malnutrition. Recently, livestock farming has increased to supply high-quality protein, with consequent impact on the global environment. Alternative food sources with high nutritive values that can substitute livestock demands are urgently required. Recently, edible crickets have been promoted by the FAO to ameliorate the food crisis. In this review, the distribution, nutritive values, health-promoting properties (antioxidant, anti-inflammatory, anti-diabetic and anti-obesity), safety, allergenicity as well as the potential hazards and risks for human consumption are summarized. Cricket farming may help to realize the United Nations sustainable development goal No. 2 Zero Hunger. The sustainability of cricket farming is also discussed in comparison with other livestock. The findings imply that edible crickets are safe for daily intake as a healthy alternative diet due to their high protein content and health-promoting properties. Appropriate use of edible crickets in the food and nutraceutical industries represents a global business potential. However, people who are allergic to shellfish should pay attention on cricket allergy. Thus, the objective of this review was to present in-depth and up-to-date information on edible crickets to advocate and enhance public perception of cricket-based food.
Collapse
|
2
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Prieto Maradona M, Schlatter JR, van Loveren H, Goumperis T, Knutsen HK. Safety of frozen and dried formulations from whole house crickets (Acheta domesticus) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2021; 19:e06779. [PMID: 34429777 PMCID: PMC8369844 DOI: 10.2903/j.efsa.2021.6779] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Food and Food Allergens (NDA) was asked to deliver an opinion on the safety of frozen and dried formulations from house crickets (Acheta domesticus) as a novel food pursuant to Regulation (EU) 2015/2283. The NF is proposed in three formulations: (i) frozen, (ii) dried, (iii) ground. The main components of the NF are protein, fat and fibre (chitin) in the dried form of the NF, and water, protein, fat and fibre (chitin) in the frozen form of the NF. The Panel notes that the concentrations of contaminants in the NF depend on the occurrence levels of these substances in the insect feed. The Panel further notes that there are no safety concerns regarding the stability of the NF if the NF complies with the proposed specification limits during its entire shelf-life. The NF has a high-protein content, although the true protein levels in the NF are overestimated when using the nitrogen-to-protein conversion factor of 6.25, due to the presence of non-protein nitrogen from chitin. The applicant proposed to use the NF in the form of a snack, and as a food ingredient in a number of food products. The target population proposed by the applicant is the general population. The Panel notes that, considering the composition of the NF and the proposed conditions of use, the consumption of the NF is not nutritionally disadvantageous. The Panel notes that no genotoxicity and no subchronic toxicity studies with the NF were provided by the applicant. Considering that no safety concerns arise from the history of use of A. domesticus or from the compositional data of the NF, the Panel identified no other safety concerns than allergenicity. The Panel considers that the consumption of the NF might trigger primary sensitisation to A. domesticus proteins and may cause allergic reactions in subjects allergic to crustaceans, mites and molluscs. Additionally, allergens from the feed may end up in the NF. The Panel concludes that the NF is safe under the proposed uses and use levels.
Collapse
|
3
|
Insights into the genomic evolution of insects from cricket genomes. Commun Biol 2021; 4:733. [PMID: 34127782 PMCID: PMC8203789 DOI: 10.1038/s42003-021-02197-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping. Ylla, Extavour et al. use genomic data from crickets to investigate the evolution of large genome sizes and DNA methylation events in insects. Their findings indicate that transposable element activity drove genome expansion in hemimetabolous insects, such as crickets and grasshoppers, and that DNA methylation is predominant in conserved genes.
Collapse
|
4
|
De Marchi L, Wangorsch A, Zoccatelli G. Allergens from Edible Insects: Cross-reactivity and Effects of Processing. Curr Allergy Asthma Rep 2021; 21:35. [PMID: 34056688 PMCID: PMC8165055 DOI: 10.1007/s11882-021-01012-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The recent introduction of edible insects in Western countries has raised concerns about their safety in terms of allergenic reactions. The characterization of insect allergens, the sensitization and cross-reactivity mechanisms, and the effects of food processing represent crucial information for risk assessment. RECENT FINDINGS Allergic reactions to different insects and cross-reactivity with crustacean and inhalant allergens have been described, with the identification of new IgE-binding proteins besides well-known pan-allergens. Depending on the route of sensitization, different potential allergens seem to be involved. Food processing may affect the solubility and the immunoreactivity of insect allergens, with results depending on species and type of proteins. Chemical/enzymatic hydrolysis, in some cases, abolishes immunoreactivity. More studies based on subjects with a confirmed insect allergy are necessary to identify major and minor allergens and the role of the route of sensitization. The effects of processing need to be further investigated to assess the risk associated with the ingestion of insect-containing food products.
Collapse
Affiliation(s)
- Laura De Marchi
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | | |
Collapse
|
5
|
Yu SH, Yu SY, Lee BS, Kim HJ, Kim MR, Lee YC. 28-day repeated oral dose toxicity study of an aqueous extract of Gryllus bimaculatus in sprague-dawley rat. Toxicol Rep 2020; 7:577-582. [PMID: 32426238 PMCID: PMC7225595 DOI: 10.1016/j.toxrep.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022] Open
Abstract
Gryllus bimaculatus, edible insects, is the best alternative food source. Evaluation of Gryllus bimaculatus extracts with water in Sprague Dawley rats for its safety. No Observed Adverse Effect Level for Gryllus bimaculatus is considered to be 3000 mg/kg in rats.
This study was performed to demonstrate a No Observed Adverse Effect Level (NOAEL) for an aqueous extract of Gryllus bimaculatus. According to other studies, using dried material or extract with ethanol or methanol determined a NOAEL dose of 1000 mg/kg or 5000 mg/kg in rats. Therefore, the Gryllus bimaculatus groups were administered orally at doses of 0, 1000, 2000, and 3000 mg/kg for four weeks. Two-week recovery groups were administered at doses of 0, and 3000 mg/kg. During administration and recovery period, the animals were observed for clinical signs, change of body weight, food consumption, hematology, and clinical chemistry. Rats in each group were periodically sacrificed, and organs were weighed and examined histologically. No difference arose between any of the dosage groups and the control group in clinical signs, histopathological examination, hematology, or clinical chemistry. In conclusion, 3000 mg/kg is a NOAEL dose for Gryllus bimaculatus extracts in Sprague Dawley rats.
Collapse
Affiliation(s)
- Su Hyun Yu
- Naturetech Co., #450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam, South Korea
| | - Su-Yeol Yu
- Naturetech Co., #450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam, South Korea
| | - Bo-Su Lee
- Naturetech Co., #450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam, South Korea
| | - Hyun-Jin Kim
- Naturetech Co., #450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam, South Korea
| | - Mi-Ran Kim
- Naturetech Co., #450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam, South Korea
| | - Young-Chul Lee
- Naturetech Co., #450-86, Maebong-Ro, Dongnam-Gu, Cheonan-Si, Chungnam, South Korea
| |
Collapse
|
6
|
Park S, Lee G, Lee H, Hoang T, Chae H. Glucose-lowering effect of Gryllus bimaculatus powder on streptozotocin-induced diabetes through the AKT/mTOR pathway. Food Sci Nutr 2020; 8:402-409. [PMID: 31993166 PMCID: PMC6977414 DOI: 10.1002/fsn3.1323] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/26/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
This study was carried out to elucidate the antidiabetic effects of Gryllus bimaculatus powder using a streptozotocin (STZ)-induced rat model of type I diabetes. Administration of the insect powder significantly rescued representative diabetes markers (i.e., insulin and C-peptide) in STZ-treated rats. Improved glucose tolerance test (GTT) and insulin tolerance test (ITT) results were also observed, indicating that Gryllus bimaculatus powder exerts antidiabetic effects. Gryllus bimaculatus powder administration rescued STZ-induced alterations in both islet morphology and insulin staining patterns. The extract increased antiapoptotic Bcl2 expression and decreased proapoptotic Bax and active caspase 3 expressions. In addition, the Gryllus bimaculatus powder supplementation enhanced AKT/mTOR pathway, a key marker of the state of anabolic metabolism, and its downstream effector, mTOR. Collectively, our results suggest that Gryllus bimaculatus contributes to the maintenance of pancreatic β-cell function and morphology against a diabetic state through the regulations against apoptosis and anabolic metabolism.
Collapse
Affiliation(s)
- Seon‐Ah Park
- Non‐Clinical Evaluation CenterBiomedical Research InstituteChonbuk National University HospitalJeonjuChonbukSouth Korea
| | - Geum‐Hwa Lee
- Non‐Clinical Evaluation CenterBiomedical Research InstituteChonbuk National University HospitalJeonjuChonbukSouth Korea
| | - Hwa‐Young Lee
- Non‐Clinical Evaluation CenterBiomedical Research InstituteChonbuk National University HospitalJeonjuChonbukSouth Korea
- Department of Pharmacology and Institute of New Drug DevelopmentSchool of MedicineChonbuk National UniversityJeonjuChonbukSouth Korea
| | - The‐Hiep Hoang
- Non‐Clinical Evaluation CenterBiomedical Research InstituteChonbuk National University HospitalJeonjuChonbukSouth Korea
- Department of Pharmacology and Institute of New Drug DevelopmentSchool of MedicineChonbuk National UniversityJeonjuChonbukSouth Korea
| | - Han‐Jung Chae
- Non‐Clinical Evaluation CenterBiomedical Research InstituteChonbuk National University HospitalJeonjuChonbukSouth Korea
- Department of Pharmacology and Institute of New Drug DevelopmentSchool of MedicineChonbuk National UniversityJeonjuChonbukSouth Korea
| |
Collapse
|
7
|
Kim JY, Kim MK, Kim KB, Kim HS, Lee BM. Quantitative structure-activity and quantitative structure-property relationship approaches as alternative skin sensitization risk assessment methods. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:447-472. [PMID: 31104613 DOI: 10.1080/15287394.2019.1616437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study aimed to predict skin sensitization potency of selected chemicals by quantitatively analyzing their physicochemical properties by employing quantitative structure-activity relationship (QSAR) and quantitative structure-property relationship (QSPR) approaches as alternative risk assessment methods to animal testing. Correlations between effective concentration for a stimulation index of 3 (EC3) (%), the amount of a chemical required to elicit a threefold increase in lymph node cell proliferative activity (stimulation index, ≥3), were calculated using local lymph node assay (LLNA) and physicochemical properties of 212 skin sensitizers and 38 non-sensitizers were investigated. The correlation coefficients between melting point (MP) and EC3 and between surface tension (ST) and EC3 were 0.65 and 0.69, respectively. The correlation coefficient for MP + ST and EC3 was estimated to be 0.72. Thus, correlation coefficients between EC3 and MP, ST, and MP + ST reliably predicted the skin sensitization potential of the chemicals with sensitivities of 72% (126/175), 70% (122/174), and 73% (116/158); specificities of 77% (27/35), 69% (22/32), and 81% (26/32); and accuracies of 73% (153/210), 70% (144/206), and 75% (142/190), respectively. Our findings suggest that the EC3 value may be more accurately predicted using the ST values of chemicals as opposed to MP values. Thus, information on MP and ST parameters of chemicals might be useful for predicting the EC3 values as not only an alternative approach to animal testing, but as a risk assessment method for skin sensitization.
Collapse
Affiliation(s)
- Ji Yun Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , Chungnam , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
8
|
Fernandez-Cassi X, Supeanu A, Jansson A, Boqvist S, Vagsholm I. Novel foods: a risk profile for the house cricket ( Acheta domesticus). EFSA J 2018; 16:e16082. [PMID: 32626053 PMCID: PMC7015497 DOI: 10.2903/j.efsa.2018.e16082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel foods could represent a sustainable alternative to traditional farming and conventional foodstuffs. Starting in 2018, Regulation (EU) 2283/2015 entered into force, laying down provisions for the approval of novel foods in Europe, including insects. This Approved Regulation establishes the requirements that enable Food Business Operators to bring new foods into the EU market, while ensuring high levels of food safety for European consumers. The present risk profile tackles the hazards for one of the most promising novel food insects, the house cricket (Acheta domesticus). The risk profile envisages a closed A. domesticus crickets rearing system, under Hazard Analysis and Critical Control Points (HACCP) and good farming practices (GFP), in contrast with open cricket farms. The methodology used involves screening the literature and identifying possible hazards, followed by adding relevant inclusion criteria for the evidence obtained. These criteria include animal health and food safety aspects, for the entire lifespan of crickets, based on the farm to fork One Health principle. When data were scarce, comparative evidence from close relatives of the Orthoptera genus was used (e.g. grasshoppers, locusts and other cricket species). Nevertheless, significant data gaps in animal health and food safety are present. Even if HACCP‐type systems are implemented, the risk profile identifies the following considerable concerns: (1) high total aerobic bacterial counts; (2) survival of spore‐forming bacteria following thermal processing; (3) allergenicity of insects and insect‐derived products; and (4) the bioaccumulation of heavy metals (e.g. cadmium). Other hazards like parasites, fungi, viruses, prions, antimicrobial resistance and toxins are ranked as low risk. For some hazards, a need for additional evidence is highlighted.
Collapse
|
9
|
de Gier S, Verhoeckx K. Insect (food) allergy and allergens. Mol Immunol 2018; 100:82-106. [PMID: 29731166 DOI: 10.1016/j.molimm.2018.03.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
Insects represent an alternative for meat and fish in satisfying the increasing demand for sustainable sources of nutrition. Approximately two billion people globally consume insects. They are particularly popular in Asia, Latin America, and Africa. Most research on insect allergy has focussed on occupational or inhalation allergy. Research on insect food safety, including allergenicity, is therefore of great importance. The objective of this review is to provide an overview of cases reporting allergy following insect ingestion, studies on food allergy to insects, proteins involved in insect allergy including cross-reactive proteins, and the possibility to alter the allergenic potential of insects by food processing and digestion. Food allergy to insects has been described for silkworm, mealworm, caterpillars, Bruchus lentis, sago worm, locust, grasshopper, cicada, bee, Clanis bilineata, and the food additive carmine, which is derived from female Dactylopius coccus insects. For cockroaches, which are also edible insects, only studies on inhalation allergy have been described. Various insect allergens have been identified including tropomyosin and arginine kinase, which are both pan-allergens known for their cross-reactivity with homologous proteins in crustaceans and house dust mite. Cross-reactivity and/or co-sensitization of insect tropomyosin and arginine kinase has been demonstrated in house dust mite and seafood (e.g. prawn, shrimp) allergic patients. In addition, many other (allergenic) species (various non-edible insects, arachnids, mites, seafoods, mammals, nematoda, trematoda, plants, and fungi) have been identified with sequence alignment analysis to show potential cross-reactivity with allergens of edible insects. It was also shown that thermal processing and digestion did not eliminate insect protein allergenicity. Although purified natural allergens are scarce and yields are low, recombinant allergens from cockroach, silkworm, and Indian mealmoth are readily available, giving opportunities for future research on diagnostic allergy tests and vaccine candidates.
Collapse
Affiliation(s)
- Steffie de Gier
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kitty Verhoeckx
- Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht, The Netherlands; TNO, Zeist, The Netherlands.
| |
Collapse
|
10
|
Evaluation of radioisotopic and non-radioisotopic versions of local lymph node assays for subcategorization of skin sensitizers compliant to UN GHS rev 4. Regul Toxicol Pharmacol 2017; 85:124-131. [DOI: 10.1016/j.yrtph.2017.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/04/2017] [Accepted: 02/05/2017] [Indexed: 11/18/2022]
|