1
|
Non-fasting changes of Hs-CRP level in Chinese patients with coronary heart disease after a daily meal. Sci Rep 2022; 12:18435. [PMID: 36319655 PMCID: PMC9626540 DOI: 10.1038/s41598-022-20645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
High-sensitivity C-reactive protein (hs-CRP) is a key inflammatory factor in atherosclerotic cardiovascular diseases. In Chinese patients with coronary heart disease (CHD), the changes in hs-CRP levels after a daily meal and the effect of statins on those were never explored. A total of 300 inpatients with CHD were included in this study. Hs-CRP levels were measured in the fasting and non-fasting states at 2 h and 4 h after a daily breakfast. All inpatients were divided into two groups according to fasting hs-CRP ≤ 3 mg/L or not. Group with fasting hs-CRP ≤ 3 mg/L had a significantly higher percentage of patients with statins using ≥ 1 month (m) before admission than that with fasting hs-CRP > 3 mg/L (51.4% vs. 23.9%, P < 0.05). Hs-CRP levels increased significantly in the non-fasting state in two groups (P < 0.05). About 32% of patients with non-fasting hs-CRP > 3 mg/L came from those with fasting hs-CRP ≤ 3 mg/L. In conclusion, hs-CRP levels increased significantly in CHD patients after a daily meal. It suggested that the non-fasting hs-CRP level could be a better parameter to evaluate the inflammation state of CHD patients rather than fasting hs-CRP level.
Collapse
|
2
|
Zhang BH, Yin F, Qiao YN, Guo SD. Triglyceride and Triglyceride-Rich Lipoproteins in Atherosclerosis. Front Mol Biosci 2022; 9:909151. [PMID: 35693558 PMCID: PMC9174947 DOI: 10.3389/fmolb.2022.909151] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death globally, and atherosclerosis is the main pathological basis of CVDs. Low-density lipoprotein cholesterol (LDL-C) is a strong causal factor of atherosclerosis. However, the first-line lipid-lowering drugs, statins, only reduce approximately 30% of the CVD risk. Of note, atherosclerotic CVD (ASCVD) cannot be eliminated in a great number of patients even their LDL-C levels meet the recommended clinical goals. Previously, whether the elevated plasma level of triglyceride is causally associated with ASCVD has been controversial. Recent genetic and epidemiological studies have demonstrated that triglyceride and triglyceride-rich lipoprotein (TGRL) are the main causal risk factors of the residual ASCVD. TGRLs and their metabolites can promote atherosclerosis via modulating inflammation, oxidative stress, and formation of foam cells. In this article, we will make a short review of TG and TGRL metabolism, display evidence of association between TG and ASCVD, summarize the atherogenic factors of TGRLs and their metabolites, and discuss the current findings and advances in TG-lowering therapies. This review provides information useful for the researchers in the field of CVD as well as for pharmacologists and clinicians.
Collapse
Affiliation(s)
| | | | - Ya-Nan Qiao
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
3
|
Otahal A, Kuten-Pella O, Kramer K, Neubauer M, Lacza Z, Nehrer S, De Luna A. Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products. Sci Rep 2021; 11:5823. [PMID: 33712660 PMCID: PMC7955123 DOI: 10.1038/s41598-021-84234-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cartilage breakdown, inflammation and pain are hallmark symptoms of osteoarthritis, and autologous blood products such as citrate-anticoagulated platelet-rich plasma (CPRP) or hyperacute serum (hypACT) have been developed as a regenerative approach to rebuild cartilage, inhibit inflammation and reduce pain. However, mechanisms of action of these blood derivatives are still not fully understood, in part due to the large number of components present in these medical products. In addition, the discovery of extracellular vesicles (EVs) and their involvement in intercellular communication mediated by cargo molecules like microRNAs (miRNAs) opened up a whole new level of complexity in understanding blood products. In this study we focused on the development of an isolation protocol for EVs from CPRP and hypACT that can also deplete lipoproteins, which are often co-isolated in EV research due to shared physical properties. Several isolation methods were compared in terms of particle yield from CPRP and hypACT. To gain insights into the functional repertoire conveyed via EV-associated miRNAs, we performed functional enrichment analysis and identified NFκB signaling strongly targeted by CPRP EV miRNAs, whereas hypACT EV miRNAs affect IL6- and TGFβ/SMAD signaling.
Collapse
Affiliation(s)
- Alexander Otahal
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | | | - Karina Kramer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | - Markus Neubauer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | - Zsombor Lacza
- Department of Sports Physiology, University of Physical Education, Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | - Andrea De Luna
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria.
| |
Collapse
|
4
|
Abstract
Fasting hypertriglyceridemia is positively associated with the morbidity of coronary heart disease (CHD), and postprandial (non-fasting) hypertriglyceridemia is also correlated with the risk status for CHD, which is related to the increase in chylomicron (CM) remnant lipoproteins produced from the intestine. CM remnant particles, as well as oxidized low density lipoprotein (LDL) or very low density lipoprotein (VLDL) remnants, are highly atherogenic and act by enhancing systemic inflammation, platelet activation, coagulation, thrombus formation, and macrophage foam cell formation. The cholesterol levels of remnant lipoproteins significantly correlate with small, dense LDL; impaired glucose tolerance (IGT) and CHD prevalence. We have developed an assay of apolipoprotein (apo)B-48 levels to evaluate the accumulation of CM remnants. Fasting apoB-48 levels correlate with the morbidity of postprandial hypertriglyceridemia, obesity, type III hyperlipoproteinemia, the metabolic syndrome, hypothyroidism, chronic kidney disease, and IGT. Fasting apoB-48 levels also correlate with carotid intima-media thickening and CHD prevalence, and a high apoB-48 level is a significant predictor of CHD risk, independent of the fasting TG level. Diet interventions, such as dietary fibers, polyphenols, medium-chain fatty acids, diacylglycerol, and long-chain n-3 polyunsaturated fatty acids (PUFA), ameliorate postprandial hypertriglyceridemia, moreover, drugs for dyslipidemia (n-3 PUFA, statins, fibrates or ezetimibe) and diabetes concerning incretins (dipeptidyl-peptidase IV inhibitor or glucagon like peptide-1 analogue) may improve postprandial hypertriglyceridemia. Since the accumulation of CM remnants correlates to impaired lipid and glucose metabolism and atherosclerotic cardiovascular events, further studies are required to investigate the characteristics, physiological activities, and functions of CM remnants for the development of new interventions to reduce atherogenicity.
Collapse
Affiliation(s)
- Daisaku Masuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | | |
Collapse
|
5
|
Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog Lipid Res 2013; 52:446-64. [DOI: 10.1016/j.plipres.2013.06.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/17/2022]
|
6
|
Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J Allergy Clin Immunol 2012. [PMID: 23182172 DOI: 10.1016/j.jaci.2012.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The prevalence of peanut allergies is increasing. Peanuts and many other allergen sources contain significant amounts of triglycerides, which affect absorption of antigens but have unknown effects on sensitization and anaphylaxis. We recently reported that dietary medium-chain triglycerides (MCTs), which bypass mesenteric lymph and directly enter portal blood, reduce intestinal antigen absorption into blood compared with long-chain triglycerides (LCTs), which stimulate mesenteric lymph flow and are absorbed in chylomicrons through mesenteric lymph. OBJECTIVE We sought to test how dietary MCTs affect food allergy. METHODS C3H/HeJ mice were fed peanut butter protein in MCT, LCT (peanut oil), or LCT plus an inhibitor of chylomicron formation (Pluronic L81). Peanut-specific antibodies in plasma, responses of the mice to antigen challenges, and intestinal epithelial cytokine expression were subsequently measured. RESULTS MCT suppressed antigen absorption into blood but stimulated absorption into Peyer patches. A single gavage of peanut protein with MCT, as well as prolonged feeding in MCT-based diets, caused spontaneous allergic sensitization. MCT-sensitized mice experienced IgG-dependent anaphylaxis on systemic challenge and IgE-dependent anaphylaxis on oral challenge. MCT feeding stimulated jejunal-epithelial thymic stromal lymphopoietin, Il25, and Il33 expression compared with that seen after LCT feeding and promoted T(H)2 cytokine responses in splenocytes. Moreover, oral challenges of sensitized mice with antigen in MCT significantly aggravated anaphylaxis compared with challenges with the LCT. Importantly, the effects of MCTs could be mimicked by adding Pluronic L81 to LCTs, and in vitro assays indicated that chylomicrons prevent basophil activation. CONCLUSION Dietary MCTs promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating T(H)2 responses.
Collapse
|
7
|
Manica-Cattani MF, Medeiros Frescura Duarte MM, Esteves Ribeiro E, de Oliveira R, Mânica da Cruz IB. Effect of the interleukin-1B gene on serum oxidized low-density lipoprotein levels. Clin Biochem 2012; 45:641-5. [DOI: 10.1016/j.clinbiochem.2012.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 11/24/2022]
|
8
|
Bentley C, Hathaway N, Widdows J, Bejta F, De Pascale C, Avella M, Wheeler-Jones C, Botham K, Lawson C. Influence of chylomicron remnants on human monocyte activation in vitro. Nutr Metab Cardiovasc Dis 2011; 21:871-878. [PMID: 20674313 PMCID: PMC3212651 DOI: 10.1016/j.numecd.2010.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/14/2010] [Accepted: 02/12/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is known to be an inflammatory disease and there is increasing evidence that chylomicron remnants (CMR), the lipoproteins which carry dietary fats in the blood, cause macrophage foam cell formation and inflammation. In early atherosclerosis the frequency of activated monocytes in the peripheral circulation is increased, and clearance of CMR from blood may be delayed, however, whether CMR contribute directly to monocyte activation and subsequent egress into the arterial wall has not been established. Here, the contribution of CMR to activation of monocyte pro-inflammatory pathways was assessed using an in vitro model. METHODS AND RESULTS Primary human monocytes and CMR-like particles (CRLP) were used to measure several endpoints of monocyte activation. Treatment with CRLP caused rapid and prolonged generation of reactive oxygen species by monocytes. The pro-inflammatory chemokines MCP-1 and IL-8 were secreted in nanogram quantities by the cells in the absence of CRLP. IL-8 secretion was transiently increased after CRLP treatment, and CRLP maintained secretion in the presence of pharmacological inhibitors of IL-8 production. In contrast, exposure to CRLP significantly reduced MCP-1 secretion. Chemotaxis towards MCP-1 was increased in monocytes pre-exposed to CRLP and was reversed by addition of exogenous MCP-1. CONCLUSION Our findings indicate that CRLP activate human monocytes and augment their migration in vitro by reducing cellular MCP-1 expression. Our data support the current hypothesis that CMR contribute to the inflammatory milieu of the arterial wall in early atherosclerosis, and suggest that this may reflect direct interaction with circulating blood monocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - C. Lawson
- Corresponding author. Tel.: +44 20 7468 1216; fax: +44 20 7468 5204.
| |
Collapse
|
9
|
Ohira H, Fujioka Y, Katagiri C, Yano M, Mamoto R, Aoyama M, Usami M, Ikeda M. Butyrate enhancement of inteleukin-1β production via activation of oxidative stress pathways in lipopolysaccharide-stimulated THP-1 cells. J Clin Biochem Nutr 2011; 51:128-31. [PMID: 22962531 PMCID: PMC3432823 DOI: 10.3164/jcbn.11-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 12/16/2011] [Indexed: 12/17/2022] Open
Abstract
Safe and effective methods for oral bacterial disinfection have been desired, since bacteria cause many infectious diseases such as dental caries, periodontal disease, and endodontic infections. Singlet oxygen (1O2) is attractive, because it is toxic to prokaryotic cells, but not to eukaryotic cells. We selected irradiation of titanium dioxide (TiO2) as a source of 1O2, because it has been used in sunscreens and cosmetic products without complications. In order to establish the optimal oral photodynamic therapy conditions, we measured the rate of 1O2 formation from the irradiated anatase or rutile forms of TiO2 using 365 or 405 nm lamps. The rate of 1O2 formation decreased in the following order: anatase, 365 nm > rutile, 405 nm > rutile, 365 nm > anatase, 405 nm. Therefore, we concluded that irradiation of the rutile form of TiO2 by a 405 nm lamp is the most favorable photodynamic therapy condition, because visible light is more desirable than UV light from the viewpoint of patient safety. We also confirmed that there was no direct HO• formation from the irradiated TiO2.
Collapse
Affiliation(s)
- Hideo Ohira
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Netea MG, Dinarello CA. More than inflammation: interleukin-1beta polymorphisms and the lipid metabolism. J Clin Endocrinol Metab 2011; 96:1279-81. [PMID: 21543437 PMCID: PMC3085203 DOI: 10.1210/jc.2011-0685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Fujioka Y, Fukuda A, Ishida T, Kagimoto S, Nakamura Y, Iwakura A, Hara K, Yamamoto T, Kuroe A, Ohya M, Fujimoto S, Hamamoto Y, Honjo S, Ikeda H, Nabe K, Tsuda K, Taniguchi A, Tanaka K, Koshiyama H, Kume N, Hirata KI. Pitavastatin Reduces Elevated IL-18 Levels in Japanese Subjects with Hypercholesterolemia: Sub-analysis of Kansai Investigation of Statin for Hyperlipidemic Intervention in Metabolism and Endocrinology (KISHIMEN). J Atheroscler Thromb 2011; 18:8-15. [DOI: 10.5551/jat.5942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
12
|
De Pascale C, Graham V, Fowkes RC, Wheeler-Jones CPD, Botham KM. Suppression of nuclear factor-kappaB activity in macrophages by chylomicron remnants: modulation by the fatty acid composition of the particles. FEBS J 2009; 276:5689-702. [PMID: 19725874 PMCID: PMC2776925 DOI: 10.1111/j.1742-4658.2009.07260.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current evidence indicates that chylomicron remnants (CMR) induce macrophage foam cell formation, an early event in atherosclerosis. Inflammation also plays a part in atherogenesis and the transcription factor nuclear factor-kappaB (NF-kappaB) has been implicated. In this study, the influence of CMR on the activity of NF-kappaB in macrophages and its modulation by the fatty acid composition of the particles were investigated using macrophages derived from the human monocyte cell line THP-1 and CMR-like particles (CRLPs). Incubation of THP-1 macrophages with CRLPs caused decreased NF-kappaB activation and downregulated the expression of phospho-p65-NF-kappaB and phospho-IkappaBalpha (pIkappaBalpha). Secretion of the inflammatory cytokines tumour necrosis factor alpha, interleukin-6 and monocyte chemoattractant protein-1, which are under NF-kappaB transcriptional control, was inhibited and mRNA expression for cyclooxygenase-2, an NF-kappaB target gene, was reduced. CRLPs enriched in polyunsaturated fatty acids compared with saturated or monounsaturated fatty acids had a markedly greater inhibitory effect on NF-kappaB binding to DNA and the expression of phospho-p65-NF-kappaB and pIkappaB. Lipid loading of macrophages with CRLPs enriched in polyunsaturated fatty acids compared with monounsaturated fatty acids or saturated fatty acids also increased the subsequent rate of cholesterol efflux, an effect which may be linked to the inhibition of NF-kappaB activity. These findings demonstrate that CMR suppress NF-kappaB activity in macrophages, and that this effect is modulated by their fatty acid composition. This downregulation of inflammatory processes in macrophages may represent a protective effect of CMR which is enhanced by dietary polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Clara De Pascale
- Department of Veterinary Basic Sciences, The Royal Veterinary College, London, UK
| | | | | | | | | |
Collapse
|
13
|
Fujioka Y, Ishikawa Y. Remnant lipoproteins as strong key particles to atherogenesis. J Atheroscler Thromb 2009; 16:145-54. [PMID: 19556722 DOI: 10.5551/jat.e598] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent epidemiologic studies have revealed that hypertriglyceridemia is associated with atherosclerosis independent of other coronary risk factors. However, it is difficult to select patients at high risk for coronary artery disease using only serum triglyceride levels compared with low-density lipoprotein cholesterol levels since multiple factors are associated with elevating triglycerides. Atherosclerotic diseases with high triglyceride levels can be found in patients with familial combined hyperlipidemia, diabetes mellitus, and metabolic syndrome, in which remnant lipoproteins accumulate in the circulating blood. Recent researches have paid attention to remnant lipoproteins as atherogenic particles with the development of methods for measuring remnant cholesterol levels and apolipoprotein B-48 levels directly from human serum. Measurement of these parameters in addition to serum triglycerides may help to distinguish high-risk patients and enable us to prevent or suppress the progression of atherosclerotic diseases in those patients. However, questions remain to be answered to evaluate the significance of remnant lipoproteins. Here, we focus on three issues: the underlying problems in measuring remnant lipoprotein cholesterol, the assessment of postprandial hyperlipidemia as an atherogenic condition, and finally a review of our experimental and clinical findings about the mechanisms by which remnant lipoproteins induce atherosclerosis.
Collapse
Affiliation(s)
- Yoshio Fujioka
- Laboratory of Nutritional Physiology, Faculty of Nutrition, Kobegakuin University, Kobe 651-2180, Japan.
| | | |
Collapse
|
14
|
Teramoto T. Postprandial hyperlipidemia and atherosclerosis. Curr Atheroscler Rep 2008; 9:169-70. [PMID: 18241608 DOI: 10.1007/s11883-007-0014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tamio Teramoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| |
Collapse
|