1
|
Elimban V, Xu YJ, Bhullar SK, Dhalla NS. Modification of Peripheral Blood Flow and Angiogenesis by CO 2 Water-Bath Therapy in Diabetic Skeletal Muscle with or without Ischemia. Biomedicines 2023; 11:3250. [PMID: 38137471 PMCID: PMC10741107 DOI: 10.3390/biomedicines11123250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Previously, it was shown that both blood flow and angiogenesis in the ischemic hind limb of diabetic rats were increased upon CO2 treatment for 4 weeks. In the present study, we have compared the effects of 6 weeks CO2 therapy in diabetic rats with or without peripheral ischemia. Diabetes was induced in rats by a tail vein injection of streptozotocin (65 mg/kg body weight), whereas peripheral ischemia was produced by occluding the femoral artery at 2 weeks of inducing diabetes. Both diabetic and diabetic-ischemic animals were treated with or without CO2 water-bath at 37 °C for 6 weeks (30 min/day; 5 days/week) starting at 2 weeks, after the induction of ischemia. CO2 treatment did not affect heart rate and R-R interval as well as plasma levels of creatine kinase, glucose, cholesterol, triglycerides and high density lipoproteins. Unlike the levels of plasma Ox-LDL, MDA and TNF-α, the levels of NO in diabetic group were increased by CO2 water-bath treatment. On the other hand, the levels of plasma Ox-LDL and MDA were decreased whereas that of NO was increased without any changes in TNF-α level in diabetic-ischemic animals upon CO2 therapy. Treatment of diabetic animals with CO2 increased peak, mean and minimal blood flow by 20, 49 and 43% whereas these values were increased by 53, 26 and 80% in the diabetic-ischemic group by CO2 therapy, respectively. Blood vessel count in diabetic and diabetic-ischemic skeletal muscles was increased by 73 and 136% by CO2 therapy, respectively. These data indicate that peripheral ischemia augmented the increase in blood flow and development of angiogenesis in diabetic skeletal muscle upon CO2 therapy. It is suggested that greater beneficial effects of CO2 therapy in diabetic-ischemic animals in comparison to diabetic group may be a consequence of difference of changes in the redox-sensitive signal transduction mechanisms.
Collapse
Affiliation(s)
| | | | | | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (V.E.); (Y.-J.X.)
| |
Collapse
|
2
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
3
|
Rivers RJ, Meininger CJ. The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability. Int J Mol Sci 2023; 24:ijms24065181. [PMID: 36982254 PMCID: PMC10048965 DOI: 10.3390/ijms24065181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Sustained tissue hypoxia is associated with many pathophysiological conditions, including chronic inflammation, chronic wounds, slow-healing fractures, microvascular complications of diabetes, and metastatic spread of tumors. This extended deficiency of oxygen (O2) in the tissue sets creates a microenvironment that supports inflammation and initiates cell survival paradigms. Elevating tissue carbon dioxide levels (CO2) pushes the tissue environment toward "thrive mode," bringing increased blood flow, added O2, reduced inflammation, and enhanced angiogenesis. This review presents the science supporting the clinical benefits observed with the administration of therapeutic CO2. It also presents the current knowledge regarding the cellular and molecular mechanisms responsible for the biological effects of CO2 therapy. The most notable findings of the review include (a) CO2 activates angiogenesis not mediated by hypoxia-inducible factor 1a, (b) CO2 is strongly anti-inflammatory, (c) CO2 inhibits tumor growth and metastasis, and (d) CO2 can stimulate the same pathways as exercise and thereby, acts as a critical mediator in the biological response of skeletal muscle to tissue hypoxia.
Collapse
Affiliation(s)
- Richard J Rivers
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| |
Collapse
|
4
|
Elimban V, Xu YJ, Bhullar SK, Dhalla NS. Temperature-dependent effects on CO 2 water bath therapy induced changes in blood flow and vascularity in hind limb ischemia. Can J Physiol Pharmacol 2020; 98:228-235. [PMID: 32207632 DOI: 10.1139/cjpp-2019-0537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test if magnitudes of the beneficial actions of CO2 water bath therapy on blood flow and vascular density are dependent upon temperature, ischemia in the hind limb of rats was induced by occluding the left femoral artery for 2 weeks and the animals were exposed to water bath therapy with or without CO2 at 34 or 41 °C for 4 weeks (20 min treatment each day for 5 days/week). CO2 water bath therapy at 34 °C increased peak, minimal, and mean blood flow by 190%-600% in the ischemic limb. On the other hand, CO2 water bath treatment at 41 °C increased these parameters of blood flow by 37%, 55%, and 41%, respectively, in the ischemic limb. The small blood vessel count, an index of vascular density, in the ischemic limb was increased by CO2 water bath therapy at 34 and 41 °C by 32% and 122%, respectively. No changes in the ischemic animals by CO2 water bath therapy at 34 or 41 °C were observed in the heart rate, R-R interval, and plasma lipid or glucose levels. These data indicate that the beneficial effect of CO2 water bath therapy at 34 °C on blood flow in the ischemic muscle is greater whereas that on vascular density is smaller than changes in these parameters at 41 °C.
Collapse
Affiliation(s)
- Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
5
|
Dogaru G, Bulboaca A, Boarescu PM, Ciumarnean L, Rus V, Sitar-Taut AV, Munteanu C, Bodisz G, Stanescu I. The Effect of Mofettes on Oxidative Stress/Antioxidant Balance in Experimental Myocardial Ischemia. In Vivo 2020; 33:1911-1920. [PMID: 31662519 DOI: 10.21873/invivo.11685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Natural mofettes are gases resulting from post-volcanic emanations. This study aimed to examine the effect of mofette therapy on plasma oxidative stress and antioxidant parameters in rats after experimental induction of myocardial ischemia, as well as on structural changes in myocardial tissue. MATERIALS AND METHODS White Wistar-Bratislava rats were divided into three groups. In groups 2 and 3, myocardial ischemia was induced by isoproterenol. Rats in group 3 were additionally exposed to high levels mofettes. Oxidative stress and antioxidant parameters were determined in plasma. The structural changes of the myocardium were observed in paraffin embedded slices contrasted using Goldner's trichrome staining. RESULTS A statistically significant change in serum oxidative stress biomarkers, including nitric oxide, malondialdehyde, total oxidant status, as well as in the tested antioxidant molecules and total antioxidant capacity were observed in group 3 compared to group 2. Also, rats of group 3 showed an obvious improvement in inflammatory infiltration and repair of necrotic areas through collagen proliferation (proliferation of fibrous connective tissue) compared to group 2. CONCLUSION Mofette had a beneficial effect on the balance between oxidative stress and antioxidant status following experimentally induced myocardial ischemia.
Collapse
Affiliation(s)
- Gabriela Dogaru
- Department of Medical Rehabilitation, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adriana Bulboaca
- Department of Pathophysiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Paul Mihai Boarescu
- Department of Pathophysiology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lorena Ciumarnean
- 5th Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Adela-Viviana Sitar-Taut
- Department of Internal Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Constantin Munteanu
- Department of Medical Rehabilitation, "Bagdasar Arseni" Emergency Clinical Hospital Bucharest, Bucharest, Romania
| | - Gyorgy Bodisz
- Clinical Rehabilitation Hospital, Cluj-Napoca, Romania
| | - Ioana Stanescu
- Department of Neurology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Abstract
BACKGROUND Joint contractures are a major complication in patients with spinal cord injuries. Positioning, stretching, and physical therapy are advocated to prevent and treat contractures; however, many patients still develop them. Joint motion (exercise) is crucial to correct contractures. Transcutaneous carbon dioxide (CO2) therapy was developed recently, and its effect is similar to that of exercise. This therapy may be an alternative or complementary approach to exercise. QUESTION/PURPOSES Using an established model of spinal cord injury in rats with knee flexion contractures, we sought to clarify whether transcutaneous CO2 altered (1) contracture, as measured by ROM; (2) muscular and articular factors contributing to the loss of ROM; (3) fibrosis and fibrosis-related gene expression in muscle; and (4) the morphology of and fibrosis-related protein expression in the joint capsule. METHODS Thirty-six Wistar rats were divided into three equal groups: caged control, those untreated after spinal cord injury, and those treated with CO2 after spinal cord injury. The rats were treated with CO2 from either the first day (prevention) or 15th day (treatment) after spinal cord injury for 2 or 4 weeks. The hindlimbs of rats in the treated group were exposed to CO2 gas for 20 minutes once daily. Knee extension ROM was measured with a goniometer and was measured again after myotomy. We calculated the muscular and articular factors responsible for contractures by subtracting the post-myotomy ROM from that before myotomy. We also quantified histologic muscle fibrosis and evaluated fibrosis-related genes (collagen Type 1, α1 and transforming growth factor beta) in the biceps femoris muscle with real-time polymerase chain reaction. The synovial intima's length was measured, and the distribution of fibrosis-related proteins (Type I collagen and transforming growth factor beta) in the joint capsule was observed with immunohistochemistry. Knee flexion contractures developed in rats after spinal cord injuries at all timepoints. RESULTS CO2 therapy improved limited-extension ROM in the prevention group at 2 weeks (22° ± 2°) and 4 weeks (29° ± 1°) and in the treatment group at 2 weeks (31° ± 1°) compared with untreated rats after spinal cord injuries (35° ± 2°, mean difference, 13°; 39° ± 1°, mean difference, 9°; and 38° ± 1°, mean difference, 7°, respectively) (95% CI, 10.50-14.86, 8.10-10.19, and 4.73-9.01, respectively; all p < 0.001). Muscular factors decreased in treated rats in the prevention group at 2 weeks (8° ± 2°) and 4 weeks (14°± 1°) and in the treatment group at 2 weeks (14 ± 1°) compared with untreated rats (15° ± 1°, 4.85-9.42; 16° ± 1°, 1.24-3.86; and 17° ± 2°, 1.16-5.34, respectively; all p < 0.05). The therapy improved articular factors in the prevention group at 2 weeks (4° ± 1°) and 4 weeks (6° ± 1°) and in the treatment group at 2 weeks (8° ± 1°) compared with untreated rats (10° ± 1°, 4.05-7.05; 12° ± 1°, 5.18-8.02; and 11° ± 2°, 1.73-5.50, respectively; all p < 0.05). CO2 therapy decreased muscle fibrosis in the prevention group at 2 weeks (p < 0.001). The expression of collagen Type 1, α1 mRNA in the biceps femoris decreased in treated rats in the prevention group at 2 and 4 weeks compared with untreated rat (p = 0.002 and p = 0.008, respectively), although there was little difference in the expression of transforming growth factor beta (p > 0.05). CO2 therapy did not improve shortening of the synovial intima at all timepoints (all p > 0.05). CO2 therapy decreased transforming growth factor beta immunolabeling in joint capsules in the rats in the prevention group at 2 weeks. The staining intensity and Type I collagen pattern showed no differences among all groups at all timepoints. CONCLUSION CO2 therapy may be useful for preventing and treating contractures after spinal cord injuries. CO2 therapy particularly appears to be more effective as a prevention and treatment strategy in early-stage contractures before irreversible degeneration occurs, as shown in a rat model. CLINICAL RELEVANCE Our findings support the idea that CO2 therapy may be able to improve the loss of ROM after spinal cord injury.
Collapse
|
7
|
Matsumoto T, Tanaka M, Ikeji T, Maeshige N, Sakai Y, Akisue T, Kondo H, Ishihara A, Fujino H. Application of transcutaneous carbon dioxide improves capillary regression of skeletal muscle in hyperglycemia. J Physiol Sci 2019; 69:317-326. [PMID: 30478742 PMCID: PMC10717691 DOI: 10.1007/s12576-018-0648-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022]
Abstract
The purpose of the present study was to determine the effects of transcutaneous CO2 application on the blood flow and capillary architecture of the soleus muscle in rats with streptozotocin (STZ)-induced hyperglycemia. Wistar rats were randomly divided into four groups: control, control + CO2-treated, STZ-induced hyperglycemia, and STZ-induced hyperglycemia + CO2-treated groups. Blood flow in soleus muscle increased during the transcutaneous CO2 exposure, and continued to increase for 30 min after the treatment. In addition, the transcutaneous CO2 attenuated a decrease in capillary and the expression level of eNOS and VEGF protein, and an increase in the expression level of MDM-2 and TSP-1 protein of soleus muscle due to STZ-induced hyperglycemia. These results indicate that the application of transcutaneous CO2 could improve capillary regression via the change of pro- and anti-angiogenesis factors, which might be induced by an increase in blood flow.
Collapse
Affiliation(s)
- Tomohiro Matsumoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Masayuki Tanaka
- Department of Physical Therapy, Faculty of Human Sciences, Osaka University of Human Sciences, 1-4-1 Shojaku, Settsu, Osaka, 566-8501, Japan
| | - Takuya Ikeji
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women's University, 4-21 Shioji-cho, Mizuho-ku, Nagoya, Aichi, 467-8611, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
8
|
Xu YJ, Elimban V, Bhullar SK, Dhalla NS. Effects of CO 2 water-bath treatment on blood flow and angiogenesis in ischemic hind limb of diabetic rat. Can J Physiol Pharmacol 2018; 96:1017-1021. [PMID: 29847734 DOI: 10.1139/cjpp-2018-0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of CO2 water-bath therapy on the hind limb of diabetic animals with or without peripheral ischemia were examined. Diabetes was induced in rats by administering streptozotocin (65 mg·kg-1), and the animals were then divided into 3 groups. After 4 weeks, peripheral ischemia was induced by ligation of the femoral artery for 2 weeks in 2 groups (diabetic ischemic) of diabetic rats, whereas the femoral artery was not occluded in the third group (diabetic). All these animals were subjected to water-bath therapy (with or without CO2 mixing; 20 min·day-1 for 5 days·week-1) for a period of 4 weeks. Both peak and mean flows, unlike minimal flow, in diabetic ischemic limbs were increased about a twofold by CO2 water-bath treatment. Morphological examination of hind limb tissue sections revealed about a twofold increase in the small artery count in diabetic ischemic animals upon CO2 water-bath treatment. These results indicate that CO2 water-bath therapy augments the blood flow and development of angiogenesis in the skeletal muscle of diabetic ischemic animals and thus may be of some benefit for the treatment of peripheral arterial disease in diabetes.
Collapse
Affiliation(s)
- Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Sukhwinder K Bhullar
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
9
|
Xu YJ, Elimban V, Dhalla NS. Carbon dioxide water-bath treatment augments peripheral blood flow through the development of angiogenesis. Can J Physiol Pharmacol 2017; 95:938-944. [PMID: 28704614 DOI: 10.1139/cjpp-2017-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the effects of CO2 water-bath therapy on blood flow and angiogenesis in the ischemic hind limb, as well as some plasma angiogenic factors in peripheral ischemic model. The hind limb ischemia was induced by occluding the femoral artery for 2 weeks in rats and treated with or without CO2 water-bath therapy at 37 °C for 4 weeks (20 min treatment every day for 5 days per week). The peak blood flow and minimal and mean blood flow in the ischemic skeletal muscle were markedly increased by the CO2 water-bath therapy. This increase in blood flow was associated with development of angiogenesis in the muscle, as well as reduction in the ischemia-induced increase in plasma malondialdehyde levels. Although plasma vascular endothelial growth factor and nitric oxide levels were increased in animals with peripheral ischemia, the changes in these biomarkers were not affected by CO2 water-bath therapy. These results suggest that augmentation of blood flow in the ischemic hind limb by CO2 water-bath therapy may be due to the development of angiogenesis and reduction in oxidative stress.
Collapse
Affiliation(s)
- Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|