1
|
Song Y, Li S, He C. PPARγ Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. Front Cardiovasc Med 2022; 9:808929. [PMID: 35402540 PMCID: PMC8984027 DOI: 10.3389/fcvm.2022.808929] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/22/2022] [Indexed: 01/14/2023] Open
Abstract
Being activated by endogenous and exogenous ligands, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) enhances insulin sensitivity, promotes adipocyte differentiation, stimulates adipogenesis, and has the properties of anti-atherosclerosis, anti-inflammation, and anti-oxidation. The Human PPARγ gene (PPARG) contains thousands of polymorphic loci, among them two polymorphisms (rs10865710 and rs7649970) in the promoter region and two polymorphisms (rs1801282 and rs3856806) in the exonic region were widely reported to be significantly associated with coronary artery disease (CAD). Mechanistically, PPARG polymorphisms lead to abnormal expression of PPARG gene and/or dysfunction of PPARγ protein, causing metabolic disorders such as hypercholesterolemia and hypertriglyceridemia, and thereby increasing susceptibility to CAD.
Collapse
Affiliation(s)
- Yongyan Song
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Shujin Li
- Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
| | - Chuan He
- Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China
- *Correspondence: Chuan He,
| |
Collapse
|
2
|
Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, Papazoglou AS, Karagiannidis E, Chatzidimitriou M, Papa A, Sianos G, Angelis L, Chatzidimitriou D, Vizirianakis IS. Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022; 11:cells11040607. [PMID: 35203258 PMCID: PMC8870388 DOI: 10.3390/cells11040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA–gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.
Collapse
Affiliation(s)
- Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
- Labnet Laboratories, Department of Molecular Biology and Genetics, 54638 Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Christos I. Papagiannopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Andreas S. Papazoglou
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Efstratios Karagiannidis
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Georgios Sianos
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
- Correspondence: or
| |
Collapse
|
3
|
Diet and PPARG2 Pro12Ala Polymorphism Interactions in Relation to Cancer Risk: A Systematic Review. Nutrients 2021; 13:nu13010261. [PMID: 33477496 PMCID: PMC7831057 DOI: 10.3390/nu13010261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ2 gene Pro12Ala allele polymorphism (PPARG2 Pro12Ala; rs1801282) has been linked to both cancer risk and dietary factors. We conducted the first systematic literature review of studies published before December 2020 using the PubMed database to summarize the current evidence on whether dietary factors for cancer may differ by individuals carrying C (common) and/or G (minor) alleles of the PPARG2 Pro12Ala allele polymorphism. The inclusion criteria were observational studies that investigated the association between food or nutrient consumption and risk of incident cancer stratified by PPARG2 Pro12Ala allele polymorphism. From 3815 identified abstracts, nine articles (18,268 participants and 4780 cancer cases) covering three cancer sites (i.e., colon/rectum, prostate, and breast) were included. CG/GG allele carriers were more impacted by dietary factors than CC allele carriers. High levels of protective factors (e.g., carotenoids and prudent dietary patterns) were associated with a lower cancer risk, and high levels of risk factors (e.g., alcohol and refined grains) were associated with a higher cancer risk. In contrast, both CG/GG and CC allele carriers were similarly impacted by dietary fats, well-known PPAR-γ agonists. These findings highlight the complex relation between PPARG2 Pro12Ala allele polymorphism, dietary factors, and cancer risk, which warrant further investigation.
Collapse
|
4
|
Matsunaga T, Naito M, Yin G, Hishida A, Okada R, Kawai S, Sasakabe T, Kadomatsu Y, Tsukamoto M, Kubo Y, Tamura T, Takeuchi K, Mori A, Hamajima N, Wakai K. Associations between peroxisome proliferator-activated receptor γ (PPAR-γ) polymorphisms and serum lipids: Two cross-sectional studies of community-dwelling adults. Gene 2020; 762:145019. [PMID: 32755657 DOI: 10.1016/j.gene.2020.145019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Dyslipidemia is a well-established risk factor for cardiovascular disease. Experimental studies have reported that peroxisome proliferator-activated receptor γ (PPAR-γ) regulates adipocyte differentiation, lipid storage, and glucose metabolism. Therefore, we examined the associations between PPAR-γ polymorphisms (rs1801282, rs3856806, rs12497191, rs1151999, and rs1152003) and serum lipids in two cross-sectional studies. In the Shizuoka area of the Japan Multi-Institutional Collaborative Cohort Study, we examined 4,952 participants (3,356 men and 1,596 women) in a baseline survey and 2,245 participants (1,550 men and 695 women) in a second survey 5 years later. Outcome measures were the prevalence of dyslipidemia (low-density lipoprotein-cholesterol [LDL-C] ≥ 140 mg/dl, high-density lipoprotein-cholesterol < 40 mg/dl, triglycerides ≥ 150 mg/dl, and/or use of cholesterol-lowering drugs) and the prevalence of high LDL-C (LDL-C ≥ 140 mg/dl and/or use of cholesterol-lowering drugs). Multivariate odds ratios (ORs) were estimated by using unconditional logistic regression models. A total of 2,114 and 1,431 individuals (42.7% and 28.9%) had dyslipidemia and high LDL-C in the baseline survey, respectively, as did 933 and 716 (41.6% and 31.9%), respectively, in the second survey. In the baseline study, compared with major allele homozygotes, minor allele homozygotes of rs3856806 and rs12497191 had a 42% (OR, 0.58; 95% confidence interval (CI), 0.39-0.85) and 23% (OR, 0.77; 95% CI, 0.60-0.99) lower risk of dyslipidemia, respectively, after adjustment for potential confounding factors. In addition, minor allele homozygotes of rs3856806 had a 45% (OR, 0.55; 95% CI, 0.35-0.86) lower risk of high LDL-C. Similar risk reductions were found in the second survey. In conclusion, rs3856806 and rs12497191 polymorphisms may be related to a lower risk of dyslipidemia and high LDL-C.
Collapse
Affiliation(s)
- Takashi Matsunaga
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Guang Yin
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Nutritional Sciences, Faculty of Health and Welfare, Seinan Jo Gakuin University, 1-3-5 Ibori, Kokura Kita-ku, Kitakyushu, Fukuoka 803-0835, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Public Health, Aichi Medical University, Nagakute 480-1195, Japan
| | - Tae Sasakabe
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Public Health, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yuka Kadomatsu
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mineko Tsukamoto
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoko Kubo
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Takeuchi
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsuyoshi Mori
- Seirei Preventive Health Care Center, 3453-1 Mikatahara-cho, Kita-ku, Hamamatsu 433-8558, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Namsi A, Nury T, Khan AS, Leprince J, Vaudry D, Caccia C, Leoni V, Atanasov AG, Tonon MC, Masmoudi-Kouki O, Lizard G. Octadecaneuropeptide (ODN) Induces N2a Cells Differentiation through a PKA/PLC/PKC/MEK/ERK-Dependent Pathway: Incidence on Peroxisome, Mitochondria, and Lipid Profiles. Molecules 2019; 24:molecules24183310. [PMID: 31514417 PMCID: PMC6767053 DOI: 10.3390/molecules24183310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022] Open
Abstract
Neurodegenerative diseases are characterized by oxidative stress, mitochondrial damage, and death of neuronal cells. To counteract such damage and to favor neurogenesis, neurotrophic factors could be used as therapeutic agents. Octadecaneuropeptide (ODN), produced by astrocytes, is a potent neuroprotective agent. In N2a cells, we studied the ability of ODN to promote neuronal differentiation. This parameter was evaluated by phase contrast microscopy, staining with crystal violet, cresyl blue, and Sulforhodamine 101. The effect of ODN on cell viability and mitochondrial activity was determined with fluorescein diacetate and DiOC6(3), respectively. The impact of ODN on the topography of mitochondria and peroxisomes, two tightly connected organelles involved in nerve cell functions and lipid metabolism, was evaluated by transmission electron microscopy and fluorescence microscopy: detection of mitochondria with MitoTracker Red, and peroxisome with an antibody directed against the ABCD3 peroxisomal transporter. The profiles in fatty acids, cholesterol, and cholesterol precursors were determined by gas chromatography, in some cases coupled with mass spectrometry. Treatment of N2a cells with ODN (10-14 M, 48 h) induces neurite outgrowth. ODN-induced neuronal differentiation was associated with modification of topographical distribution of mitochondria and peroxisomes throughout the neurites and did not affect cell viability and mitochondrial activity. The inhibition of ODN-induced N2a differentiation with H89, U73122, chelerythrine and U0126 supports the activation of a PKA/PLC/PKC/MEK/ERK-dependent signaling pathway. Although there is no difference in fatty acid profile between control and ODN-treated cells, the level of cholesterol and some of its precursors (lanosterol, desmosterol, lathosterol) was increased in ODN-treated cells. The ability of ODN to induce neuronal differentiation without cytotoxicity reinforces the interest for this neuropeptide with neurotrophic properties to overcome nerve cell damage in major neurodegenerative diseases.
Collapse
Affiliation(s)
- Amira Namsi
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Thomas Nury
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| | - Amira S Khan
- Physiology of Nutrition & Toxicology (NUTox), Inserm U1231, University UBFC, 21000 Dijon, France.
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
- UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie University, 76000 Rouen, France.
| | - Claudio Caccia
- Laboratory of Medical Genetics and Neurogenetics, Foundation IRCCS Istituto Neurologico Carlo Besta, 20100 Milan, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, 20100 Milan, Italy.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Department of Pharmacognosy, University of Vienna, 1010 Vienna, Austria.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie University, 76000 Rouen, France.
| | - Olfa Masmoudi-Kouki
- Faculty of Science of Tunis, University Tunis El Manar, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomolecules Valorisation, Tunis 2092, Tunisia.
| | - Gérard Lizard
- Team Bio-PeroxIL, Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism (EA7270)/University Bourgogne Franche-Comté (UBFC)/Inserm, 21000 Dijon, France.
| |
Collapse
|
6
|
Maciejewska-Skrendo A, Pawlik A, Sawczuk M, Rać M, Kusak A, Safranow K, Dziedziejko V. PPARA, PPARD and PPARG gene polymorphisms in patients with unstable angina. Gene 2019; 711:143947. [PMID: 31252163 DOI: 10.1016/j.gene.2019.143947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) include the nuclear receptor superfamily of ligand-activated transcription factors involved in several metabolic processes, including carbohydrate and lipid metabolism. MATERIAL AND METHODS In this study we examined PPARA: rs4253778, rs1800206, PPARD: rs2267668, rs2016520, rs1053049, PPARG rs1801282 and PPARGC1A rs8192678 polymorphisms in patients with unstable angina. This study included 246 patients with unstable angina confirmed by coronary angiography (defined by >70% stenosis in at least one major coronary artery) and 189 healthy controls. RESULTS We observed statistically significant difference in distribution of PPARG rs1801282 genotypes and alleles between patients and control group. Among patients there was the increased frequency of CG and GG genotypes and G alleles. The association between PPARG rs1801282 G allele and unstable angina was confirmed in multivariate regression analysis. There were no statistically significant differences in the distributions of other studied polymorphisms between patients with unstable angina and the control group. CONCLUSIONS The results of our study suggest the association between PPARG rs1801282 G allele and unstable angina in Polish population.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Skrendo
- Unit of Biology, Ecology and Sports Medicine, Chair of Natural Sciences, Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.
| | - Marek Sawczuk
- Laboratory of Physical Medicine, Chair of Sport, Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Monika Rać
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Kusak
- Department of Cardiology, County Hospital, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
7
|
Lin J, Chen Y, Tang WF, Liu C, Zhang S, Guo ZQ, Chen G, Zheng XW. PPARG rs3856806 C>T Polymorphism Increased the Risk of Colorectal Cancer: A Case-Control Study in Eastern Chinese Han Population. Front Oncol 2019; 9:63. [PMID: 30838172 PMCID: PMC6389672 DOI: 10.3389/fonc.2019.00063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Functional variants in the peroxisome proliferator-activated receptor gamma (PPARG) and PPARG co-activator 1 (PPARGC1) family (e.g., PPARGC1A and PPARGC1B) genes were predicted to confer susceptibility to colorectal cancer (CRC). The aim of the present study was to explore the relationship between PPARG, PPARGC1A, PPARGC1B polymorphism and the risk of CRC. Patients and methods: We conducted a case-control study with 1,003 CRC cases and 1,303 controls. We selected the PPARG rs3856806 C>T, PPARGC1A rs2970847 C>T, rs8192678 C>T, rs3736265 G>A and PPARGC1B rs7732671 G>C and rs17572019 G>A SNPs to assess the relationship between PPARG, PPARGC1A, PPARGC1B their variants and risk of CRC. Results: We found that the PPARG rs3856806 C>T polymorphism increased the risk of CRC (TT vs. CC: adjusted OR, 1.59, 95% CI 1.08–2.35, P = 0.020; TT/CT vs. CC: adjusted OR, 1.26; 95% CI 1.06–1.49; P = 0.009 and TT vs. CC/CT: adjusted OR, 1.54; 95% CI 1.05–2.26; P = 0.028), even after a Bonferroni correction test. The stratified analysis revealed that the PPARG rs3856806 C>T polymorphism also increased the risk of CRC, especially in male, ≥61 years old, never smoking, never drinking, BMI ≥ 24 kg/m2, colon cancer and rectum cancer subgroups. Conclusion: Our findings highlight that the PPARG rs3856806 C>T polymorphism may increase the risk of CRC. In the future larger sample size case-control studies with a detailed functional assessment are needed to further determine the relationship of the PPARG rs3856806 C>T polymorphism with CRC risk.
Collapse
Affiliation(s)
- Jing Lin
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.,Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Yu Chen
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.,Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Wei-Feng Tang
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Sheng Zhang
- Department of General Surgery, Changzhou No. 3 People's Hospital, Changzhou, China
| | - Zeng-Qing Guo
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.,Department of Medical Oncology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China.,Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Gang Chen
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.,Department of Pathology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| | - Xiong-Wei Zheng
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.,Department of Pathology, Fujian Medical University Cancer Hospital & Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
8
|
Wang YZ, Zhang HY, Liu F, Li L, Deng SM, He ZY. Association between PPARG genetic polymorphisms and ischemic stroke risk in a northern Chinese Han population: a case-control study. Neural Regen Res 2019; 14:1986-1993. [PMID: 31290457 PMCID: PMC6676861 DOI: 10.4103/1673-5374.259621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two common polymorphisms of the peroxisome proliferator-activated receptor gamma (PPARG) gene, rs1801282 and rs3856806, may be important candidate gene loci affecting the susceptibility to ischemic stroke. This case-control study sought to identify the relationship between these two single-nucleotide polymorphisms and ischemic stroke risk in a northern Chinese Han population. A total of 910 ischemic stroke participants were recruited from the First Hospital of China Medical University, Shenyang, China as a case group, of whom 895 completed the study. The 883 healthy controls were recruited from the Health Check Center of the First Hospital of China Medical University, Shenyang, China. All participants or family members provided informed consent. The study protocol was approved by the Ethics Committee of the First Hospital of China Medical University, China on February 20, 2012 (approval No. 2012-38-1). The protocol was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-COC-17013559). Plasma genomic DNA was extracted from all participants and analyzed for rs1801282 and rs3856806 single nucleotide polymorphisms using a SNaPshot Multiplex sequencing assay. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using unconditional logistic regression to estimate the association between ischemic stroke and a particular genotype. Results demonstrated that the G allele frequency of the PPARG gene rs1801282 locus was significantly higher in the case group than in the control group (P < 0.001). Individuals carrying the G allele had a 1.844 fold increased risk of ischemic stroke (OR = 1.844, 95% CI: 1.286-2.645, P < 0.001). Individuals carrying the rs3856806 T allele had a 1.366 fold increased risk of ischemic stroke (OR = 1.366, 95% CI: 1.077-1.733, P = 0.010). The distribution frequencies of the PPARG gene haplotypes rs1801282-rs3856806 in the control and case groups were determined. The frequency of distribution in the G-T haplotype case group was significantly higher than that in the control group. The risk of ischemic stroke increased to 2.953 times in individuals carrying the G-T haplotype (OR = 2.953, 95% CI: 2.082-4.190, P < 0.001). The rs1801282 G allele and rs3856806 T allele had a multiplicative interaction (OR = 3.404, 95% CI: 1.631-7.102, P < 0.001) and additive interaction (RERI = 41.705, 95% CI: 14.586-68.824, AP = 0.860; 95% CI: 0.779-0.940; S = 8.170, 95% CI: 3.772-17.697) on ischemic stroke risk, showing a synergistic effect. Of all ischemic stroke cases, 86% were attributed to the interaction of the G allele of rs1801282 and the T allele of rs3856806. The effect of the PPARG rs1801282 G allele on ischemic stroke risk was enhanced in the presence of the rs3856806 T allele (OR = 8.001 vs. 1.844). The effect of the rs3856806 T allele on ischemic stroke risk was also enhanced in the presence of the rs1801282 G allele (OR = 2.546 vs. 1.366). Our results confirmed that the G allele of the PPARG gene rs1801282 locus and the T allele of the rs3856806 locus may be independent risk factors for ischemic stroke in the Han population of northern China, with a synergistic effect between the two alleles.
Collapse
Affiliation(s)
- Yan-Zhe Wang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - He-Yu Zhang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Fang Liu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lei Li
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Shu-Min Deng
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
9
|
PPAR𝛾 Gene and Atherosclerosis: Genetic Polymorphisms, Epigenetics and Therapeutic Implications. Balkan J Med Genet 2018; 21:39-46. [PMID: 30425909 PMCID: PMC6231320 DOI: 10.2478/bjmg-2018-0011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the leading cause of mortality and morbidity in the developed world. It is characterized by the formation of a plaque in the walls of middle and large arteries leading to macrovascular complications. Several risk factors are included, with diabetes being one of the most important for the onset and development of atherosclerosis. Due to an increase in the prevalence of diabetes in the world, the incidence of diabetic complications (microvascular and macrovascular) is increasing. Peroxisome proliferator-activated receptor γ (PPARγ) plays a important role in atherosclerotic processes. Peroxisome proliferator activated receptor γ belongs to the superfamily of nuclear receptors, has a great presence in fat tissue, macrophages, and regulates gene expression and most of the processes that lead to the onset and development of atherosclerosis. In this review, we discuss the basic patho-physiological mechanisms of atherosclerosis in type 2 diabetes mellitus (T2DM). Furthermore, we discuss the impact of PPARγ polymorphisms, and the epigenetic mechanisms affecting the onset of atherosclerosis, i.e, DNA methylation and demethylation, histone acetylation and deacetylation, and RNA-based mechanisms. Moreover, we add therapeutic possibilities for acting on epigenetic mechanisms in order to prevent the onset and progression of atherosclerosis.
Collapse
|
10
|
PPARG c.1347C>T polymorphism is associated with cancer susceptibility: from a case-control study to a meta-analysis. Oncotarget 2017; 8:102277-102290. [PMID: 29254243 PMCID: PMC5731953 DOI: 10.18632/oncotarget.20925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/27/2017] [Indexed: 12/19/2022] Open
Abstract
Recently, several studies suggested that PPARG c.1347C>T polymorphism was correlated with cancer risk. However, past results remained controversial. In this study, we performed a case-control study on the relationship of PPARG c.1347C>T polymorphism with risk of non-small cell lung cancer (NSCLC) and subsequently carried out a meta-analysis to further assess the association between PPARG c.1347C>T and overall cancer. In our case-control study, after adjusting by age, sex, body mass index (BMI), smoking and drinking, a tendency to increased NSCLC risk was noted (CT/TT vs. CC: adjusted OR, 1.21; 95% CI, 0.97–1.51; P = 0.097). In the meta-analysis, we found a significant association between PPARG c.1347C>T polymorphism and overall cancer risk (T vs. C: OR, 1.13; 95% CI, 1.03–1.23; P = 0.006; TT vs. CC: OR, 1.29; 95% CI, 1.07–1.56; P = 0.008, CT/TT vs. CC: OR, 1.11; 95% CI, 1.02–1.21; P = 0.014 and TT vs. CT/CC: OR, 1.26; 95% CI, 1.04–1.52; P = 0.016). In a subgroup analysis by ethnicity, evidence of significant association between PPARG c.1347C>T polymorphism and cancer risk was found among Asians and mixed populations. In a subgroup analysis by cancer type, PPARG c.1347C>T polymorphism was associated with risk of esophageal cancer and glioblastoma. In addition, in a subgroup analysis by origin of cancer cell, evidence of significant association between PPARG c.1347C>T polymorphism and cancer risk was also found among epithelial tumor. In conclusion, the findings indicate PPARG c.1347C>T polymorphism may increase the susceptibility of cancer.
Collapse
|
11
|
Amrita J, Mahajan M, Bhanwer A, Mohan G, Matharoo K. Peroxisome Proliferator Activated Receptor Gamma (PPARγ) Pro12Ala Gene Polymorphism and Oxidative Stress in Menopausal Women with Cardiovascular Disease from North Indian Population of Punjab. INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1317106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jyot Amrita
- Department of Biochemistry, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar 143 006, Punjab, India
| | - Mridula Mahajan
- Department of Biochemistry, Government Medical College, Amritsar 143 001, Punjab, India
| | - A.J.S. Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143 005, Punjab, India
| | - Gurinder Mohan
- Department of Medicine, Sri Guru Ram Das Institute of Medical Sciences and Research, Amritsar 143 006, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143 005, Punjab, India
| |
Collapse
|