1
|
Ramsey LB, Gong L, Lee SB, Wagner JB, Zhou X, Sangkuhl K, Adams SM, Straka RJ, Empey PE, Boone EC, Klein TE, Niemi M, Gaedigk A. PharmVar GeneFocus: SLCO1B1. Clin Pharmacol Ther 2023; 113:782-793. [PMID: 35797228 PMCID: PMC10900141 DOI: 10.1002/cpt.2705] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022]
Abstract
The Pharmacogene Variation Consortium (PharmVar) is now providing star (*) allele nomenclature for the highly polymorphic human SLCO1B1 gene encoding the organic anion transporting polypeptide 1B1 (OATP1B1) drug transporter. Genetic variation within the SLCO1B1 gene locus impacts drug transport, which can lead to altered pharmacokinetic profiles of several commonly prescribed drugs. Variable OATP1B1 function is of particular importance regarding hepatic uptake of statins and the risk of statin-associated musculoskeletal symptoms. To introduce this important drug transporter gene into the PharmVar database and serve as a unified reference of haplotype variation moving forward, an international group of gene experts has performed an extensive review of all published SLCO1B1 star alleles. Previously published star alleles were self-assigned by authors and only loosely followed the star nomenclature system that was first developed for cytochrome P450 genes. This nomenclature system has been standardized by PharmVar and is now applied to other important pharmacogenes such as SLCO1B1. In addition, data from the 1000 Genomes Project and investigator-submitted data were utilized to confirm existing haplotypes, fill knowledge gaps, and/or define novel star alleles. The PharmVar-developed SLCO1B1 nomenclature has been incorporated by the Clinical Pharmacogenetics Implementation Consortium (CPIC) 2022 guideline on statin-associated musculoskeletal symptoms.
Collapse
Affiliation(s)
- Laura B Ramsey
- Divisions of Clinical Pharmacology and Research in Patient Services, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Seung-Been Lee
- Precision Medicine Institute, Macrogen Inc., Seoul, Korea
| | - Jonathan B Wagner
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Solomon M Adams
- School of Pharmacy, Shenandoah University, Fairfax, Virginia, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Philip E Empey
- School of Pharmacy and Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erin C Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Department of Medicine (BMIR), Stanford University, Stanford, California, USA
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
2
|
Dai R, Zhao X, Zhuo H, Wang W, Xu Y, Hu Z, Zhang T, Zhao J. CYP2C19 metabolizer phenotypes may affect the efficacy of statins on lowering small dense low-density lipoprotein cholesterol of patients with coronary artery disease. Front Cardiovasc Med 2022; 9:1016126. [PMID: 36601065 PMCID: PMC9806256 DOI: 10.3389/fcvm.2022.1016126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Background Dyslipidemia is a major cause of arteriosclerotic cardiovascular disease (ASCVD), and low-density lipoprotein cholesterol (LDL-C) is the profile to be reduced to prevent disease progression. Small dense low-density lipoprotein cholesterol (sdLDL-C) has been proven to be a more effective biomarker than LDL-C for ASCVD primary and secondary prevention. CYP2C19 is an important drug metabolism gene. This study aimed to investigate the relationship between sdLDL-C and coronary artery disease (CAD) risk factors and explore the influence of CYP2C19 metabolizer phenotypes on the sdLDL-C lowering efficacy of statins. Methods This study recruited 182 patients with CAD and 200 non-CAD controls. Baseline laboratory indices of fasting blood were detected, including blood lipids, glucose, and creatinine. In addition, LDL-C subfractions were separated and quantified. Gene polymorphisms of SLCO1B1 and CYP2C19 were detected in patients with CAD. The LDL-C subfractions levels of patients with CAD were followed up after statin drug treatment. Results Total cholesterol, LDL-C, LDLC-2, LDLC-3, LDLC-4, LDLC-5, LDLC-6, LDLC-7, and sdLDL-C levels of patients with CAD were significantly higher than those in non-CAD controls. Meanwhile, sdLDL-C (AUC = 0.838) and LDLC-4 (AUC = 0.835) performed outstandingly in distinguishing patients with CAD from controls. Based on CYP2C19 metabolizer phenotypes, 113 patients with CAD were divided into the extensive metabolizer (EM, n = 49), intermediate metabolizer (IM, n = 52), and poor metabolizer (PM, n = 12) groups. The patients with IM and PM metabolizer phenotypes had better sdLDL-C lowering efficacy after taking statin drugs than patients with EM phenotype (P = 0.0268, FDR = 0.0536). The SLCO1B1 genotype had no significant impact on the efficacy of statins (P = 0.1611, FDR = 0.1611). Conclusion sdLDL-C and LDLC-4 outperformed other blood lipids such as LDL-C for CAD risk screening. CYP2C19 metabolizer phenotypes had the potential to predict the efficacy of statins in lowering sdLDL-C.
Collapse
Affiliation(s)
- Ruozhu Dai
- Department of Cardiology, Quanzhou First Hospital Afliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Xiaoyu Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Huilin Zhuo
- Department of Cardiology, Quanzhou First Hospital Afliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Wei Wang
- Department of Cardiology, Quanzhou First Hospital Afliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Zixin Hu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China,Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China,Fudan Zhangjiang Institute, Shanghai, China,*Correspondence: Zixin Hu ✉
| | - Tiexu Zhang
- Department of Cardiovascular Medicine, The First People's Hospital of Pingdingshan, Pingdingshan, Henan, China,Tiexu Zhang ✉
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China,Jiangman Zhao ✉
| |
Collapse
|
3
|
Sivkov A, Chernus N, Gorenkov R, Sivkov S, Sivkova S, Savina T. Relationship between genetic polymorphism of drug transporters and the efficacy of Rosuvastatin, atorvastatin and simvastatin in patients with hyperlipidemia. Lipids Health Dis 2021; 20:157. [PMID: 34749751 PMCID: PMC8573942 DOI: 10.1186/s12944-021-01586-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background To determine the effect of genetic polymorphism of drug transporters on the efficacy of treatment with Rosuvastatin, Atorvastatin and Simvastatin in patients with hyperlipidemia. Methods The study consists of 180 patients, aged 40–75 years, with hyperlipidemia. All patients were divided into two equal groups: patients with different SLCO1B1 (521CC, 521CT and 521TT) and MDR1 (3435CC, 3435TC and 3435TT) genotypes. Each group was divided into rosuvastatin-treated, atorvastatin-treated and simvastatin-treated subgroups. The lipid-lowering effect of statins was assessed by tracing changes in total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels. Results The use of statins over a 4-month period led to substantial reductions in TC and LDL-C levels. The hypolipidemic effect of studied agents was seen in both groups. However, it was less pronounced in patients with 521CC genotype. No statistically significantly differences were found between carriers of 3435TT, 3435CT and 3435CC genotypes. Conclusions The lipid-lowering efficacy of rosuvastatin was higher compared to other two statins. Patients with SLCO1B1 521CC genotype are more likely to encounter a decrease in the hypolipidemic effect of statins. Such a risk should be considered when treating this category of patients. MDR1 polymorphism had no significant effect on statin efficacy.
Collapse
Affiliation(s)
- Andrey Sivkov
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.
| | - Natalya Chernus
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinical Therapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Roman Gorenkov
- Institute of Leadership and Health Management, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.,Federal State Budget Scientific Institution, «The N. A. Semashko National Research Institute of Public Health», Moscow, Russian Federation
| | - Sergey Sivkov
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Svetlana Sivkova
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinical Therapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Tamara Savina
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinical Therapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
4
|
Melhem AL, Chourasia MK, Bigossi M, Maroteau C, Taylor A, Pola R, Dawed AY, Tornio A, Palmer CNA, Siddiqui MK. Common Statin Intolerance Variants in ABCB1 and LILRB5 Show Synergistic Effects on Statin Response: An Observational Study Using Electronic Health Records. Front Genet 2021; 12:713181. [PMID: 34659336 PMCID: PMC8517257 DOI: 10.3389/fgene.2021.713181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Statin intolerance impacts approximately 10% of statin users, with side effects ranging from mild myalgia to extreme intolerance resulting in myopathy and rhabdomyolysis. Statin intolerance results in poor adherence to therapy and can impact statin efficacy. Many genetic variants are associated with statin intolerance. The effect of these variants on statin efficacy has not been systematically explored. Methods: Using longitudinal electronic health records and genetic biobank data from Tayside, Scotland, we examined the effect of seven genetic variants with previously reported associations with simvastatin or atorvastatin intolerance on the outcome of statin response. Statin response was measured by the reduction achieved when comparing pre- and post-statin non-high-density lipoprotein-cholesterol (non-HDL-C). Post-treatment statin response was limited to non-HDL-C measured within 6months of therapy initiation. Univariate and multivariable linear regression models were used to assess the main and adjusted effect of the variants on statin efficacy. Results: Around 9,401 statin users met study inclusion criteria, of whom 8,843 were first prescribed simvastatin or atorvastatin. The average difference in post-treatment compared to pre-treatment non-HDL-cholesterol was 1.45 (±1.04) mmol/L. In adjusted analyses, only two variants, one in the gene ATP-binding cassette transporter B1 (ABCB1; rs1045642), and one in leukocyte immunoglobulin like receptor B5 (LILRB5; rs12975366), were associated with statin efficacy. In ABCB1, homozygous carriers of the C allele at rs1045642 had 0.06mmol/L better absolute reduction in non-HDL-cholesterol than carriers of the T allele (95% CI: 0.01, 0.1). In LILRB5 (rs12975366), carriers of the C allele had 0.04mmol/L better absolute reduction compared to those homozygous for the T allele (95% CI: 0.004, 0.08). When combined into a two-variant risk score, individuals with both the rs1045642-CC genotype and the rs12975366-TC or CC genotype had a 0.11mmol/L greater absolute reduction in non-HDL-cholesterol compared to those with rs1045642-TC or TT genotype and the rs12975366-TT genotype (95% CI: 0.05, 0.16; p<0.001). Conclusion: We report two genetic variants for statin adverse drug reactions (ADRs) that are associated with statin efficacy. While the ABCB1 variant has been shown to have an association with statin pharmacokinetics, no similar evidence for LILRB5 has been reported. These findings highlight the value of genetic testing to deliver precision therapeutics to statin users.
Collapse
Affiliation(s)
- Alaa’ Lutfi Melhem
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Mehul Kumar Chourasia
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Margherita Bigossi
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
- Section of Internal Medicine and Thromboembolic Diseases, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cyrielle Maroteau
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Alasdair Taylor
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Roberto Pola
- Section of Internal Medicine and Thromboembolic Diseases, Department of Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Adem Y. Dawed
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Aleksi Tornio
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Colin N. A. Palmer
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| | - Moneeza K. Siddiqui
- Division of Population Health & Genomics, Pat McPherson Centre for Pharmacogenetics & Pharmacogenomics, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
5
|
Wagner JB, Ruggiero M, Leeder JS, Hagenbuch B. Functional Consequences of Pravastatin Isomerization on OATP1B1-Mediated Transport. Drug Metab Dispos 2020; 48:1192-1198. [PMID: 32892153 PMCID: PMC7589943 DOI: 10.1124/dmd.120.000122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Pravastatin acid (PVA) can be isomerized to its inactive metabolite 3'α-iso-pravastatin acid (3αPVA) under acidic pH conditions. Previous studies reported interindividual differences in circulating concentrations of PVA and 3αPVA. This study investigated the functional consequences of PVA isomerization on OATP1B1-mediated transport. We characterized 3αPVA inhibition of OATP1B1-mediated PVA uptake into human embryonic kidney 293 cells expressing the four different OATP1B1 proteins (*1a, *1b, *5, and *15). 3αPVA inhibited OATP1B1-mediated PVA uptake in all four OATP1B1 gene products but with lower IC50/Ki values for OATP1B1*5 and *15 than for the reference proteins (*1a and *1b). PVA and 3αPVA were transported by all four OATP1B1 proteins. Kinetic experiments revealed that maximal transport rates (Vmax values) for OATP1B1 variants *5 and *15 were lower than for *1a and *1b for both substrates. Apparent affinities for 3αPVA transport were similar for all four variants. However, the apparent affinity of OATP1B1*5 for 3αPVA was higher (lower Km value) than for PVA. These data confirm that PVA conversion to 3αPVA can have functional consequences on PVA uptake and impacts OATP1B1 variants more than the reference protein, thus highlighting another source variation that must be taken into consideration when optimizing the PVA dose-exposure relationship for patients. SIGNIFICANCE STATEMENT: 3'α-iso-pravastatin acid inhibits pravastatin uptake for all OATP1B1 protein types; however, the IC50 values were significantly lower in OATP1B1*5 and *15 transfected cells. This suggests that a lower concentration of 3'α-iso-pravastatin is needed to disrupt OATP1B1-mediated pravastatin uptake, secondary to decreased cell surface expression of functional OATP1B1 in variant-expressing cells. These data will refine previous pharmacokinetic models that are utilized to characterize pravastatin interindividual variability with an ultimate goal of maximizing efficacy at the lowest possible risk for toxicity.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center (J.B.W.) and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (J.B.W., J.S.L.), Children's Mercy, Kansas City, Missouri; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri (J.B.W., J.S.L.); and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (M.R., B.H.)
| | - Melissa Ruggiero
- Ward Family Heart Center (J.B.W.) and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (J.B.W., J.S.L.), Children's Mercy, Kansas City, Missouri; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri (J.B.W., J.S.L.); and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (M.R., B.H.)
| | - J Steven Leeder
- Ward Family Heart Center (J.B.W.) and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (J.B.W., J.S.L.), Children's Mercy, Kansas City, Missouri; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri (J.B.W., J.S.L.); and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (M.R., B.H.)
| | - Bruno Hagenbuch
- Ward Family Heart Center (J.B.W.) and Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation (J.B.W., J.S.L.), Children's Mercy, Kansas City, Missouri; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri (J.B.W., J.S.L.); and Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas (M.R., B.H.)
| |
Collapse
|
6
|
Wagner JB, Abdel-Rahman S, Gaedigk A, Gaedigk R, Raghuveer G, Staggs VS, Van Haandel L, Leeder JS. Impact of SLCO1B1 Genetic Variation on Rosuvastatin Systemic Exposure in Pediatric Hypercholesterolemia. Clin Transl Sci 2020; 13:628-637. [PMID: 31981411 PMCID: PMC7214659 DOI: 10.1111/cts.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
This study investigated the impact of SLCO1B1 genotype on rosuvastatin systemic exposure in hypercholesterolemic children and adolescents. Participants (8–21 years) with at least one allelic variant of SLCO1B1 c.521T>C (521TC, n = 13; 521CC, n = 2) and wild type controls (521TT, n = 13) completed a single oral dose pharmacokinetic study. The variability contributed by SLCO1B1 c.521 sequence variation to rosuvastatin (RVA) systemic exposure among our pediatric cohort was comparable to previous studies in adults. RVA concentration‐time curve from 0–24 hours (AUC0–24) was 1.4‐fold and 2.2‐fold higher in participants with c.521TC and c.521CC genotype compared 521TT participants, respectively. Interindividual variability of RVA exposure within SLCO1B1 genotype groups exceeded the ~ 1.5‐fold to 2‐fold difference in mean RVA exposure observed among SLCO1B1 genotype groups, suggesting that other factors also contribute to interindividual variability in the rosuvastatin dose‐exposure relationship. A multivariate model performed confirmed SLCO1B1 c.521T>C genotype as the primary factor contributing to RVA systemic exposure in this pediatric cohort, accounting for ~ 30% of the variability RVA AUC0–24. However, of the statins investigated to date in the pediatric population, RVA has the lowest magnitude of variability in systemic exposure.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA.,Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Vincent S Staggs
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.,Health Services & Outcomes Research, Children's Mercy, Kansas City, Missouri, USA
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology, and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
7
|
Iwaki Y, Lee W, Sugiyama Y. Comparative and quantitative assessment on statin efficacy and safety: insights into inter-statin and inter-individual variability via dose- and exposure-response relationships. Expert Opin Drug Metab Toxicol 2019; 15:897-911. [PMID: 31648563 DOI: 10.1080/17425255.2019.1681399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Statins are prescribed widely for cholesterol-lowering therapy, but it is known that their efficacy and safety profiles vary, despite the shared pharmacophore and pharmacological target. The immense body of related clinical and preclinical data offers a unique opportunity to explore the possible factors underlying inter-statin and inter-individual variabilities.Area covered: Clinical and preclinical data from various statins were compiled with regard to the efficacy (cholesterol-lowering effect) and safety (muscle toxicity). Based on the compiled data, dose- and exposure-response relationships were explored to obtain mechanistic and quantitative insights into the variations in the efficacy and safety profiles of statins.Expert opinion: Our analyses indicated that the inter-statin variability in the cholesterol-lowering effect may be mainly attributable to variations in potency of inhibition of the pharmacological target, rather than variations in drug exposure at the site of drug action. However, the drug exposure at the sites of drug action (i.e., the liver for efficacy and the muscle for safety) may contribute to the differences in the efficacy and safety observed in individual patients.
Collapse
Affiliation(s)
- Yuki Iwaki
- Clinical Pharmacology, Janssen Pharmaceutical K.K., Tokyo, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
8
|
Wagner JB, Abdel-Rahman S, Gaedigk R, Gaedigk A, Raghuveer G, Staggs VS, Kauffman R, Van Haandel L, Leeder JS. Impact of Genetic Variation on Pravastatin Systemic Exposure in Pediatric Hypercholesterolemia. Clin Pharmacol Ther 2019; 105:1501-1512. [PMID: 30549267 DOI: 10.1002/cpt.1330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/20/2018] [Indexed: 11/07/2022]
Abstract
This study investigated the impact of SLCO1B1 genotype on pravastatin systemic exposure in children and adolescents with hypercholesterolemia. Participants (8-20 years) with at least one allelic variant of SLCO1B1 c.521T>C (521TC, n = 15; 521CC, n = 2) and wild-type controls (521TT, n = 15) completed a single oral dose pharmacokinetic study. Interindividual variability of pravastatin acid (PVA) exposure within SLCO1B1 genotype groups exceeded the approximately twofold difference in mean PVA exposure observed between SLCO1B1 genotype groups (P > 0.05, q > 0.10). The 3'α-iso-pravastatin acid and lactone isomer formation in the acidic environment of the stomach prior to absorption also was variable and affected PVA exposure in all genotype groups. The SLCO1B1 c.521 gene variant contributing to variability in systemic exposure to PVA in our pediatric cohort was comparable to previous studies in adults. However, other demographic and physicochemical factors seem to also contribute to interindividual variability in the dose-exposure relationship.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Vincent S Staggs
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
- Health Services & Outcomes Research, Children's Mercy, Kansas City, Missouri, USA
| | - Ralph Kauffman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
9
|
Alghalyini B, El Shamieh S, Salami A, Visvikis Siest S, Fakhoury HM, Fakhoury R. Effect of SLCO1B1 gene polymorphisms and vitamin D on statin-induced myopathy. Drug Metab Pers Ther 2018; 33:41-47. [PMID: 29420305 DOI: 10.1515/dmpt-2017-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/04/2018] [Indexed: 01/13/2023]
Abstract
Background Statin therapy used to lower cholesterol levels results in a substantial reduction in cardiovascular complications. Previous observations in different ethnic populations showed that rs2306283A>G, p.Asn130Asp and rs4149056T>C, p.Val174Ala in solute carrier organic anion transporter 1B1 (SLCO1B1) gene encoding the organic transporter protein may be responsible for statin uptake, thus explaining the majority of statin-associated symptoms. In addition to the genetic component, vitamin D (vit D) deficiency is common in Saudi Arabia and worldwide and may cause muscle dysfunction and ache. The aim of the present study was first to reveal an effect of vit D, rs2306283A>G, and rs4149056T>C and related haplotypes on statin-associated myopathy (SAM) and then to investigate a possible interaction between low vit D levels and the above-mentioned variants. Methods The genomic DNA obtained from 50 individuals diagnosed with hypercholesterolemia was genotyped using light SNiP hybridization probes. Results Low vit D levels were associated with SAM (OR=3.6, p=0.03); however, CK levels, rs2306283A>G, and rs4149056T>C did not show any association. Interestingly, rs4149056T>C was interacting with vit D to influence SAM (p=0.02). Haplotype analysis showed that SLCO1B1 *1B and *15 were more prevalent in individuals with SAM (p=0.05). When stratified according to vit D levels, rs2306283A allele showed an increase in individuals having SAM along with low vit D (p=0.03). Conclusions Although preliminary, our results show an involvement of vit D and rs4149056T>C of SLCO1B1 in SAM.
Collapse
Affiliation(s)
- Baraa Alghalyini
- Department of Family Medicine, College of Medicine Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Said El Shamieh
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Ali Salami
- Rammal Hassan Rammal Research Laboratory, Physio-toxicity (PhyTox), Lebanese University, Faculty of Sciences (V), Nabatieh, Lebanon
| | - Sophie Visvikis Siest
- UMR INSERM U1122; IGE-PCV 'Interactions Gène-Environnement en Physiopathologie Cardiovasculaire', Université de Lorraine, Nancy, France.,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Vandoeuvre-lès-Nancy, France
| | - Hana M Fakhoury
- Department of Biochemistry and Molecular Biology, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Rajaa Fakhoury
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon.,Department of Biochemistry and Molecular Biology, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Wagner JB, Abdel-Rahman S, Van Haandel L, Gaedigk A, Gaedigk R, Raghuveer G, Kauffman R, Leeder JS. Impact of SLCO1B1 Genotype on Pediatric Simvastatin Acid Pharmacokinetics. J Clin Pharmacol 2018; 58:823-833. [PMID: 29469964 DOI: 10.1002/jcph.1080] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022]
Abstract
This study investigated the impact of allelic variation in SLCO1B1, a gene encoding for the liver-specific solute carrier organic anion transporter family member 1B1 protein (SLCO1B1), on simvastatin and simvastatin acid (SVA) systemic exposure in children and adolescents. Participants (8-20 years old) with at least 1 variant SLCO1B1 c.521T>C allele (521TC, n = 15; 521CC, n = 2) and 2 wild-type alleles (521TT, n = 15) completed a single oral dose pharmacokinetic study. At equivalent doses, SVA exposure was 6.3- and 2.5-fold greater in 521CC and TC genotypes relative to 521TT (Cmax , 2.1 ± 0.2 vs 1.0 ± 0.5 vs 0.4 ± 0.3 ng/mL; P < .0001; and AUC, 12.1 ± 0.3 vs 4.5 ± 2.5 vs 1.9 ± 1.8 ng·h/mL; P < .0001). The impact of the SLCO1B1 c.521 genotype was more pronounced in children, although considerable interindividual variability in SVA exposure was observed within genotype groups. In addition, SVA systemic exposure was negligible in 25% of pediatric participants. Further investigation of the ontogeny and genetic variation of SVA formation and SLCO1B1-mediated hepatic uptake is necessary to better understand the variability in SVA exposure in children and its clinical consequences.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Susan Abdel-Rahman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Leon Van Haandel
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Roger Gaedigk
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Geetha Raghuveer
- Ward Family Heart Center, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Ralph Kauffman
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| |
Collapse
|
11
|
|
12
|
Abstract
The delivery of precision medicine to pediatric cardiology remains complex with a number of challenges ahead. With recent advances in whole genome sequencing, rapid acquisition of a patient's genomic data is possible. However, the challenge remains how we best implement this new data into clinical practice. Predicting drug disposition and response of the individual patient requires a thorough knowledge of the entire dose-exposure-response relationship of each individual drug and knowledge of the factors that make each individual unique. This goal of precision medicine is even more complex in the developing child where drug disposition and response pathways may still be maturing. Herein, we will illustrate the challenges and pitfalls that may occur when trying to deliver pediatric precision medicine using the statins as a prototype.
Collapse
Affiliation(s)
- Jonathan B Wagner
- Ward Family Heart Center, Kansas City, MO.,Division of Clinical Pharmacology, Medical Toxicology and Therapeutic Innovation, Children's Mercy, Kansas City, MO.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO
| |
Collapse
|