1
|
Petersen JD, Hvas CL, Larsen JB. Platelet Function in Patients with Disseminated Intravascular Coagulation: Potential Markers for Improving DIC Diagnosis? Semin Thromb Hemost 2025. [PMID: 40527350 DOI: 10.1055/s-0045-1809696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
Disseminated intravascular coagulation (DIC) is a severe complication often associated with critical illness. DIC is characterized by an uncontrolled systemic activation of the hemostatic system, leading to substantial consumption of platelets and coagulation factors. The diagnosis of DIC relies on a combination of clinical findings and laboratory results, yet DIC remains challenging to confirm, especially in early stages. This systematic review investigates the reported associations between platelet function and DIC and evaluates the potential of using platelet function markers as a supplement for DIC diagnosis. PubMed and Embase were searched for relevant literature. Human studies, which included patients with DIC and assessed platelet function using dynamic platelet function assays or soluble markers, were included. In total, 24 studies met the inclusion criteria. We found that DIC patients generally exhibit increased platelet activation in vivo, indicated by elevated plasma levels of soluble markers, while ex vivo platelet aggregation was consistently reduced compared to non-DIC patients and healthy controls; however, not all studies adjusted their results for platelet count. Soluble P-selectin was the most frequently studied plasma marker and was consistently increased in DIC patients; this was most pronounced when adjusted for platelet count. However, there was considerable heterogeneity between studies regarding both study design, patient populations, platelet function assessment, and DIC diagnosis, which complicates the comparison of findings across studies. Future studies accounting for low platelet counts in dynamic function tests are necessary to assess the role of platelet aggregation in relation to DIC.
Collapse
Affiliation(s)
- Johanne Duus Petersen
- Thrombosis and Haemostasis Research Group, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Christine Lodberg Hvas
- Department of Anaesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie Brogaard Larsen
- Thrombosis and Haemostasis Research Group, Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Guervilly C, Bousquet G, Arnaud L, Gragueb-Chatti I, Daviet F, Adda M, Forel JM, Dignat-George F, Papazian L, Roch A, Lacroix R, Hraiech S. Microvesicles Are Associated with Early Veno Venous ECMO Circuit Change during Severe ARDS: A Prospective Observational Pilot Study. J Clin Med 2023; 12:7281. [PMID: 38068334 PMCID: PMC10707592 DOI: 10.3390/jcm12237281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Veno venous Extra Corporeal Membrane Oxygenation (vvECMO) is associated with frequent hematological ECMO-related complications needing ECMO circuit change. Microvesicles (MVs) interplay during the thrombosis-fibrinolysis process. The main objective of the study was to identify subpopulations of MVs associated with indications of early vvECMO circuit change. METHODS This is a prospective observational monocenter cohort study. Blood gas was sampled on the ECMO circuit after the membrane oxygenator to measure the PO2 post oxy at inclusion, day 3, day 7 and the day of ECMO circuit removal. Blood samples for MV analysis were collected at inclusion, day 3, day 7 and the day of ECMO circuit removal. MV subpopulations were identified by flow cytometry. RESULTS Nineteen patients were investigated. Seven patients (37%) needed an ECMO circuit change for hemolysis (n = 4), a pump thrombosis with fibrinolysis (n = 1), persistent thrombocytopenia with bleeding (n = 1) and a decrease of O2 transfer (n = 1). Levels of leukocyte and endothelial MVs were significantly higher at inclusion for patients who thereafter had an ECMO circuit change (p = 0.01 and p = 0.001). The areas under the received operating characteristics curves for LeuMVs and EndoMVs sampled the day of cannulation and the need for ECMO circuit change were 0.84 and 0.92, respectively. PO2 post oxy did not significantly change except for in one patient during the ECMO run. CONCLUSIONS Our pilot study supports the potential interest of subpopulations of microvesicles early associated with hematological ECMO-related complications. Our results warrant further studies.
Collapse
Affiliation(s)
- Christophe Guervilly
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France; (G.B.); (I.G.-C.); (F.D.); (M.A.); (J.-M.F.); (A.R.); (S.H.)
- Faculté de Médecine, Centre d’Etudes et de Recherches sur les Services de Santé et Qualité de vie EA 3279, Aix-Marseille Université, 13005 Marseille, France
| | - Giovanni Bousquet
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France; (G.B.); (I.G.-C.); (F.D.); (M.A.); (J.-M.F.); (A.R.); (S.H.)
| | - Laurent Arnaud
- Laboratoire d’Hématologie et de Biologie Vasculaire, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France; (L.A.); (F.D.-G.); (R.L.)
| | - Ines Gragueb-Chatti
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France; (G.B.); (I.G.-C.); (F.D.); (M.A.); (J.-M.F.); (A.R.); (S.H.)
| | - Florence Daviet
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France; (G.B.); (I.G.-C.); (F.D.); (M.A.); (J.-M.F.); (A.R.); (S.H.)
| | - Mélanie Adda
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France; (G.B.); (I.G.-C.); (F.D.); (M.A.); (J.-M.F.); (A.R.); (S.H.)
| | - Jean-Marie Forel
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France; (G.B.); (I.G.-C.); (F.D.); (M.A.); (J.-M.F.); (A.R.); (S.H.)
- Faculté de Médecine, Centre d’Etudes et de Recherches sur les Services de Santé et Qualité de vie EA 3279, Aix-Marseille Université, 13005 Marseille, France
| | - Françoise Dignat-George
- Laboratoire d’Hématologie et de Biologie Vasculaire, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France; (L.A.); (F.D.-G.); (R.L.)
- INSERM 1263, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille Université, 13013 Marseille, France
| | - Laurent Papazian
- Centre Hospitalier de Bastia, Service de Réanimation, 604 Chemin de Falconaja, 20600 Bastia, France;
| | - Antoine Roch
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France; (G.B.); (I.G.-C.); (F.D.); (M.A.); (J.-M.F.); (A.R.); (S.H.)
- Faculté de Médecine, Centre d’Etudes et de Recherches sur les Services de Santé et Qualité de vie EA 3279, Aix-Marseille Université, 13005 Marseille, France
| | - Romaric Lacroix
- Laboratoire d’Hématologie et de Biologie Vasculaire, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France; (L.A.); (F.D.-G.); (R.L.)
- INSERM 1263, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Aix-Marseille Université, 13013 Marseille, France
| | - Sami Hraiech
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Médecine Intensive Réanimation, 13015 Marseille, France; (G.B.); (I.G.-C.); (F.D.); (M.A.); (J.-M.F.); (A.R.); (S.H.)
- Faculté de Médecine, Centre d’Etudes et de Recherches sur les Services de Santé et Qualité de vie EA 3279, Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
3
|
Al-Koussa H, AlZaim I, El-Sabban ME. Pathophysiology of Coagulation and Emerging Roles for Extracellular Vesicles in Coagulation Cascades and Disorders. J Clin Med 2022; 11:jcm11164932. [PMID: 36013171 PMCID: PMC9410115 DOI: 10.3390/jcm11164932] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The notion of blood coagulation dates back to the ancient Greek civilization. However, the emergence of innovative scientific discoveries that started in the seventeenth century formulated the fundamentals of blood coagulation. Our understanding of key coagulation processes continues to evolve, as novel homeostatic and pathophysiological aspects of hemostasis are revealed. Hemostasis is a dynamic physiological process, which stops bleeding at the site of injury while maintaining normal blood flow within the body. Intrinsic and extrinsic coagulation pathways culminate in the homeostatic cessation of blood loss, through the sequential activation of the coagulation factors. Recently, the cell-based theory, which combines these two pathways, along with newly discovered mechanisms, emerged to holistically describe intricate in vivo coagulation mechanisms. The complexity of these mechanisms becomes evident in coagulation diseases such as hemophilia, Von Willebrand disease, thrombophilia, and vitamin K deficiency, in which excessive bleeding, thrombosis, or unnecessary clotting, drive the development and progression of diseases. Accumulating evidence implicates cell-derived and platelet-derived extracellular vesicles (EVs), which comprise microvesicles (MVs), exosomes, and apoptotic bodies, in the modulation of the coagulation cascade in hemostasis and thrombosis. As these EVs are associated with intercellular communication, molecular recycling, and metastatic niche creation, emerging evidence explores EVs as valuable diagnostic and therapeutic approaches in thrombotic and prothrombotic diseases.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Marwan E. El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Correspondence: ; Tel.: +961-01-350-000 (ext. 4765)
| |
Collapse
|
4
|
Hwang W, Shimizu M, Lee JW. Role of extracellular vesicles in severe pneumonia and sepsis. Expert Opin Biol Ther 2022; 22:747-762. [PMID: 35418256 PMCID: PMC9971738 DOI: 10.1080/14712598.2022.2066470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Extracellular vesicles (EV) released constitutively or following external stimuli from structural and immune cells are now recognized as important mediators of cell-to-cell communication. They are involved in the pathogenesis of pneumonia and sepsis, leading causes of acute respiratory distress syndrome (ARDS) where mortality rates remain up to 40%. Multiple investigators have demonstrated that one of the underlying mechanisms of the effects of EVs is through the transfer of EV content to host cells, resulting in apoptosis, inflammation, and permeability in target organs. AREAS COVERED The current review focuses on preclinical research examining the role of EVs released into the plasma and injured alveolus during pneumonia and sepsis. EXPERT OPINION Inflammation is associated with elevated levels of circulating EVs that are released by activated structural and immune cells and can have significant proinflammatory, procoagulant, and pro-permeability effects in critically ill patients with pneumonia and/or sepsis. However, clinical translation of the use of EVs as biomarkers or potential therapeutic targets may be limited by current methodologies used to identify and quantify EVs accurately (whether from host cells or infecting organisms) and lack of understanding of the role of EVs in the reparative phase during recovery from pneumonia and/or sepsis.
Collapse
Affiliation(s)
- Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s hospital, Catholic College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Masaru Shimizu
- Department of Anesthesiology, University of California, San Francisco, San Francisco, California
| | - Jae-Woo Lee
- Department of Anesthesiology, University of California, San Francisco, San Francisco, California.,Jae-Woo Lee, MD, Professor, University of California San Francisco, Department of Anesthesiology, 505 Parnassus Ave., Box 0648, San Francisco, CA 94143, Telephone: (415) 476-0452, Fax: (415) 514-2999,
| |
Collapse
|
5
|
Milk fat-globule epidermal growth factor 8: A potential Regulator of Cutaneous Wound Healing. Mol Biol Rep 2022; 49:8883-8893. [PMID: 35581508 DOI: 10.1007/s11033-022-07365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Destroying the integrity of the skin may causes disability and even death from injury or illness. Wound healing is a core mechanism to maintain skin barrier function. Milk fat-globule epidermal growth factor 8 (MFG-E8) is a key factor in wound healing and is involved in regulating blood coagulation, mediating macrophage uptake of apoptotic cells, shifting macrophages from an inflammatory to an anti-inflammatory phenotype, promoting angiogenesis, enhancing vascular endothelial growth factor (VEGF) signaling, and assisting wound tissue perfusion. However, these abilities are dysregulated in pathological conditions, such as glucose disorders and ischemic injury. Restricted application of exogenous MFG-E8 can restore function and play a beneficial role in cutaneous wound healing.
Collapse
|
6
|
Driever EG, Lisman T. Effects of Inflammation on Hemostasis in Acutely Ill Patients with Liver Disease. Semin Thromb Hemost 2022; 48:596-606. [PMID: 35135033 DOI: 10.1055/s-0042-1742438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Patients with liver diseases are in a rebalanced state of hemostasis, due to simultaneous decline in pro- and anticoagulant factors. This balance seems to remain even in the sickest patients, but is less stable and might destabilize when patients develop disease complications. Patients with acute decompensation of cirrhosis, acute-on-chronic liver failure, or acute liver failure often develop complications associated with changes in the hemostatic system, such as systemic inflammation. Systemic inflammation causes hemostatic alterations by adhesion and aggregation of platelets, release of von Willebrand factor (VWF), enhanced expression of tissue factor, inhibition of natural anticoagulant pathways, and inhibition of fibrinolysis. Laboratory tests of hemostasis in acutely-ill liver patients may indicate a hypocoagulable state (decreased platelet count, prolongations in prothrombin time and activated partial thromboplastin time, decreased fibrinogen levels) due to decreased synthetic liver capacity or consumption, or a hypercoagulable state (increased VWF levels, hypofibrinolysis in global tests). Whether these changes are clinically relevant and should be corrected with antithrombotic drugs or blood products is incompletely understood. Inflammation and activation of coagulation may cause local ischemia, progression of liver disease, and multiorgan failure. Anti-inflammatory treatment in acutely-ill liver patients may be of potential interest to prevent thrombotic or bleeding complications and halt progression of liver disease.
Collapse
Affiliation(s)
- Ellen G Driever
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Boscolo A, Campello E, Bertini D, Spiezia L, Lucchetta V, Piasentini E, Radu CM, Manesso L, Ori C, Simioni P. Levels of circulating microparticles in septic shock and sepsis-related complications: a case-control study. Minerva Anestesiol 2018; 85:625-634. [PMID: 30481997 DOI: 10.23736/s0375-9393.18.12782-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Microparticles (MP) have been largely studied as potential biomarkers in septic shock (SS) though their biological and clinical relevance is still unclear. This case-control study describes the trend of various MP subtypes during SS to evaluate their possible association with severity of illness and sepsis-related complications (disseminated intravascular coagulation [DIC] and acute kidney injury [AKI]). METHODS Forty patients admitted to the Intensive Care Unit with SS and 40 matched healthy volunteers were recruited. AnnexinV+, E-selectin+, thrombomodulin (TM+), leukocyte-derived (CD45+, CD36+) and platelet-derived MP (PMP-expressed as PMP/platelets ratio) were measured by flow-cytometry at baseline, on day 1, 3 and 7 after diagnosis. Severity of illness was assessed by Sequential Organ Failure Assessment Score, duration of vasoactive support and mechanical ventilation. Sepsis-related complications were considered. RESULTS Overall, septic patients showed higher levels of all MP considered compared to controls. TM+MP were significantly lower in more severe sepsis, while CD36+MP and PMP/platelets ratio were significantly increased in patients requiring longer vasoactive support and mechanical ventilation. As for sepsis-related complications, a higher PMP/platelets ratio in patients who developed DIC and increased E-selectin+MP in subjects who developed AKI were observed. PMP/platelets ratio at baseline was significantly associated with longer vasoactive support (OR=1.59 [1.05-2.42]), longer mechanical ventilation (OR=1.6 [1.06-2.42]) and DIC occurrence (OR=1.45 [1.08-1.96]). CONCLUSIONS A global response through extra-vesiculation of endothelial cells, leukocytes and platelets during the early stages of SS was confirmed. The cellular activation was detected until day 3 after diagnosis. PMP/platelets ratio at diagnosis may be useful to evaluate SS severity and DIC occurrence.
Collapse
Affiliation(s)
- Annalisa Boscolo
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Elena Campello
- Unit of Thrombotic and Hemorrhagic Diseases, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Diana Bertini
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Luca Spiezia
- Unit of Thrombotic and Hemorrhagic Diseases, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Vittorio Lucchetta
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Eleonora Piasentini
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Claudia M Radu
- Unit of Thrombotic and Hemorrhagic Diseases, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Leonardo Manesso
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Carlo Ori
- Unit of Anesthesia and Intensive Care, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Paolo Simioni
- Unit of Thrombotic and Hemorrhagic Diseases, Department of Medicine (DIMED), University of Padua, Padua, Italy -
| |
Collapse
|
8
|
Iba T, Ogura H. Role of extracellular vesicles in the development of sepsis-induced coagulopathy. J Intensive Care 2018; 6:68. [PMID: 30377532 PMCID: PMC6194680 DOI: 10.1186/s40560-018-0340-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background The advances of research on extracellular vesicles (EVs) are of particular interest to the clinicians as well as the researchers who are studying coagulation disorder in sepsis. Here, we intend to update the latest knowledge and currently unsolved problems that should be addressed. Main body Secreted membrane-enclosed vesicles including apoptotic bodies, exosomes, ectosomes, microvesicles, and microparticles are generically called EVs. Though the basic structure of these vesicles is the same, i.e., originating from the plasma membrane, their characteristics differ significantly depending on their surface structures and interior components. Numerous studies have shown elevated levels of circulating EVs that exhibit proinflammatory and procoagulant properties during sepsis. These EVs are known to play important roles in the development of coagulation disorder and organ dysfunction in sepsis. Coagulation disorder in sepsis is characterized by activated coagulation, disrupted anticoagulant systems, and imbalanced fibrinolytic systems. These processes collaborate with one another and contribute to the development of disseminated intravascular coagulation (DIC), with devastating consequences. As part of this pathogenesis, the membrane-exposed tissue factor, phosphatidylserine and bioactive substances contained within the vesicles, such as histones, nucleosomes, and high-mobility group box 1, contribute to the development of DIC. EVs not only upregulate the procoagulant systems by themselves, but they also disseminate prothrombotic activities by transferring their procoagulant properties to distant target cells. Though the basic concept behind the role of procoagulant properties, EVs in the development of sepsis-induced coagulopathy has started to be unveiled, knowledge of the actual status is far from satisfactory, mainly because of the lack of standardized assay procedures. Recent advances and current problems that remain to be resolved are introduced in this review. Conclusion The recent studies succeeded to elucidate the important roles of EVs in the progress of coagulation disorder in sepsis. However, further harmonization in terminology, methodology, and evaluation methods is required for future studies.
Collapse
Affiliation(s)
- Toshiaki Iba
- 1Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421 Japan
| | - Hiroshi Ogura
- 2Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
9
|
Shimizu M, Konishi A, Nomura S. Examination of biomarker expressions in sepsis-related DIC patients. Int J Gen Med 2018; 11:353-361. [PMID: 30254480 PMCID: PMC6140747 DOI: 10.2147/ijgm.s173684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Disseminated avascular coagulation (DIC) is the main cause of death among patients with sepsis. In particular, low platelet count is predictive of poor outcome. However, the significance of platelet activation in patients with sepsis-related DIC is poorly understood. To determine the characteristics of platelet-related abnormality in patients with sepsis-related DIC, we assessed the expression levels of several biomarkers. METHODS Plasma levels of biomarkers, including cytokines, chemokines, soluble selectins, platelet-derived microparticles (PDMPs), soluble vascular adhesion molecule 1, and high mobility group box protein 1 were measured by enzyme-linked immunosorbent assay at baseline and after 4, 7, 14, and 21 days of DIC treatment. RESULTS Differences in platelet activation and in the elevation of activated platelet-related PDMPs and of soluble P-selectin were seen between patients suffering from sepsis and hematologic malignancy with DIC. In addition, the elevation of interleukin (IL)-6 and thrombopoietin (TPO) was significant in sepsis patients with DIC. Furthermore, IL-6 and TPO promoted platelet activation in vitro. CONCLUSION Assessment of PDMPs, sP-selectin, IL-6, and TPO may be beneficial in the primary prevention of multi-organ failure in sepsis patients with DIC.
Collapse
Affiliation(s)
- Michiomi Shimizu
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan,
| | - Akiko Konishi
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan,
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan,
| |
Collapse
|
10
|
Danesh A, Inglis HC, Abdel-Mohsen M, Deng X, Adelman A, Schechtman KB, Heitman JW, Vilardi R, Shah A, Keating SM, Cohen MJ, Jacobs ES, Pillai SK, Lacroix J, Spinella PC, Norris PJ. Granulocyte-Derived Extracellular Vesicles Activate Monocytes and Are Associated With Mortality in Intensive Care Unit Patients. Front Immunol 2018; 9:956. [PMID: 29867942 PMCID: PMC5951932 DOI: 10.3389/fimmu.2018.00956] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/17/2018] [Indexed: 11/13/2022] Open
Abstract
To understand how extracellular vesicle (EV) subtypes differentially activate monocytes, a series of in vitro studies were performed. We found that plasma-EVs biased monocytes toward an M1 profile. Culturing monocytes with granulocyte-, monocyte-, and endothelial-EVs induced several pro-inflammatory cytokines. By contrast, platelet-EVs induced TGF-β and GM-CSF, and red blood cell (RBC)-EVs did not activate monocytes in vitro. The scavenger receptor CD36 was important for binding of RBC-EVs to monocytes, while blockade of CD36, CD163, CD206, TLR1, TLR2, and TLR4 did not affect binding of plasma-EVs to monocytes in vitro. To identify mortality risk factors, multiple soluble factors and EV subtypes were measured in patients' plasma at intensive care unit admission. Of 43 coagulation factors and cytokines measured, two were significantly associated with mortality, tissue plasminogen activator and cystatin C. Of 14 cellular markers quantified on EVs, 4 were early predictors of mortality, including the granulocyte marker CD66b. In conclusion, granulocyte-EVs have potent pro-inflammatory effects on monocytes in vitro. Furthermore, correlation of early granulocyte-EV levels with mortality in critically ill patients provides a potential target for intervention in management of the pro-inflammatory cascade associated with critical illness.
Collapse
Affiliation(s)
- Ali Danesh
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Heather C Inglis
- Blood Systems Research Institute, San Francisco, CA, United States
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Avril Adelman
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Kenneth B Schechtman
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - John W Heitman
- Blood Systems Research Institute, San Francisco, CA, United States
| | - Ryan Vilardi
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Avani Shah
- Blood Systems Research Institute, San Francisco, CA, United States
| | - Sheila M Keating
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mitchell J Cohen
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Evan S Jacobs
- Blood Systems Research Institute, San Francisco, CA, United States
| | - Satish K Pillai
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jacques Lacroix
- Centre Hospitalier Universitaire (CHU) Sainte-Justine, Université de Montréal, Montreal, QC, Canada
| | - Philip C Spinella
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Laursen MA, Larsen JB, Hvas AM. Platelet function in disseminated intravascular coagulation: A systematic review. Platelets 2018; 29:238-248. [PMID: 29517400 DOI: 10.1080/09537104.2018.1442567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/03/2018] [Accepted: 02/14/2018] [Indexed: 10/17/2022]
Abstract
Disseminated intravascular coagulation (DIC) has a well-examined pathophysiology, yet some essential elements remain undetermined. During DIC, platelets play an important role in the development of micro thrombosis, but changes in platelet function parameters and their association with development of DIC have not been established. The present systematic review investigated reported associations between platelet function (activation, aggregation, and adhesion) and DIC. We performed a literature search in Embase and PubMed, following the Preferred Reporting Items for Systematic and Meta-Analyses (PRISMA) guidelines. In total, 22 articles were included; 14 human studies, seven animal studies, and one with both human and animal subjects. Platelet activation markers were generally reported to be higher in both DIC patients and animals with DIC than healthy controls, and higher among patients with DIC than patients without DIC. Six human and six animal studies investigated platelet aggregation, which were overall reported to be lower in DIC than in non-DIC or in healthy controls in both human and animal studies. Platelet aggregation was deemed to be confounded by low platelet counts, which are known to affect platelet aggregation analyses even within the reference interval. In conclusion, platelet activation analyses showed promise in diagnosis of DIC, but semi-automatization and standardization are warranted before these can be implemented in daily clinical practice. Changes in platelet aggregation analyses during DIC remain inconclusive, and further studies including adjustment for low platelet count are needed to clarify the role of platelet aggregation in DIC.
Collapse
Affiliation(s)
- Mathies Appel Laursen
- a Centre for Haemophilia and Thrombosis, Department of Clinical Biochemistry , Aarhus University Hospital , Aarhus N , Denmark
| | - Julie Brogaard Larsen
- a Centre for Haemophilia and Thrombosis, Department of Clinical Biochemistry , Aarhus University Hospital , Aarhus N , Denmark
| | - Anne-Mette Hvas
- a Centre for Haemophilia and Thrombosis, Department of Clinical Biochemistry , Aarhus University Hospital , Aarhus N , Denmark
- b Department of Clinical Medicine , Aarhus University , Aarhus , Denmark
| |
Collapse
|
12
|
Kamińska A, Enguita FJ, Stępień EŁ. Lactadherin: An unappreciated haemostasis regulator and potential therapeutic agent. Vascul Pharmacol 2017; 101:21-28. [PMID: 29169950 DOI: 10.1016/j.vph.2017.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/19/2017] [Accepted: 11/18/2017] [Indexed: 01/01/2023]
Abstract
Lactadherin is a small (53-66kDa) multifunctional glycoprotein belonging to the secreted extracellular matrix protein family. It has a multi-domain structure and is involved in many biological and physiological processes, including phagocytosis, angiogenesis, atherosclerosis, tissue remodeling, and haemostasis regulation. Lactadherin binds phosphatidylserine (PS)-enriched cell surfaces in a receptor-independent manner. Interaction between lactadherin and PS is crucial for regulation of blood coagulation processes. This review summarizes recent knowledge on the possible role of lactadherin in haemostasis control, emphasizing the great significance of the interaction between lactadherin and PS expressed on activated platelets and extracellular vesicles. The possible role of lactadherin as a therapeutic target and biomarker is also discussed.
Collapse
Affiliation(s)
- Agnieszka Kamińska
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, Kraków 30-348, Poland.
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisboa 1649-028, Portugal.
| | - Ewa Ł Stępień
- Department of Medical Physics, Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Prof. Stanisława Łojasiewicza 11 Street, Kraków 30-348, Poland.
| |
Collapse
|
13
|
Greco E, Lupia E, Bosco O, Vizio B, Montrucchio G. Platelets and Multi-Organ Failure in Sepsis. Int J Mol Sci 2017; 18:ijms18102200. [PMID: 29053592 PMCID: PMC5666881 DOI: 10.3390/ijms18102200] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
Platelets have received increasing attention for their role in the pathophysiology of infectious disease, inflammation, and immunity. In sepsis, a low platelet count is a well-known biomarker for disease severity and more recently authors have focused their attention on the active role of platelets in the pathogenesis of multi-organ failure. Septic shock is characterised by a dysregulated inflammatory response, which can impair the microcirculation and lead to organ injury. Being at the crossroads between the immune system, clotting cascade, and endothelial cells, platelets seem to be an appealing central mediator and possible therapeutic target in sepsis. This review focuses on the pathogenic role of platelets in septic organ dysfunction in humans and animal models.
Collapse
Affiliation(s)
- Elisabetta Greco
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | - Enrico Lupia
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | - Ornella Bosco
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | - Barbara Vizio
- Department of Medical Science, University of Turin, 10126 Turin, Italy.
| | | |
Collapse
|
14
|
Badimon L, Suades R, Fuentes E, Palomo I, Padró T. Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis. Front Pharmacol 2016; 7:293. [PMID: 27630570 PMCID: PMC5005978 DOI: 10.3389/fphar.2016.00293] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022] Open
Abstract
Reports in the last decade have suggested that the role of platelets in atherosclerosis and its thrombotic complications may be mediated, in part, by local secretion of platelet-derived microvesicles (pMVs), small cell blebs released during the platelet activation process. MVs are the most abundant cell-derived microvesicle subtype in the circulation. High concentrations of circulating MVs have been reported in patients with atherosclerosis, acute vascular syndromes, and/or diabetes mellitus, suggesting a potential correlation between the quantity of microvesicles and the clinical severity of the atherosclerotic disease. pMVs are considered to be biomarkers of disease but new information indicates that pMVs are also involved in signaling functions. pMVs evoke or promote haemostatic and inflammatory responses, neovascularization, cell survival, and apoptosis, processes involved in the pathophysiology of cardiovascular disease. This review is focused on the complex cross-talk between platelet-derived microvesicles, inflammatory cells and vascular elements and their relevance in the development of the atherosclerotic disease and its clinical outcomes, providing an updated state-of-the art of pMV involvement in atherothrombosis and pMV potential use as therapeutic agent influencing cardiovascular biomedicine in the future.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas - Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Hospital Santa Creu i Sant PauBarcelona, Spain; Cardiovascular Research Chair, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Rosa Suades
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas - Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Hospital Santa Creu i Sant Pau Barcelona, Spain
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging, Universidad de TalcaTalca, Chile; Centro de Estudios en Alimentos Procesados, Conicyt-RegionalGore-Maule, Talca, Chile
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging, Universidad de TalcaTalca, Chile; Centro de Estudios en Alimentos Procesados, Conicyt-RegionalGore-Maule, Talca, Chile
| | - Teresa Padró
- Cardiovascular Research Center, Consejo Superior de Investigaciones Científicas - Institut Català de Ciències Cardiovasculars, Institut d'Investigació Biomèdica Sant Pau, Hospital Santa Creu i Sant Pau Barcelona, Spain
| |
Collapse
|
15
|
Kander T, Larsson A, Taune V, Schött U, Tynngård N. Assessment of Haemostasis in Disseminated Intravascular Coagulation by Use of Point-of-Care Assays and Routine Coagulation Tests, in Critically Ill Patients; A Prospective Observational Study. PLoS One 2016; 11:e0151202. [PMID: 26959974 PMCID: PMC4784845 DOI: 10.1371/journal.pone.0151202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/23/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Disseminated intravascular coagulopathy (DIC) relates to the consumption of coagulation factors and platelets with bleeding and micro thrombosis events. AIM The aim of this study was to compare haemostasis parameters in critically ill patients with DIC versus patients without DIC, and in survivors versus non-survivors over time. Correlations between the DIC-score, the degree of organ failure and the haemostasis were assessed. METHOD Patients admitted to the intensive care unit with a condition known to be associated with DIC and with an expected length of stay of >3 days were included. Routine laboratory tests, prothrombin time, activated partial thromboplastin time, platelet count, fibrinogen concentration and D-dimer were measured. Coagulation and platelet function were assessed with two point-of-care devices; Multiplate and ROTEM. DIC scores were calculated according to the International Society on Thrombosis and Haemostasis and Japanese Association for Acute Medicine. RESULTS Blood was sampled on days 0-1, 2-3 and 4-10 from 136 patients with mixed diagnoses during 290 sampling events. The point-of-care assays indicated a hypocoagulative response (decreased platelet aggregation and reduced clot strength) in patients with DIC and, over time, in non-survivors compared to survivors. Patients with DIC as well as non-survivors had decreased fibrinolysis as shown by ROTEM. DIC scores were higher in non-survivors than in survivors. CONCLUSIONS Patients with DIC displayed signs of a hypocoagulative response and impaired fibrinolysis, which was also evident over time in non-survivors. Patients with DIC had a higher mortality rate than non-DIC patients, and DIC scores were higher in non-survivors than in survivors.
Collapse
Affiliation(s)
- Thomas Kander
- Medical Faculty, University of Lund, Lund, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital Lund, 22185, Lund, Sweden
| | - Anna Larsson
- Medical Faculty, University of Lund, Lund, Sweden
| | - Victor Taune
- Medical Faculty, University of Lund, Lund, Sweden
| | - Ulf Schött
- Medical Faculty, University of Lund, Lund, Sweden
- Department of Intensive and Perioperative Care, Skåne University Hospital Lund, 22185, Lund, Sweden
| | - Nahreen Tynngård
- Department of Clinical Immunology and Transfusion Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
16
|
Berezin AE, Kremzer A, Berezina T, Martovitskaya Y. The signature of circulating microparticles in heart failure patients with metabolic syndrome. J Circ Biomark 2016; 5:1849454416663659. [PMID: 28936261 PMCID: PMC5548327 DOI: 10.1177/1849454416663659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 07/15/2016] [Indexed: 11/15/2022] Open
Abstract
The role of pattern of circulating endothelial cell-derived microparticles, platelet-derived microparticles (PMPs), and monocyte-derived microparticles (MMPs) in metabolic syndrome (MetS) patients with chronic heart failure (CHF) is not still understood. The aim of the study was to investigate a pattern of circulating microparticles (MPs) in MetS patients with CHF in relation to neurohumoral and inflammatory activation. The study retrospectively involved 101 patients with MetS and 35 healthy volunteers. Biomarkers were measured at baseline of the study. The results of the study have shown that numerous circulating PMPs- and MMPs in subjects with MetS (with or without CHF) insufficiently distinguished from level obtained in healthy volunteers. We found elevated level of CD31+/annexin V+ MPs in association with lower level of CD62E+ MPs. Therefore, we found that biomarkers of biomechanical stress serum N-terminal brain natriuretic peptide and inflammation (high-sensitive C-reactive protein ,osteoprotegerin) remain statistically significant predictors for decreased CD62E+ to CD31+/annexin V+ ratio in MetS patients with CHF. In conclusion, decreased CD62E+ to CD31+/annexin V+ ratio reflected that impaired immune phenotype of MPs may be discussed as a surrogate marker of CHF development in MetS population.
Collapse
Affiliation(s)
- Alexander E Berezin
- Consultant of the Therapeutic Unit, Internal Medicine Department, State Medical University, Zaporozhye, Ukraine
| | - Alexander Kremzer
- Consultant of the Therapeutic Unit, Internal Medicine Department, State Medical University, Zaporozhye, Ukraine
| | | | | |
Collapse
|
17
|
Berezin AE, Kremzer AA, Berezina TA, Martovitskaya YV. Pattern of circulating microparticles in chronic heart failure patients with metabolic syndrome: Relevance to neurohumoral and inflammatory activation. BBA CLINICAL 2015; 4:69-75. [PMID: 26674662 PMCID: PMC4661711 DOI: 10.1016/j.bbacli.2015.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 07/31/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, 26, Mayakovsky av., Zaporozhye Postcode 69035, Ukraine
| | | | | | | |
Collapse
|
18
|
Abstract
Microparticles (MPs) are small membrane vesicles that are released from many different cell types by exocytotic budding of the plasma membrane in response to cellular activation or apoptosis. MPs may be involved in both physiological processes and clinical treatments because they express phospholipids, which function as procoagulants. Elevated levels of platelet-derived MPs, endothelial cell-derived MPs, and monocyte-derived MPs are observed in almost all thrombotic diseases occurring in venous and arterial beds. Several studies have shown that the quantity, cellular origin, and composition of circulating MPs depend on the type of disease, the disease state, and medical treatment. Although MPs were initially thought to be small particles with only procoagulant activity, they are now known to have many different functions. An increasing number of studies have identified new implications of elevated MPs in clinical disorders. On the basis of evidence available till date, the present review suggests that MPs may be a useful biomarker in identifying atherothrombosis.
Collapse
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University
| |
Collapse
|
19
|
Nomura S. Critically ill Patients and Platelet-Derived Microparticles. J Atheroscler Thromb 2015; 22:752-3. [DOI: 10.5551/jat.ed019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University
| |
Collapse
|