1
|
Prasetia IGNJA, Kurniati NF, Riani C, Mudhakir D. Design of lipid nanoparticle (LNP) containing genetic material CRISPR/Cas9 for familial hypercholesterolemia. NARRA J 2025; 5:e2217. [PMID: 40352243 PMCID: PMC12059878 DOI: 10.52225/narra.v5i1.2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Familial hypercholesterolemia is a genetic disorder caused by mutations in the low- density lipoprotein receptor gene (LDLR) and the current treatment still focuses on symptom management. The aim of this study was to develop a lipid nanoparticle (LNP)- based delivery system for the CRISPR/Cas9 component in correcting LDLR gene mutations. LNPs were prepared using an ultrasonic-solvent emulsification technique by varying the surfactant: oil ratio (SOR), homogenization speed and time, and sonication time. Next, the LNP surface was modified by adding DSPE-PEG2000-NH2 and polyethyleneimine. The next stage is to design the single guide RNA (sgRNA) and Donor DNA wildtype (Donor DNA wt). This genetic material was complexed with LNP and then transfected into Hepa1-6 LDLR mt cells, an in vitro representation of cells suffering from familial hypercholesterolemia. This optimization process produced LNPs with a particle size of 118.6 ± 0.8 nm and a polydispersity index of 0.34 ± 0.03. The LNP surface modification resulted in a zeta potential of +7.5 mV. A transmission electron microscope (TEM) analysis showed spherical morphology with size distribution following a regular pattern. LNP cell viability tests showed good biocompatibility at concentrations <15 mM with a half-maximal inhibitory concentration (IC50) value of 27.7 mM. The dominant cellular uptake mechanism of LNP was through the clathrin-mediated endocytosis (CME) pathway. The Hepa1-6 LDLR mt cell model was successfully produced with the transfecting agent Lipofectamine 3000 by homology-directed repair (HDR) mechanism. The LNP-genetic material complex with a ratio of sgRNA:Cas9:Donor DNA wt (1:1:0.04) showed an increase in LDLR gene expression of 3.3 ± 0.2 times and LDLR protein levels reached 12.95 ± 0.25 ng/mL on day 4 after transfection. The results of this study indicate that the developed LNP-based delivery system has the potential for gene therapy applications in familial hypercholesterolemia.
Collapse
Affiliation(s)
- I GNJA. Prasetia
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, Indonesia
- Pharmacist Profession Study Program, Faculty of Math and Natural Sciences, Universitas Udayana, Bali, Indonesia
| | - Neng F. Kurniati
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Catur Riani
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Diky Mudhakir
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| |
Collapse
|
2
|
Bakour HA, Hussain Timraz J, Bin Saddiq BW, Alghamdi NA, Irfan Thalib H, Alyarimi M, Ali Algarni I. Familial Hypercholesterolemia: A Comprehensive Review of Advances in Treatment Strategies and the Role of Patient Beliefs. Cureus 2025; 17:e78032. [PMID: 40013201 PMCID: PMC11862280 DOI: 10.7759/cureus.78032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/28/2025] Open
Abstract
Familial hypercholesterolemia (FH) constitutes the most common inherited lipid disorder caused by mutations in any of the genes involved in the metabolism of low-density lipoprotein (LDL), including the LDL receptor (LDLR), Apolipoprotein B (APOB), or Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9). FH causes increased LDL-cholesterol levels, leading to an increased risk for premature atherosclerotic cardiovascular disease. This comprehensive review aims to discuss the progress of FH management, from classic statin therapy to relatively new therapies such as PCSK9 inhibitors and emerging gene-editing technologies like CRISPR. Furthermore, the article focuses on psychosocial aspects of adherence, such as patient beliefs, cultural influences, and healthcare access, and their impact on treatment outcomes. By examining these emerging treatment approaches, this review aims to create a broader understanding of FH management, focusing on better patient care and reducing the global burden of this condition.
Collapse
Affiliation(s)
- Hadi A Bakour
- General Medicine and Surgery, Batterjee Medical College, Jeddah, SAU
| | | | | | - Nourah A Alghamdi
- College of Medicine and Surgery, Fakeeh College of Medical Sciences, Jeddah, SAU
| | | | | | - Ibraheem Ali Algarni
- Family and Community Medicine, Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
3
|
Incocciati A, Cappelletti C, Masciarelli S, Liccardo F, Piacentini R, Giorgi A, Bertuccini L, De Berardis B, Fazi F, Boffi A, Bonamore A, Macone A. Ferritin-based disruptor nanoparticles: A novel strategy to enhance LDL cholesterol clearance via multivalent inhibition of PCSK9-LDL receptor interaction. Protein Sci 2024; 33:e5111. [PMID: 39150051 PMCID: PMC11328107 DOI: 10.1002/pro.5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
Hypercholesterolemia, characterized by elevated low-density lipoprotein (LDL) cholesterol levels, is a significant risk factor for cardiovascular disease. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a crucial role in cholesterol metabolism by regulating LDL receptor degradation, making it a therapeutic target for mitigating hypercholesterolemia-associated risks. In this context, we aimed to engineer human H ferritin as a scaffold to present 24 copies of a PCSK9-targeting domain. The rationale behind this protein nanoparticle design was to disrupt the PCSK9-LDL receptor interaction, thereby attenuating the PCSK9-mediated impairment of LDL cholesterol clearance. The N-terminal sequence of human H ferritin was engineered to incorporate a 13-amino acid linear peptide (Pep2-8), which was previously identified as the smallest PCSK9 inhibitor. Exploiting the quaternary structure of ferritin, engineered nanoparticles were designed to display 24 copies of the targeting peptide on their surface, enabling a multivalent binding effect. Extensive biochemical characterization confirmed precise control over nanoparticle size and morphology, alongside robust PCSK9-binding affinity (KD in the high picomolar range). Subsequent efficacy assessments employing the HepG2 liver cell line demonstrated the ability of engineered ferritin's ability to disrupt PCSK9-LDL receptor interaction, thereby promoting LDL receptor recycling on cell surfaces and consequently enhancing LDL uptake. Our findings highlight the potential of ferritin-based platforms as versatile tools for targeting PCSK9 in the management of hypercholesterolemia. This study not only contributes to the advancement of ferritin-based therapeutics but also offers valuable insights into novel strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Alessio Incocciati
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Chiara Cappelletti
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Roberta Piacentini
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
- Center for Life Nano Science at Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Lucia Bertuccini
- Core Facilities, Microscopy Area, Istituto Superiore di Sanita, Rome, Italy
| | - Barbara De Berardis
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Alberto Boffi
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Fularski P, Hajdys J, Majchrowicz G, Stabrawa M, Młynarska E, Rysz J, Franczyk B. Unveiling Familial Hypercholesterolemia-Review, Cardiovascular Complications, Lipid-Lowering Treatment and Its Efficacy. Int J Mol Sci 2024; 25:1637. [PMID: 38338916 PMCID: PMC10855128 DOI: 10.3390/ijms25031637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder primarily transmitted in an autosomal-dominant manner. We distinguish two main forms of FH, which differ in the severity of the disease, namely homozygous familial hypercholesterolemia (HoFH) and heterozygous familial hypercholesterolemia (HeFH). The characteristic feature of this disease is a high concentration of low-density lipoprotein cholesterol (LDL-C) in the blood. However, the level may significantly vary between the two mentioned types of FH, and it is decidedly higher in HoFH. A chronically elevated concentration of LDL-C in the plasma leads to the occurrence of certain abnormalities, such as xanthomas in the tendons and skin, as well as corneal arcus. Nevertheless, a significantly more severe phenomenon is leading to the premature onset of cardiovascular disease (CVD) and its clinical implications, such as cardiac events, stroke or vascular dementia, even at a relatively young age. Due to the danger posed by this medical condition, we have investigated how both non-pharmacological and selected pharmacological treatment impact the course of FH, thereby reducing or postponing the risk of clinical manifestations of CVD. The primary objective of this review is to provide a comprehensive summary of the current understanding of FH, the effectiveness of lipid-lowering therapy in FH and to explain the anatomopathological correlation between FH and premature CVD development, with its complications.
Collapse
Affiliation(s)
- Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Stabrawa
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
5
|
Georgieva M, Xenodochidis C, Krasteva N. Old age as a risk factor for liver diseases: Modern therapeutic approaches. Exp Gerontol 2023; 184:112334. [PMID: 37977514 DOI: 10.1016/j.exger.2023.112334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Recent scientific interest has been directed towards age-related diseases, driven by the significant increase in global life expectancy and the growing population of individuals aged 65 and above. The ageing process encompasses various biological, physiological, environmental, psychological, behavioural, and social changes, leading to an augmented susceptibility to chronic illnesses. Cardiovascular, neurological, musculoskeletal, liver and oncological diseases are prevalent in the elderly. Moreover, ageing individuals demonstrate reduced regenerative capacity and decreased tolerance towards therapeutic interventions, including organ transplantation. Liver diseases, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis, have emerged as significant public health concerns. Paradoxically, these conditions remain underestimated despite their substantial global impact. Age-related factors are closely associated with the severity and unfavorable prognosis of various liver diseases, warranting further investigation to enhance clinical management and develop novel therapeutic strategies. This comprehensive review focuses specifically on age-related liver diseases, their treatment strategies, and contemporary practices. It provides a detailed account of the global burden, types, molecular mechanisms, and epigenetic alterations underlying these liver pathologies.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
6
|
Recent Advances in Gene Therapy for Familial Hypercholesterolemia: An Update Review. J Clin Med 2022; 11:jcm11226773. [PMID: 36431249 PMCID: PMC9699383 DOI: 10.3390/jcm11226773] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Existing lipid-lowering therapies have difficulty in achieving lipid target levels in patients with familial hypercholesterolemia (FH), especially in the treatment of patients with homozygous familial hypercholesterolemia. (2) Method: All of the literature data containing "Familial hypercholesterolemia" and "Gene Therapy" in PubMed and Clinical Trials from 2018 to 2022 were selected. (3) Results: The rapid development of gene therapy technology in recent years is expected to change the treatment status of FH patients. As emerging gene therapy vectors, the optimized adeno-associated viruses, exosomes, and lipid nanoparticles have demonstrated an improved safety and higher transfection efficiency. Various RNA-targeted therapies are in phase 1-3 clinical trials, such as small interfering RNA-based drugs inclisiran, ARO-ANG3, ARO-APOC3, olpasiran, SLN360, and antisense oligonucleotide-based drugs AZD8233, vupanorsen, volanesorsen, IONIS-APO(a)Rx, etc., all of which have demonstrated excellent lipid-lowering effects. With gene editing technologies, such as CRISPR-Cas 9 and meganuclease, completing animal experiments in mice or cynomolgus monkeys and demonstrating lasting lipid-lowering effects, patients with FH are expected to reach a permanent cure in the future. (4) Conclusion: Gene therapy is being widely used for the lipid-lowering treatment of FH patients and has shown excellent therapeutic promise, but the current delivery efficiency, economic burden, immunogenicity and the precision of gene therapy can be further optimized.
Collapse
|
7
|
New Trends and Therapies for Familial Hypercholesterolemia. J Clin Med 2022; 11:jcm11226638. [PMID: 36431115 PMCID: PMC9696955 DOI: 10.3390/jcm11226638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Familial hypercholesterolemia (FH) is associated with an elevated risk of atherosclerosis. The finding of monogenic defects indicates higher atherosclerotic risk in comparison with hypercholesterolemia of other etiologies. However, in heterozygous FH, cardiovascular risk is heterogeneous and depends not only on high cholesterol levels but also on the presence of other biomarkers and genes. The development of atherosclerosis risk scores specific for heterozygous FH and the use of subclinical coronary atherosclerosis imaging help with identifying higher-risk individuals who may benefit from further cholesterol lowering with PCSK9 inhibitors. There is no question about the extreme high risk in homozygous FH, and intensive LDL-cholesterol-lowering therapy must be started as soon as possible. These patients have gained life free of events in comparison with the past, but a high atherosclerosis residual risk persists. Furthermore, there is also the issue of aortic and supra-aortic valve disease development. Newer therapies such as inhibitors of microsomal transfer protein and angiopoietin-like protein 3 have opened the possibility of LDL-cholesterol normalization in homozygous FH and may provide an alternative to lipoprotein apheresis for these patients. Gene-based therapies may provide more definite solutions for lowering high LDL cholesterol and consequent atherosclerosis risk for people with FH.
Collapse
|
8
|
Keshavarz Alikhani H, Pourhamzeh M, Seydi H, Shokoohian B, Hossein-khannazer N, Jamshidi-adegani F, Al-Hashmi S, Hassan M, Vosough M. Regulatory Non-Coding RNAs in Familial Hypercholesterolemia, Theranostic Applications. Front Cell Dev Biol 2022; 10:894800. [PMID: 35813199 PMCID: PMC9260315 DOI: 10.3389/fcell.2022.894800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common monogenic disease which is associated with high serum levels of low-density lipoprotein cholesterol (LDL-C) and leads to atherosclerosis and cardiovascular disease (CVD). Early diagnosis and effective treatment strategy can significantly improve prognosis. Recently, non-coding RNAs (ncRNAs) have emerged as novel biomarkers for the diagnosis and innovative targets for therapeutics. Non-coding RNAs have essential roles in the regulation of LDL-C homeostasis, suggesting that manipulation and regulating ncRNAs could be a promising theranostic approach to ameliorate clinical complications of FH, particularly cardiovascular disease. In this review, we briefly discussed the mechanisms and pathophysiology of FH and novel therapeutic strategies for the treatment of FH. Moreover, the theranostic effects of different non-coding RNAs for the treatment and diagnosis of FH were highlighted. Finally, the advantages and disadvantages of ncRNA-based therapies vs. conventional therapies were discussed.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Homeyra Seydi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Jamshidi-adegani
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Sulaiman Al-Hashmi
- Laboratory for Stem Cell and Regenerative Medicine, Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- *Correspondence: Massoud Vosough,
| |
Collapse
|
9
|
Keshavarz R, Aghaee-Bakhtiari SH, Pakzad P, Banach M, Sahebkar A. Evaluation of miRNA-27a/b expression in patients with familial hypercholesterolemia. Arch Med Sci 2022; 20:1314-1320. [PMID: 39439685 PMCID: PMC11493071 DOI: 10.5114/aoms/150500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 10/25/2024] Open
Abstract
Introduction We aimed to evaluate the serum level of miRNA-27 expression in patients with familial hypercholesterolemia (FH). Material and methods miRNA-27a/b levels in serum were compared between 39 patients with heterozygous FH (HeFH = 20) and homozygous FH (HoFH = 19), and 20 healthy subjects (control group). The expression level of miRNA-27a/b was measured using real-time PCR. Results miRNA-27a/b expression in heFH patients (fold change: 2.21 ±0.69, p = 0.001) and in the subgroup of hoFH (fold change: 3 ±1.19, p = 0.001) was significantly higher compared to healthy people. In the comparison between HoFH and HeFH, the HoFH group had a significantly higher level of miRNA-27a/b expression (FC: 1.84 ±1.19, p = 0.009). Conclusions We observed higher miRNA-27a/b expression in patients with FH than in healthy individuals. In comparison with HoFH and HeFH groups, the former had a higher expression level of miRNA-27a/b, which indicates the potential of miRNA-27a/b as a candidate marker for the severity of disease in individuals with FH.
Collapse
Affiliation(s)
- Reihaneh Keshavarz
- Department of Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Parviz Pakzad
- Department of Microbiology, Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maciej Banach
- Nephrology and Hypertension, Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Taheri F, Taghizadeh E, Baniamerian F, Rostami D, Rozeian A, Mohammad Gheibi Hayat S, Jamialahmadi T, Reiner Ž, Sahebkar A. Cellular and Molecular Aspects of Managing Familial Hypercholesterolemia: Recent and Emerging Therapeutic Approaches. Endocr Metab Immune Disord Drug Targets 2022; 22:1018-1028. [PMID: 35532248 DOI: 10.2174/1871530322666220509040844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Familial hypercholesterolemia (FH) as a high-frequency genetic disorder is diagnosed based on family and/or patient's history of coronary heart disease (CHD) or some other atherosclerotic disease, LDL-C levels and/or clinical signs such as tendonous xantomata, arcus cornealis before age 45 years as well as functional mutation in the LDLR, apoB or PCSK9 gene. Its clinical features are detectable since early childhood. Early diagnosis and timely treatment increase life expectancy in most patients with FH. Current FH therapies decrease the level of low-density lipoprotein up to ≥50% from baseline with diet, pharmacotherapeutic treatment, lipid apheresis, and liver transplantation. The cornerstone of medical therapy is the use of more potent statins in higher doses, to which often ezetimibe has to be added, but some FH patients do not achieve the target LDL-C with this therapy Therefore, besides these and the most recent but already established therapeutic approaches including PCSK9 inhibitors, inclisiran, and bempedoic acid, new therapies are on the horizon such as gene therapy, CRISPR/Cas9 strategy etc. This paper focuses on cellular and molecular potential strategies for the treatment of FH.
Collapse
Affiliation(s)
- Forough Taheri
- Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Eskandar Taghizadeh
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fatemeh Baniamerian
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Daryoush Rostami
- Department of Anesthesia, school of Paramedical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahmad Rozeian
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine University of Zagreb, Croatia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Wu Y, Jiang L, Zhang H, Cheng S, Wen W, Xu L, Zhang F, Yang Y, Wang L, Chen J. Integrated analysis of microRNA and mRNA expression profiles in homozygous familial hypercholesterolemia patients and validation of atherosclerosis associated critical regulatory network. Genomics 2021; 113:2572-2582. [PMID: 34052320 DOI: 10.1016/j.ygeno.2021.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/07/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare, life-threatening genetic disorder characterized by an extremely elevated serum level of low-density lipoprotein cholesterol (LDL-C) and accelerated premature atherosclerotic cardiovascular diseases (ASCVD). However, the detailed mechanism of how the pathogenic mutations of HoFH trigger the acceleration of ASCVD is not well understood. Therefore, we performed high-throughput RNA and small RNA sequencing on the peripheral blood RNA samples of six HoFH patients and three healthy controls. The gene and miRNA expression differences were analyzed, and seven miRNAs and six corresponding genes were screened out through regulatory network analysis. Validation through quantitative PCR of genes and miRNAs from 52 HoFH patients and 20 healthy controls revealed that the expression levels of hsa-miR-486-3p, hsa-miR-941, and BIRC5 were significantly upregulated in HoFH, while ID1, PLA2G4C, and CACNA2D2 were downregulated. Spearman correlation analysis found that the levels of ID1, hsa-miR-941, and hsa-miR-486-3p were significantly correlated with additional ASCVD risk factors in HoFH patients. This study represents the first integrated analysis of transcriptome and miRNA expression profiles in patients with HoFH, a rare disease, and as a result, six differentially expressed miRNAs/genes that may be related to atherosclerosis in HoFH are reported. The miRNA-mRNA regulatory network may be the critical regulation mechanism by which ASCVD is accelerated in HoFH.
Collapse
Affiliation(s)
- Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China.
| | - Long Jiang
- Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Department of Cardiovascular, the Second Affiliated Hospital of Nanchang University, Nanchang 330006,China
| | - Huina Zhang
- Beijing AnZhen Hospital, Capital Medical University; Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Shitong Cheng
- Department of Laboratory Medicine, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wenhui Wen
- Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Liyuan Xu
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Feng Zhang
- Department of Laboratory Medicine, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Ya Yang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Luya Wang
- Department of Atherosclerosis, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China.
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
12
|
Atorvastatin Increases the Expression of Long Non-Coding RNAs ARSR and CHROME in Hypercholesterolemic Patients: A Pilot Study. Pharmaceuticals (Basel) 2020; 13:ph13110382. [PMID: 33198086 PMCID: PMC7696809 DOI: 10.3390/ph13110382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 01/06/2023] Open
Abstract
Atorvastatin is extensively used to treat hypercholesterolemia. However, the wide interindividual variability observed in response to this drug still needs further elucidation. Nowadays, the biology of long non-coding RNAs (lncRNAs) is better understood, and some of these molecules have been related to cholesterol metabolism. Therefore, they could provide additional information on variability in response to statins. The objective of this research was to evaluate the effect of atorvastatin on three lncRNAs (lncRNA ARSR: Activated in renal cell carcinoma (RCC) with sunitinib resistance, ENST00000424980; lncRNA LASER: lipid associated single nucleotide polymorphism locus, ENSG00000237937; and lncRNA CHROME: cholesterol homeostasis regulator of miRNA expression, ENSG00000223960) associated with genes involved in cholesterol metabolism as predictors of lipid-lowering therapy performance. Twenty hypercholesterolemic patients were treated for four weeks with atorvastatin (20 mg/day). The lipid profile was determined before and after drug administration using conventional assays. The expression of lncRNAs was assessed in peripheral blood samples by RT-qPCR. As expected, atorvastatin improved the lipid profile, decreasing total cholesterol, LDL-C, and the TC/HDL-C ratio (p < 0.0001) while increasing the expression of lncRNAs ARSR and CHROME (p < 0.0001) upon completion of treatment. LASER did not show significant differences among the groups (p = 0.50). Our results indicate that atorvastatin modulates the expression of cholesterol-related lncRNAs differentially, suggesting that these molecules play a role in the variability of response to this drug; however, additional studies are needed to disclose the implication of this differential regulation on statin response.
Collapse
|
13
|
Gao M, Yu W, Hu H, Liu H, Fan K, Gu C, Wang L, Yu Y. Case Report: Cardiac Surgery and Combined Lipid-Lowering Drug Therapy for Homozygous Familial Hypercholesterolemia. Front Pediatr 2020; 8:535949. [PMID: 33194883 PMCID: PMC7642436 DOI: 10.3389/fped.2020.535949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare, autosomal dominant, hereditary, metabolic disease. HoFH patients exhibit severe coronary stenosis and valvular disease, which may result in sudden death, even during adolescence. The challenges faced during surgery and the poor curative effect of conventional lipid-lowering therapy create a treatment bottleneck. We report a rare case of HoFH in a 12-years-old boy with acute myocardial infarction, severe mitral insufficiency, and moderate aortic insufficiency. Coronary artery bypass grafting and valvuloplasty resulted in improved heart function. Postoperative combined lipid-lowering drug therapy was able to reduce low-density lipoprotein cholesterol level from 15.37 mm/L to 6.41 mmol/L. Thus, the combination of medical and surgical treatment was considered effective and can be used to inform treatment guidelines for HoFH with severe complications.
Collapse
Affiliation(s)
- Mingxin Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenyuan Yu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hui Hu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongli Liu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Kangjun Fan
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chengxiong Gu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lvya Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|