1
|
Khan MF, Rahman MM, Xin Y, Mustafa A, Smith BJ, Ottemann KM, Roujeinikova A. Determination of Protein-Ligand Binding Affinities by Thermal Shift Assay. ACS Pharmacol Transl Sci 2024; 7:3096-3107. [PMID: 39430314 PMCID: PMC11487536 DOI: 10.1021/acsptsci.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Quantification of protein-ligand interactions is crucial for understanding the protein's biological function and for drug discovery. In this study, we employed three distinct approaches for determination of protein-ligand binding affinities by a thermal shift assay using a single ligand concentration. We present the results of the comparison of the performance of the conventional curve fitting (CF) method and two newly introduced methods - assuming zero heat capacity change across small temperature ranges (ZHC) and utilizing the unfolding equilibrium constant (UEC); the latter has the advantage of reducing calculations by obtaining the unfolding equilibrium constant directly from the experimental data. Our results highlight superior performance of the ZHC and UEC methods over the conventional CF method in estimating the binding affinity, irrespective of the ligand concentration. In addition, we evaluated how the new methods can be applied to high-throughput screening for potential binders, when the enthalpy (ΔH L) and molar heat capacity change (ΔC PL) of ligand binding are unknown. Our results suggest that, in this scenario, using the -300 cal K-1 mol-1 assumption for ΔC pL and either -5 kcal mol-1 or the average enthalpy efficiency-based estimation for ΔH L(T) can still provide reasonable estimates of the binding affinity. Incorporating the new methods into the workflow for screening of small drug-like molecules, typically conducted using single-concentration libraries, could greatly simplify and streamline the drug discovery process.
Collapse
Affiliation(s)
- Mohammad F. Khan
- Department
of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Mohammad M. Rahman
- Department
of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Yue Xin
- Department
of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Abdur Mustafa
- School
of Computing, Mathematics and Engineering, Charles Sturt University, Albury, New South Wales 2678, Australia
| | - Brian J. Smith
- La Trobe
Institute for Molecular Science, La Trobe
University, Melbourne, Victoria 3086, Australia
| | - Karen M. Ottemann
- Department
of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California 95064, United States
| | - Anna Roujeinikova
- Department
of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
- Department
of Biochemistry and Molecular Biology, Monash
University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
2
|
Xu X, Gao S, Zuo Q, Gong J, Song X, Liu Y, Xiao J, Zhai X, Sun H, Zhang M, Gao X, Guo D. Enhanced In Vitro Antiviral Activity of Ivermectin-Loaded Nanostructured Lipid Carriers against Porcine Epidemic Diarrhea Virus via Improved Intracellular Delivery. Pharmaceutics 2024; 16:601. [PMID: 38794264 PMCID: PMC11125651 DOI: 10.3390/pharmaceutics16050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of -31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake.
Collapse
Affiliation(s)
- Xiaolin Xu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shasha Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Qindan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yongshi Liu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jing Xiao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaofeng Zhai
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Sun
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Mingzhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
3
|
Ud-Din AIMS, Khan MF, Roujeinikova A. Broad Specificity of Amino Acid Chemoreceptor CtaA of Pseudomonas fluorescens Is Afforded by Plasticity of Its Amphipathic Ligand-Binding Pocket. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:612-623. [PMID: 31909676 DOI: 10.1094/mpmi-10-19-0277-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motile bacteria follow gradients of nutrients or other environmental cues. Many bacterial chemoreceptors that sense exogenous amino acids contain a double Cache (dCache; calcium channels and chemotaxis receptors) ligand-binding domain (LBD). A growing number of studies suggest that broad-specificity dCache-type receptors that sense more than one amino acid are common. Here, we present an investigation into the mechanism by which the dCache LBD of the chemoreceptor CtaA from a plant growth-promoting rhizobacterium, Pseudomonas fluorescens, recognizes several chemically distinct amino acids. We established that amino acids that signal by directly binding to the CtaA LBD include ones with aliphatic (l-alanine, l-proline, l-leucine, l-isoleucine, l-valine), small polar (l-serine), and large charged (l-arginine) side chains. We determined the structure of CtaA LBD in complex with different amino acids, revealing that its ability to recognize a range of structurally and chemically distinct amino acids is afforded by its easily accessible plastic pocket, which can expand or contract according to the size of the ligand side chain. The amphipathic character of the pocket enables promiscuous interactions with both polar and nonpolar amino acids. The results not only clarify the means by which various amino acids are recognized by CtaA but also reveal that a conserved mobile lid over the ligand-binding pocket adopts the same conformation in all complexes, consistent with this being an important and invariant part of the signaling mechanism.
Collapse
Affiliation(s)
- Abu I M S Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Australia, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Mohammad F Khan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Australia, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Machuca MA, Johnson KS, Liu YC, Steer DL, Ottemann KM, Roujeinikova A. Helicobacter pylori chemoreceptor TlpC mediates chemotaxis to lactate. Sci Rep 2017; 7:14089. [PMID: 29075010 PMCID: PMC5658362 DOI: 10.1038/s41598-017-14372-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022] Open
Abstract
It is recently appreciated that many bacterial chemoreceptors have ligand-binding domains (LBD) of the dCACHE family, a structure with two PAS-like subdomains, one membrane-proximal and the other membrane-distal. Previous studies had implicated only the membrane-distal subdomain in ligand recognition. Here, we report the 2.2 Å resolution crystal structure of dCACHE LBD of the Helicobacter pylori chemoreceptor TlpC. H. pylori tlpC mutants are outcompeted by wild type during stomach colonisation, but no ligands had been mapped to this receptor. The TlpC dCACHE LBD has two PAS-like subdomains, as predicted. The membrane-distal one possesses a long groove instead of a small, well-defined pocket. The membrane-proximal subdomain, in contrast, had a well-delineated pocket with a small molecule that we identified as lactate. We confirmed that amino acid residues making contact with the ligand in the crystal structure-N213, I218 and Y285 and Y249-were required for lactate binding. We determined that lactate is an H. pylori chemoattractant that is sensed via TlpC with a K D = 155 µM. Lactate is utilised by H. pylori, and our work suggests that this pathogen seeks out lactate using chemotaxis. Furthermore, our work suggests that dCACHE domain proteins can utilise both subdomains for ligand recognition.
Collapse
Affiliation(s)
- Mayra A Machuca
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Kevin S Johnson
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Yu C Liu
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - David L Steer
- Monash Biomedical Proteomics Facility, Monash University, Clayton, Victoria, 3800, Australia
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|