1
|
Chen Z, Mao K, Chen Z, Feng R, Du W, Zhang H, Tu C. Isothermal nucleic acid amplification for monitoring hand-foot-and-mouth disease: current status and future implications. Mikrochim Acta 2024; 192:31. [PMID: 39720958 DOI: 10.1007/s00604-024-06899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
With the global prevalence of the hand-foot-and-mouth disease (HFMD) epidemic, the development of reliable point-of-care testing (POCT) is crucial for the timely identification and prevention of outbreaks. Isothermal nucleic acid amplification techniques (INAATs) have attracted much attention because of their high efficiency for rapid diagnosis. In this work, we systematically summarize the current status of INAATs for HFMD and discuss advantages and drawbacks of various INAATs for HFMD. The INAATs for HFMD detection mainly include loop-mediated isothermal amplification (LAMP), simultaneous amplification and testing (SAT), and recombinase polymerase amplification (RPA). Among them, LAMP has excelled in several diagnostic metrics and has made significant progress in the field of POCT. SAT has been effective in overcoming the problem of RNA degradation. RPA is suited for on-site testing due to its rapid amplification rate and low reaction temperature. In addition, this study explores the potential of INAATs in lateral flow strips (LFS) test and microfluidic devices for HFMD. LFS is typically used for qualitative analysis and supports multiple detection. Microfluidics can integrate necessary processes of sample pre-processing, amplification, and signal output, enabling high-throughput qualitative or quantitative detection and demonstrating the potential of monitoring HFMD. We hope the current work will provide insights into INAATs for monitoring HFMD and serve as a reference for the implementation of on-site EV detection for public health.
Collapse
Affiliation(s)
- Zhen Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chenglong Tu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.
- Toxicity Testing Center, Guizhou Medical University, Guian New Region, 561113, China.
| |
Collapse
|
2
|
Cheng J, Zhou Y, Tang X, Lu J, Wang Y. Highly Sensitive and Specific Diagnosis of Enterovirus A71 by Reverse Transcription Multiple Cross-Displacement Amplification-Labeled Nanoparticles Biosensor. J Med Virol 2024; 96:e70059. [PMID: 39531247 DOI: 10.1002/jmv.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Enterovirus A71 (EVA71) is a leading causative agent of hand, foot, and mouth disease, posing a significant threat to the health of young children, particularly in the Asia-Pacific region. Currently, there is no specific antiviral drug for EVA71 infection; therefore, early and rapid diagnosis is critical for disease prevention and control. Here, we report the development of a simple, rapid, and sensitive detection method for EVA71 infection using reverse transcription-multiple cross displacement amplification (RT-MCDA) combined with nanoparticle-based lateral flow biosensors (LFB). In the RT-MCDA system, a set of 10 primers was designed to target the highly conserved region of the VP1 gene of EVA71 and amplify the genes in an isothermal amplification device. The RT-MCDA amplification reaction products could then be identified by visual detection reagent (VDR) and LFB without the need for specialized equipment. The results demonstrated that the optimal reaction condition for the EVA71-RT-MCDA assay was 65℃ for 40 min. The EVA71-RT-MCDA assay could detect as low as 40 copies of plasmid and 50 copies of pseudotyped virus in a reaction. No cross-reaction was found between EVA71 strains and non-EVA71 strains. For 125 clinical anal swab samples, with EVA71-RT-MCDA assay, 30 samples were positive, which was in consistent with the the conventional real-time quantitative reverse transcription polymerase chain reaction assays. The entire procedure, including a 15-min specimen processing step, a 40-min MCDA reaction, and result reporting within 2 min, was completed in less than 60 min. In conclusion, the EVA71-RT-MCDA-LFB assay targeting the VP1 gene is a rapid, highly sensitive, simple, and specific test that could be widely applied in point-of-care settings and basic medical facilities in rural areas.
Collapse
Affiliation(s)
- Jinzhi Cheng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yuhong Zhou
- Department of Clinical laboratory, The First People's Hospital of Guiyang, Guiyang, China
| | - Xiaomin Tang
- Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Jingrun Lu
- Department of Clinical laboratory, The First People's Hospital of Guiyang, Guiyang, China
| | - Yu Wang
- Department of Clinical laboratory, The First People's Hospital of Guiyang, Guiyang, China
| |
Collapse
|
3
|
Suther C, Stoufer S, Zhou Y, Moore MD. Recent Developments in Isothermal Amplification Methods for the Detection of Foodborne Viruses. Front Microbiol 2022; 13:841875. [PMID: 35308332 PMCID: PMC8930189 DOI: 10.3389/fmicb.2022.841875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Foodborne and enteric viruses continue to impose a significant public health and economic burden globally. As many of these viruses are highly transmissible, the ability to detect them portably, sensitively, and rapidly is critical to reduce their spread. Although still considered a gold standard for detection of these viruses, real time polymerase chain reaction (PCR)-based technologies have limitations such as limited portability, need for extensive sample processing/extraction, and long time to result. In particular, the limitations related to the susceptibility of real time PCR methods to potential inhibitory substances present in food and environmental samples is a continuing challenge, as the need for extensive nucleic acid purification prior to their use compromises the portability and rapidity of such methods. Isothermal amplification methods have been the subject of much investigation for these viruses, as these techniques have been found to be comparable to or better than established PCR-based methods in portability, sensitivity, specificity, rapidity, and simplicity of sample processing. The purpose of this review is to survey and compare reports of these isothermal amplification methods developed for foodborne and enteric viruses, with a special focus on the performance of these methods in the presence of complex matrices.
Collapse
Affiliation(s)
- Cassandra Suther
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Sloane Stoufer
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
4
|
Subsoontorn P, Lohitnavy M, Kongkaew C. The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: A systematic review and meta-analysis. Sci Rep 2020; 10:22349. [PMID: 33339871 PMCID: PMC7749114 DOI: 10.1038/s41598-020-79237-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023] Open
Abstract
Many recent studies reported coronavirus point-of-care tests (POCTs) based on isothermal amplification. However, the performances of these tests have not been systematically evaluated. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy was used as a guideline for conducting this systematic review. We searched peer-reviewed and preprint articles in PubMed, BioRxiv and MedRxiv up to 28 September 2020 to identify studies that provide data to calculate sensitivity, specificity and diagnostic odds ratio (DOR). Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was applied for assessing quality of included studies and Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) was followed for reporting. We included 81 studies from 65 research articles on POCTs of SARS, MERS and COVID-19. Most studies had high risk of patient selection and index test bias but low risk in other domains. Diagnostic specificities were high (> 0.95) for included studies while sensitivities varied depending on type of assays and sample used. Most studies (n = 51) used reverse transcription loop-mediated isothermal amplification (RT-LAMP) to diagnose coronaviruses. RT-LAMP of RNA purified from COVID-19 patient samples had pooled sensitivity at 0.94 (95% CI: 0.90-0.96). RT-LAMP of crude samples had substantially lower sensitivity at 0.78 (95% CI: 0.65-0.87). Abbott ID Now performance was similar to RT-LAMP of crude samples. Diagnostic performances by CRISPR and RT-LAMP on purified RNA were similar. Other diagnostic platforms including RT- recombinase assisted amplification (RT-RAA) and SAMBA-II also offered high sensitivity (> 0.95). Future studies should focus on the use of un-bias patient cohorts, double-blinded index test and detection assays that do not require RNA extraction.
Collapse
Affiliation(s)
- Pakpoom Subsoontorn
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Manupat Lohitnavy
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chuenjid Kongkaew
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Research Centre for Safety and Quality in Health, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Research Department of Practice and Policy, UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
5
|
Ma L, Chen Z, Guan W, Chen Q, Liu D. Rapid and Specific Detection of All Known Nipah virus Strains' Sequences With Reverse Transcription-Loop-Mediated Isothermal Amplification. Front Microbiol 2019; 10:418. [PMID: 30915049 PMCID: PMC6421284 DOI: 10.3389/fmicb.2019.00418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2019] [Indexed: 12/31/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic virus and can be transmitted through contaminated food or directly between people. NiV is classified as a Biosafety Level 4 agent, not only because of its relatively high case fatality rate, but also because there is no vaccine or other medical countermeasures and it appears to be transmitted by fomites/particulates. The development of rapid detection assay for NiV is of great importance because no effective field test is currently available. In this study, an isothermal (65°C) reverse transcription-loop-mediated isothermal amplification (RT-LAMP) method was developed, targeting the nucleocapsid protein (N) gene, for the rapid detection of NiV, and was compared with conventional RT-PCR. Three pseudoviruses of NiV N gene representing all known strains were constructed to replace live NiV. A set of RT-LAMP primers, targeting a highly conserved region of the N gene in the viral genome was designed to identify all known NiV strains. Sensitivity tests indicated that the detection limit of the RT-LAMP assay was approximately 100 pg of total NiV pseudovirus RNA, which is at least 10-fold higher than that of conventional RT-PCR. Specificity tests showed that there was no cross-reactivity with nucleocapsid protein gene of Hendra virus, Newcastle disease virus, Japanese encephalitis virus, or Influenza A virus. The RT-LAMP assay provides results within 45 min, and requires no sophisticated instruments, except an isothermal water bath or metal bath with 1 μl calcein indicator. An analysis of the clinical samples showed that the assay had good stability. In conclusion, systematic experiments have shown that the RT-LAMP assay developed here effectively detects three NiV pseudoviruses representing all known strains of NiV, with high specificity, sensitivity and stability.
Collapse
Affiliation(s)
- Liping Ma
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Computational Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Di Liu
- Computational Virology Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|