1
|
Abstract
Neuropathic pain is a debilitating form of pain arising from injury or disease of the nervous system that affects millions of people worldwide. Despite its prevalence, the underlying mechanisms of neuropathic pain are still not fully understood. Dendritic spines are small protrusions on the surface of neurons that play an important role in synaptic transmission. Recent studies have shown that dendritic spines reorganize in the superficial and deeper laminae of the spinal cord dorsal horn with the development of neuropathic pain in multiple models of disease or injury. Given the importance of dendritic spines in synaptic transmission, it is possible that studying dendritic spines could lead to new therapeutic approaches for managing intractable pain. In this review article, we highlight the emergent role of dendritic spines in neuropathic pain, as well as discuss the potential for studying dendritic spines for the development of new therapeutics.
Collapse
Affiliation(s)
- Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
2
|
Liu H, Liu K, Dong Z. The Role of p21-Activated Kinases in Cancer and Beyond: Where Are We Heading? Front Cell Dev Biol 2021; 9:641381. [PMID: 33796531 PMCID: PMC8007885 DOI: 10.3389/fcell.2021.641381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The p21-activated kinases (PAKs), downstream effectors of Ras-related Rho GTPase Cdc42 and Rac, are serine/threonine kinases. Biologically, PAKs participate in various cellular processes, including growth, apoptosis, mitosis, immune response, motility, inflammation, and gene expression, making PAKs the nexus of several pathogenic and oncogenic signaling pathways. PAKs were proved to play critical roles in human diseases, including cancer, infectious diseases, neurological disorders, diabetes, pancreatic acinar diseases, and cardiac disorders. In this review, we systematically discuss the structure, function, alteration, and molecular mechanisms of PAKs that are involved in the pathogenic and oncogenic effects, as well as PAK inhibitors, which may be developed and deployed in cancer therapy, anti-viral infection, and other diseases. Furthermore, we highlight the critical questions of PAKs in future research, which provide an opportunity to offer input and guidance on new directions for PAKs in pathogenic, oncogenic, and drug discovery research.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| |
Collapse
|
3
|
Shahinozzaman M, Basak B, Emran R, Rozario P, Obanda DN. Artepillin C: A comprehensive review of its chemistry, bioavailability, and pharmacological properties. Fitoterapia 2020; 147:104775. [PMID: 33152464 DOI: 10.1016/j.fitote.2020.104775] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
Artepillin C (ARC), a prenylated derivative of p-coumaric acid, is one of the major phenolic compounds found in Brazilian green propolis (BGP) and its botanical source Baccharis dracunculifolia. Numerous studies on ARC show that its beneficial health effects correlate with the health effects of both BGP and B. dracunculifolia. Its wide range of pharmacological benefits include antioxidant, antimicrobial, anti-inflammatory, anti-diabetic, neuroprotective, gastroprotective, immunomodulatory, and anti-cancer effects. Most studies have focused on anti-oxidation, inflammation, diabetic, and cancers using both in vitro and in vivo approaches. Mechanisms underlying anti-cancer properties of ARC are apoptosis induction, cell cycle arrest, and the inhibition of p21-activated kinase 1 (PAK1), a protein characterized in many human diseases/disorders including COVID-19 infection. Therefore, further pre-clinical and clinical studies with ARC are necessary to explore its potential as intervention for a wide variety of diseases including the recent pandemic coronaviral infection. This review summarizes the comprehensive data on the pharmacological effects of ARC and could be a guideline for its future study and therapeutic usage.
Collapse
Affiliation(s)
- Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | - Bristy Basak
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Rashiduzzaman Emran
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; Department of Agricultural Extension (DAE), Khamarbari, Farmgate, Dhaka 1215, Bangladesh
| | - Patricia Rozario
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Diana N Obanda
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Shahinozzaman M, Ishii T, Ahmed S, Halim MA, Tawata S. A computational approach to explore and identify potential herbal inhibitors for the p21-activated kinase 1 (PAK1). J Biomol Struct Dyn 2019; 38:3514-3526. [PMID: 31448698 DOI: 10.1080/07391102.2019.1659855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oncogenic kinase PAK1 (p21-activated kinase 1) is involved in developing many diseases including cancers, neurofibromatosis, Alzheimer's disease, diabetes (type 2), and hypertension. Thus, it is thought to be a prominent therapeutic target, and its selective inhibitors have a huge market potential. Recently, herbal PAK1 inhibitors have gained immense interest over synthetic ones mainly due to their non-toxic effects. Till date, many herbal compounds have been suggested to inhibit PAK1, but their information on selectivity, bioavailability, ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, and molecular interactions with PAK1 has not been explored. Hence, this study was designed with computational approaches to explore and identify the best herbal PAK1-blockers showing good ADMET properties, druggable features and binding affinity with PAK1. Herbal inhibitors reported here were initially filtered with Lipinski's rule of five (RO5). Then, molecular docking between these inhibitors and PAK1 catalytic sites was performed using AutoDock Vina and GOLD suite to determine the binding affinity and interactions. Finally, 200 ns molecular dynamics (MD) simulations on three top-ranked inhibitors including cucurbitacin I (C-I), nymphaeol A (NA), and staurosporine (SPN) were carried out. The binding free energies and interactions revealed that NA can strongly bind with the PAK1 catalytic cleft. PASS prediction and ADMET profiling supported that NA is appeared to be a more selective and safer inhibitor than C-I and SPN. These results conform to the previous experimental evidences, and therefore, NA from Okinawa propolis could be a promising inhibitor for treating PAK1-dependent illnesses.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Shahinozzaman
- PAK Research Center, University of the Ryukyus, Okinawa, Japan.,Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, Japan
| | - Takahiro Ishii
- Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, Japan
| | - Sinthyia Ahmed
- Division of Computer Aided Drug Design, The Red-Green Research Center, Dhaka, Bangladesh
| | - Mohammad A Halim
- Department of Physical Sciences, University of Arkansas-Fort Smith, Fort Smith, AR, USA
| | - Shinkichi Tawata
- PAK Research Center, University of the Ryukyus, Okinawa, Japan.,Department of Bioscience and Biotechnology, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
5
|
MiR-1261/circ-PTPRZ1/PAK1 pathway regulates glioma cell growth and invasion. Hum Cell 2019; 32:540-547. [DOI: 10.1007/s13577-019-00271-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022]
|
6
|
Guo Y, Benson C, Hill M, Henry S, Effraim P, Waxman SG, Dib-Hajj S, Tan AM. Therapeutic potential of Pak1 inhibition for pain associated with cutaneous burn injury. Mol Pain 2018; 14:1744806918788648. [PMID: 29956587 PMCID: PMC6053256 DOI: 10.1177/1744806918788648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/20/2023] Open
Abstract
Painful burn injuries are among the most debilitating form of trauma, globally ranking in the top 15 leading causes of chronic disease burden. Despite its prevalence, however, chronic pain after burn injury is under-studied. We previously demonstrated the contribution of the Rac1-signaling pathway in several models of neuropathic pain, including burn injury. However, Rac1 belongs to a class of GTPases with low therapeutic utility due to their complex intracellular dynamics. To further understand the mechanistic underpinnings of burn-induced neuropathic pain, we performed a longitudinal study to address the hypothesis that inhibition of the downstream effector of Rac1, Pak1, will improve pain outcome following a second-degree burn injury. Substantial evidence has identified Pak1 as promising a clinical target in cognitive dysfunction and is required for dendritic spine dysgenesis associated with many neurological diseases. In our burn injury model, mice exhibited significant tactile allodynia and heat hyperalgesia and dendritic spine dysgenesis in the dorsal horn. Activity-dependent expression of c-fos also increased in dorsal horn neurons, an indicator of elevated central nociceptive activity. To inhibit Pak1, we repurposed an FDA-approved inhibitor, romidepsin. Treatment with romidepsin decreased dendritic spine dysgenesis, reduced c-fos expression, and rescued pain thresholds. Drug discontinuation resulted in a relapse of cellular correlates of pain and in lower pain thresholds in behavioral tests. Taken together, our findings identify Pak1 signaling as a potential molecular target for therapeutic intervention in traumatic burn-induced neuropathic pain.
Collapse
Affiliation(s)
- Yiqun Guo
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Curtis Benson
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Myriam Hill
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Stefanie Henry
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Philip Effraim
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Sulayman Dib-Hajj
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology, Center for Neuroscience and
Regeneration Research,
Yale
University School of Medicine, New
Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut
Healthcare System, West Haven, CT, USA
| |
Collapse
|
7
|
Kumar R, Li DQ. PAKs in Human Cancer Progression: From Inception to Cancer Therapeutic to Future Oncobiology. Adv Cancer Res 2016; 130:137-209. [PMID: 27037753 DOI: 10.1016/bs.acr.2016.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Since the initial recognition of a mechanistic role of p21-activated kinase 1 (PAK1) in breast cancer invasion, PAK1 has emerged as one of the widely overexpressed or hyperactivated kinases in human cancer at-large, allowing the PAK family to make in-roads in cancer biology, tumorigenesis, and cancer therapeutics. Much of our current understanding of the PAK family in cancer progression relates to a central role of the PAK family in the integration of cancer-promoting signals from cell membrane receptors as well as function as a key nexus-modifier of complex, cytoplasmic signaling network. Another core aspect of PAK signaling that highlights its importance in cancer progression is through PAK's central role in the cross talk with signaling and interacting proteins, as well as PAK's position as a key player in the phosphorylation of effector substrates to engage downstream components that ultimately leads to the development cancerous phenotypes. Here we provide a comprehensive review of the recent advances in PAK cancer research and its downstream substrates in the context of invasion, nuclear signaling and localization, gene expression, and DNA damage response. We discuss how a deeper understanding of PAK1's pathobiology over the years has widened research interest to the PAK family and human cancer, and positioning the PAK family as a promising cancer therapeutic target either alone or in combination with other therapies. With many landmark findings and leaps in the progress of PAK cancer research since the infancy of this field nearly 20 years ago, we also discuss postulated advances in the coming decade as the PAK family continues to shape the future of oncobiology.
Collapse
Affiliation(s)
- R Kumar
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States; Rajiv Gandhi Center of Biotechnology, Thiruvananthapuram, India.
| | - D-Q Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Breast Cancer in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Epigenetics in Shanghai, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Dammann K, Khare V, Gasche C. Republished: tracing PAKs from GI inflammation to cancer. Postgrad Med J 2014; 90:657-68. [PMID: 25335797 PMCID: PMC4222351 DOI: 10.1136/postgradmedj-2014-306768rep] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022]
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Abstract
P-21 activated kinases (PAKs) are effectors of Rac1/Cdc42 which coordinate signals from the cell membrane to the nucleus. Activation of PAKs drive important signalling pathways including mitogen activated protein kinase, phospoinositide 3-kinase (PI3K/AKT), NF-κB and Wnt/β-catenin. Intestinal PAK1 expression increases with inflammation and malignant transformation, although the biological relevance of PAKs in the development and progression of GI disease is only incompletely understood. This review highlights the importance of altered PAK activation within GI inflammation, emphasises its effect on oncogenic signalling and discusses PAKs as therapeutic targets of chemoprevention.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Vineeta Khare
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| | - Christoph Gasche
- Department of Medicine III, Division of Gastroenterology and Hepatology and Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Balla B, Árvai K, Horváth P, Tobiás B, Takács I, Nagy Z, Dank M, Fekete G, Kósa JP, Lakatos P. Fast and robust next-generation sequencing technique using ion torrent personal genome machine for the screening of neurofibromatosis type 1 (NF1) gene. J Mol Neurosci 2014; 53:204-10. [PMID: 24676943 DOI: 10.1007/s12031-014-0286-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/09/2014] [Indexed: 01/10/2023]
Abstract
Neurofibromatosis type 1 (NF1) gene exhibits one of the highest spontaneous mutation rates in the human genome. Identification of the NF1 mutation is challenging because the NF1 gene is very large and complex, lacking mutational "hot spots." There is no clustering of mutations, there are several pseudogenes, and a wide spectrum of different types of mutation has been recognized. To date, NF1 mutations or deleted regions have been detected with a number of techniques. With the appearance of next-generation sequencing (NGS) machines, molecular biology is in a new revolutionary phase. Our aim was to work out a method to use the high-throughput NGS machine, Ion Torrent PGM, in diagnostic settings for neurofibromatosis type 1. In our examination, we could reveal 21 distinct variations in NF1 gene in seven patients. This is an absolutely new method for exploring the genetic background of neurofibromatosis type 1 exhibiting the extremely high throughput of NGS in a diagnostic setting.
Collapse
Affiliation(s)
- Bernadett Balla
- First Department of Internal Medicine, Semmelweis University, 1083 Korányi S. u 2/a, Budapest, Hungary,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nissimov JN, Das Chaudhuri AB. Hair curvature: a natural dialectic and review. Biol Rev Camb Philos Soc 2014; 89:723-66. [PMID: 24617997 DOI: 10.1111/brv.12081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 12/18/2013] [Accepted: 01/01/2014] [Indexed: 12/19/2022]
Abstract
Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways, and others, can explain many alternatives and specific variations of hair bending phenotypes. Mechanisms for hair papilla budding or its division by bisection or fission can explain MPC formation. Epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) transitions, acting in collaboration with epithelial-mesenchymal communications are also considered as mechanisms affecting hair growth and its bending and twisting. These may be treated as sub-mechanisms of an overall development from neural-crest stem cell (NCSC) lineages to differentiated hair follicle (HF) cell types, thus providing a unified framework for hair growth and development.
Collapse
|
12
|
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res 2013; 28:656-72. [PMID: 23943274 DOI: 10.1002/ptr.5054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Over 35 years research on PAKs, RAC/CDC42(p21)-activated kinases, comes of age, and in particular PAK1 has been well known to be responsible for a variety of diseases such as cancer (mainly solid tumors), Alzheimer's disease, acquired immune deficiency syndrome and other viral/bacterial infections, inflammatory diseases (asthma and arthritis), diabetes (type 2), neurofibromatosis, tuberous sclerosis, epilepsy, depression, schizophrenia, learning disability, autism, etc. Although several distinct synthetic PAK1-blockers have been recently developed, no FDA-approved PAK1 blockers are available on the market as yet. Thus, patients suffering from these PAK1-dependent diseases have to rely on solely a variety of herbal therapeutics such as propolis and curcumin that block PAK1 without affecting normal cell growth. Furthermore, several recent studies revealed that some of these herbal therapeutics significantly extend the lifespan of nematodes (C. elegans) and fruit flies (Drosophila), and PAK1-deficient worm lives longer than the wild type. Here, I outline mainly pathological phenotypes of hyper-activated PAK1 and a list of herbal therapeutics that block PAK1, but cause no side (harmful) effect on healthy people or animals.
Collapse
|
13
|
Kapoor S. Green propolis and its inhibitory effect on tumor growth in different systemic malignancies. Food Chem Toxicol 2013; 59:813. [PMID: 23835285 DOI: 10.1016/j.fct.2013.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|