1
|
Manus MB, Lucore J, Kuthyar S, Moy M, Savo Sardaro ML, Amato KR. Technical note: A biological anthropologist's guide for applying microbiome science to studies of human and non-human primates. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25020. [PMID: 39222382 DOI: 10.1002/ajpa.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
A central goal of biological anthropology is connecting environmental variation to differences in host physiology, biology, health, and evolution. The microbiome represents a valuable pathway for studying how variation in host environments impacts health outcomes. While there are many resources for learning about methods related to microbiome sample collection, laboratory analyses, and genetic sequencing, there are fewer dedicated to helping researchers navigate the dense portfolio of bioinformatics and statistical approaches for analyzing microbiome data. Those that do exist are rarely related to questions in biological anthropology and instead are often focused on human biomedicine. To address this gap, we expand on existing tutorials and provide a "road map" to aid biological anthropologists in understanding, selecting, and deploying the data analysis and visualization methods that are most appropriate for their specific research questions. Leveraging an existing dataset of fecal samples and survey data collected from wild geladas living in Simien Mountains National Park in Ethiopia (Baniel et al., 2021), this paper guides researchers toward answering three questions related to variation in the gut microbiome across host and environmental factors. By providing explanations, examples, and a reproducible workflow for different analytic methods, we move beyond the theoretical benefits of considering the microbiome within anthropological research and instead present researchers with a guide for applying microbiome science to their work. This paper makes microbiome science more accessible to biological anthropologists and paves the way for continued research into the microbiome's role in the ecology, evolution, and health of human and non-human primates.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Jordan Lucore
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sahana Kuthyar
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Madelyn Moy
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Maria Luisa Savo Sardaro
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Department of Human Science and Promotion of the Quality of Life, University of San Raffaele, Rome, Italy
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
2
|
Ogai K, Nana BC, Lloyd YM, Arios JP, Jiyarom B, Awanakam H, Esemu LF, Hori A, Matsuoka A, Nainu F, Megnekou R, Leke RGF, Ekali GL, Okamoto S, Kuraishi T. Skin microbiome profile in people living with HIV/AIDS in Cameroon. Front Cell Infect Microbiol 2023; 13:1211899. [PMID: 38029259 PMCID: PMC10644231 DOI: 10.3389/fcimb.2023.1211899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The presence of pathogens and the state of diseases, particularly skin diseases, may alter the composition of human skin microbiome. HIV infection has been reported to impair gut microbiome that leads to severe consequences. However, with cutaneous manifestations, that can be life-threatening, due to the opportunistic pathogens, little is known whether HIV infection might influence the skin microbiome and affect the skin homeostasis. This study catalogued the profile of skin microbiome of healthy Cameroonians, at three different skin sites, and compared them to the HIV-infected individuals. Taking advantage on the use of molecular assay coupled with next-generation sequencing, this study revealed that alpha-diversity of the skin microbiome was higher and beta-diversity was altered significantly in the HIV-infected Cameroonians than in the healthy ones. The relative abundance of skin microbes such as Micrococcus and Kocuria species was higher and Cutibacterium species was significantly lower in HIV-infected people, indicating an early change in the human skin microbiome in response to the HIV infection. This phenotypical shift was not related to the number of CD4 T cell count thus the cause remains to be identified. Overall, these data may offer an important lead on the role of skin microbiome in the determination of cutaneous disease state and the discovery of safe pharmacological preparations to treat microbial-related skin disorders.
Collapse
Affiliation(s)
- Kazuhiro Ogai
- AI Hospital/Macro Signal Dynamics Research and Development Center (ai@ku), Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Department of Bio-engineering Nursing, Graduate School of Nursing, Ishikawa Prefectural Nursing University, Kahoku, Japan
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Benderli Christine Nana
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Yukie Michelle Lloyd
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - John Paul Arios
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Honore Awanakam
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Livo Forgu Esemu
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plant Studies, University of Yaoundé I, Yaoundé, Cameroon
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Ayaka Matsuoka
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Firzan Nainu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Rosette Megnekou
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Rose Gana Fomban Leke
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plant Studies, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Shigefumi Okamoto
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Heroes AS, Okitale P, Ndalingosu N, Vandekerckhove P, Lunguya O, Jacobs J. Presence of Gram-negative bacteria and Staphylococcus aureus on the skin of blood donors in the Democratic Republic of the Congo. Transfusion 2023; 63:360-372. [PMID: 36478388 DOI: 10.1111/trf.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Skin bacteria may contaminate blood products but few data are available on sub-Saharan Africa (sSA). We assessed the presence of Gram-negative bacteria and Staphylococcus aureus on blood donor skin and evaluated skin antisepsis in the Democratic Republic of the Congo (DRC). STUDY DESIGN AND METHODS Among blood donors at the National Blood Transfusion Center (NBTC) and at a rural hospital, the antecubital fossa skin of the non-disinfected arm (not used for blood collection) was swabbed (25cm2 surface) and cultured for total and Gram-negative bacterial counts. Bacteria were identified with MALDI-TOF and tested for antibiotic susceptibility by disk diffusion. For evaluation of the NBTC antisepsis procedure (i.e., ethanol 70%), the culture results of the disinfected arm (used for blood collection) were compared with those of the non-disinfected arm. RESULTS Median total bacterial counts on 161 studied non-disinfected arms were 1065 Colony-Forming Units (CFU) per 25 cm2 , with 43.8% (70/160) of blood donors growing Gram-negative bacteria and 3.8% (6/159) Staphylococcus aureus (2/6 methicillin-resistant). Non-fermentative Gram-negative rods predominated (74/93 isolates, majority Pseudomonas spp., Acinetobacter spp.). Enterobacterales comprised 19/93 isolates (mostly Pantoea spp. and Enterobacter spp.), 5/19 were multidrug-resistant. In only two cases (1.9%, 2/108) the NBTC antisepsis procedure met the acceptance criterion of ≤2 CFU/25 cm2 . CONCLUSION Skin bacterial counts and species among blood donors in DRC were similar to previously studied Caucasian populations, including cold-tolerating species and bacteria previously described in transfusion reactions. Prevention of contamination (e.g., antisepsis) needs further evaluation and customization to sSA.
Collapse
Affiliation(s)
- Anne-Sophie Heroes
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Patient Okitale
- Department of Microbiology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.,Department of Clinical Biology, Cliniques Universitaires, Kinshasa, Democratic Republic of the Congo
| | - Natacha Ndalingosu
- Hemovigilance Department, Centre National de Transfusion Sanguine, Kinshasa, Democratic Republic of the Congo
| | - Philippe Vandekerckhove
- Belgian Red Cross-Flanders, Mechelen, Belgium.,Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.,Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Octavie Lunguya
- Department of Microbiology, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo.,Department of Clinical Biology, Cliniques Universitaires, Kinshasa, Democratic Republic of the Congo
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Manus MB. Ecological Processes and Human Behavior Provide a Framework for Studying the Skin Microbial Metacommunity. MICROBIAL ECOLOGY 2022; 84:689-702. [PMID: 34636925 DOI: 10.1007/s00248-021-01884-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Metacommunity theory dictates that a microbial community is supported both by local ecological processes and the dispersal of microbes between neighboring communities. Studies that apply this perspective to human-associated microbial communities are thus far limited to the gut microbiome. Yet, the skin serves as the primary barrier between the body and the external environment, suggesting frequent opportunities for microbial dispersal to the variable microbial communities that are housed across skin sites. This paper applies metacommunity theory to understand the dispersal of microbes to the skin from the physical and social environment, as well as between different skin sites on an individual's body. This includes highlighting the role of human behavior in driving microbial dispersal, as well as shaping physiological properties of skin that underscore local microbial community dynamics. By leveraging data from research on the skin microbiomes of amphibians and other animals, this paper provides recommendations for future research on the skin microbial metacommunity, including generating testable predictions about the ecological underpinnings of the skin microbiome.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
5
|
Ogai K, Nana BC, Lloyd YM, Arios JP, Jiyarom B, Awanakam H, Esemu LF, Hori A, Matsuoka A, Nainu F, Megnekou R, Leke RGF, Ekali GL, Okamoto S, Kuraishi T. Skin microbiome profile of healthy Cameroonians and Japanese. Sci Rep 2022; 12:1364. [PMID: 35079063 PMCID: PMC8789912 DOI: 10.1038/s41598-022-05244-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
The commensal microbes of the skin have a significant impact on dermal physiology and pathophysiology. Racial and geographical differences in the skin microbiome are suggested and may play a role in the sensitivity to dermatological disorders, including infectious diseases. However, little is known about the skin microbiome profiles of people living in Central Africa, where severe tropical infectious diseases impose a burden on the inhabitants. This study provided the skin profiles of healthy Cameroonians in different body sites and compared them to healthy Japanese participants. The skin microbiome of Cameroonians was distinguishable from that of Japanese in all skin sites examined in this study. For example, Micrococcus was predominantly found in skin samples of Cameroonians but mostly absent in Japanese skin samples. Instead, the relative abundance of Cutibacterium species was significantly higher in healthy Japanese. Principal coordinate analysis of beta diversity showed that the skin microbiome of Cameroonians formed different clusters from Japanese, suggesting a substantial difference in the microbiome profiles between participants of both countries. In addition, the alpha diversity in skin microbes was higher in Cameroonians than Japanese participants. These data may offer insights into the determinant factors responsible for the distinctness of the skin microbiome of people living in Central Africa and Asia.
Collapse
Affiliation(s)
- Kazuhiro Ogai
- AI Hospital/Macro Signal Dynamics Research and Development Center (ai@ku), Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Benderli Christine Nana
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Yukie Michelle Lloyd
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii, USA
| | - John Paul Arios
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii, USA
| | - Boonyanudh Jiyarom
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii, USA
| | - Honore Awanakam
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Livo Forgu Esemu
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Aki Hori
- Laboratory of Host Defense and Responses, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ayaka Matsuoka
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Firzan Nainu
- Laboratory of Host Defense and Responses, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Rosette Megnekou
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Department of Animal Biology and Physiology of the Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Rose Gana Fomban Leke
- Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | | | - Shigefumi Okamoto
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan.
| | - Takayuki Kuraishi
- Laboratory of Host Defense and Responses, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
6
|
Manus MB, Kuthyar S, Perroni-Marañón AG, de la Mora AN, Amato KR. Comparing different sample collection and storage methods for field-based skin microbiome research. Am J Hum Biol 2021; 34:e23584. [PMID: 33644952 DOI: 10.1002/ajhb.23584] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The skin, as well as its microbial communities, serves as the primary interface between the human body and the surrounding environment. In order to implement the skin microbiome into human biology research, there is a need to explore the effects of different sample collection and storage methodologies, including the feasibility of conducting skin microbiome studies in field settings. METHODS We collected 99 skin microbiome samples from nine infants living in Veracruz, Mexico using a dual-tipped "dry" swab on the right armpit, palm, and forehead and a "wet" swab (0.15 M NaCl and 0.1% Tween 20) on the same body parts on the left side of the body. One swab from each collection method was stored in 95% ethanol while the other was frozen at -20°C. 16S rRNA amplicon sequencing generated data on bacterial diversity and community composition, which were analyzed using PERMANOVA, linear mixed effects models, and an algorithm-based classifier. RESULTS Treatment (wet_ethanol, wet_freezer, dry_ethanol, and dry_freezer) had an effect (~10% explanatory power) on the bacterial community diversity and composition of skin samples, although body site exhibited a stronger effect (~20% explanatory power). Within treatments, the collection method (wet vs. dry) affected measures of bacterial diversity to a greater degree than did the storage method (ethanol vs. freezer). CONCLUSIONS Our study provides novel information on skin microbiome sample collection and storage methods, suggesting that ethanol storage is suitable for research in resource-limited settings. Our results highlight the need for future study design to account for interbody site microbial variation.
Collapse
Affiliation(s)
- Melissa B Manus
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| | - Sahana Kuthyar
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | | | | | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|