1
|
Mukherjee S, Bayry J. The Yin and Yang of TLR4 in COVID-19. Cytokine Growth Factor Rev 2025; 82:70-85. [PMID: 39490235 DOI: 10.1016/j.cytogfr.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024]
Abstract
Various pattern recognition receptors (PRRs), including toll-like receptors (TLRs), play a crucial role in recognizing invading pathogens as well as damage-associated molecular patterns (DAMPs) released in response to infection. The resulting signaling cascades initiate appropriate immune responses to eliminate these pathogens. Current evidence suggests that SARS-CoV-2-driven activation of TLR4, whether through direct recognition of the spike glycoprotein (alone or in combination with endotoxin) or by sensing various TLR4-activating DAMPs or alarmins released during viral infection, acts as a critical mediator of antiviral immunity. However, TLR4 exerts a dual role in COVID-19, demonstrating both beneficial and deleterious effects. Dysregulated TLR4 signaling is implicated in the proinflammatory consequences linked to the immunopathogenesis of COVID-19. Additionally, TLR4 polymorphisms contribute to severity of the disease. Given its significant immunoregulatory impact on COVID-19 immunopathology and host immunity, TLR4 has emerged as a key target for developing inhibitors and immunotherapeutic strategies to mitigate the adverse effects associated with SARS-CoV-2 and related infections. Furthermore, TLR4 agonists are also being explored as adjuvants to enhance immune responses to SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory (IBIL), Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal 713 340, India.
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris 75006, France; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678 623, India.
| |
Collapse
|
2
|
Ayyat MS, Khalil NA, Al-Sagheer AA, Elmemy MM, Monem UMA. Maintaining the physiological stability during artificial spawning of Liza ramada in captivity. AQUACULTURE INTERNATIONAL 2025; 33:44. [DOI: 10.1007/s10499-024-01721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/09/2024] [Indexed: 01/05/2025]
Abstract
AbstractIn captivity, the physiological condition of mature brood fish has a vital role for a successful artificial spawning. Therefore, the current study aimed to minimize endocrine and metabolic disruptions during routine handling, transportation, and acclimatization during artificial spawning in L. ramada. Here, we determined the impacts of transportation and handling, as well as the acclimation to different salinities on the levels of total thyroxine (T4), triiodothyronine (T3), cortisol, and glucose in the mature L. ramada females. The transportation procedures of cultured mature females of L. ramada without anesthesia induced physiological stress as reflected with a rapid elevation in serum cortisol and glucose concomitant with a decrease in T4 within 3 h. However, the anesthesia protocol and the gradual acclimatization to seawater (24 h) were successful in maintaining baseline concentrations of the measured hormones in mature L. ramada females. The recorded levels of thyroid hormones (T4 and T3) and cortisol proved that 40 mg l−1 of clove oil was superior to anesthetic tricaine methane sulfonate (MS-222). In parallel, clove oil as an anesthetic has a rapid induction time and longer recovery time compared to MS-222 in L. ramada anesthesia. So, the slow acclimation and clove oil anesthesia were crucial during the induction of spawning in L. ramada. Indeed, all injected females were physiologically stable and spawned within the appropriate time consistent with the histological observation of both ovary and liver. Together, these findings recommend that maintaining the physiological stability of broodstock is critical for the successful artificial spawning of mullet.
Collapse
|
3
|
Prakash C, Tyagi J, Singh KV, Kumar G, Sharma D. Eugenol attenuates aluminium-induced neurotoxicity in rats by inhibiting the activation of STAT3 and NF-кB. Metab Brain Dis 2025; 40:87. [PMID: 39760810 DOI: 10.1007/s11011-024-01526-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
Aluminium is a common metallic toxicant that easily penetrates the brain and exerts severe pathological effects e.g., oxidative stress, inflammation and neurodegeneration. Eugenol is a natural phenolic compound possessing numerous therapeutic properties including antioxidant, anti-inflammatory and neuroprotective. The compound has also been reported to interfere with important transcription factors like STAT3 and NF-кB. Thus, the present study intended to explore the therapeutic potential of eugenol in aluminium neurotoxicity. Rats were administered AlCl3 (100 mg/kg b. wt., orally) and eugenol (200 mg/kg b. wt., orally) alone or in combination for 45 days. The results revealed that AlCl3 administration increases acetylcholinesterase (AChE) activity, lipid peroxidation (LPO), and protein oxidation (PO) along with decreasing superoxide dismutase (SOD) and catalase (CAT) activities, and glutathione (GSH) content in the cortex and hippocampus regions of the brain. Moreover, AlCl3 induces neuronal loss and astroglial activation in both brain areas. The study further revealed that AlCl3 also increases the expression of transcription factors STAT3 and NF-кB in neurons and astrocytes of the cortex and hippocampus. However, co-administration of eugenol with AlCl3 restored the enzymatic activities of AChE, SOD and CAT, and GSH content, and rescued the cortex and hippocampus from LPO, PO, neuronal loss and astroglial activation. Furthermore, the study reported that eugenol reverses the expression pattern of STAT3 and NF-кB in AlCl3-intoxicated rats. In conclusion, the study suggests that eugenol ameliorates oxidative stress, neuronal loss and reactive astrogliosis in aluminium-induced neurotoxicity by inhibiting signalling molecules, STAT3 and NF-кB.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Tyagi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kumari Vandana Singh
- Department of Laboratory Medicine, Jaiprakash Narayan Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Gautam Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Hong SW, Page R, Truman P. Smoking, coffee intake, and Parkinson's disease: Potential protective mechanisms and components. Neurotoxicology 2025; 106:48-63. [PMID: 39701424 DOI: 10.1016/j.neuro.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Environmental and lifestyle factors, such as smoking and coffee drinking, have been associated with a decreased risk for PD. However, the biological mechanisms underlying protective effects on PD are still not fully understood. It has been suggested that non-nicotine components in cigarette smoke and non-caffeine components in coffee may contribute to this protective effect. The aim of this review was to explore candidate molecules and mechanisms behind the effects of smoking and coffee drinking on PD by integrating findings from previous studies. By cross-referencing an index of tobacco constituents and a list of coffee constituents with existing literature on natural compounds and their structural analogs that show inhibitory activities against monoamine oxidase B, catechol O-methyltransferase, and α-synuclein fibrillation, we have identified tobacco and coffee components that inhibit these targets. Furthermore, tobacco and coffee components potentially play roles in suppressing neuroinflammation, activating the Nrf2 pathway as natural activators, and altering the gut microbiome. This review suggests that the phenolic compounds from tobacco and coffee investigated may contribute to the low incidence of PD in smokers and coffee drinkers, showing moderate to strong potential as therapeutic interventions. The current review suggests that multifunctional molecules found in coffee and cigarette smoke may have potential neuroprotective effects, but none of the data indicates that multifunctionality is required for these effects. This review will deepen our understanding of how smoking and coffee drinking are linked to a reduced risk of PD and will also be important in elucidating the mechanisms underlying the protective effects of smoking and coffee drinking on PD.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington 6021, New Zealand.
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| |
Collapse
|
5
|
Niu C, Dong M, Niu Y. Role of Glutathione in Parkinson's Disease Pathophysiology and Therapeutic Potential of Polyphenols. Phytother Res 2024; 38:5567-5582. [PMID: 39290049 DOI: 10.1002/ptr.8342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Oxidative stress is recognized to have a central role in the initiation and progression of Parkinson's disease (PD). Within the brain, neurons are particularly sensitive to oxidation due in part to their weak intrinsic antioxidant defense. Theoretically, neurons mostly depend on neighboring astrocytes to provide antioxidant protection by supplying cysteine-containing products for glutathione (GSH) synthesis. Astrocytes and neurons possess several amino acid transport systems for GSH and its precursors. Indeed, GSH is the most abundant intrinsic antioxidant in the central nervous system. The GSH depletion and/or alterations in its metabolism in the brain contribute to the pathogenesis of PD. Noteworthy, polyphenols possess potent antioxidant activity and can augment the GSH redox system. Numerous in vitro and in vivo studies have indicated that polyphenols exhibit potent neuroprotective effects in PD. Epidemiological studies have found an association between the consumption of dietary polyphenols and a lower PD risk. In this review, we summarize current knowledge on the biosynthesis and metabolism of GSH in the brain, with an emphasis on their contribution and therapeutic potential in PD. In particular, we focus on polyphenols that can increase brain GSH levels against PD. Furthermore, some current challenges and future perspectives for polyphenol-based therapies are also discussed.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, New York, USA
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
6
|
Ahmad N, Ansari MA, Al-Mahmeed A, Joji RM, Saeed NK, Shahid M. Biogenic silver nanomaterials synthesized from Ocimum sanctum leaf extract exhibiting robust antimicrobial and anticancer activities: Exploring the therapeutic potential. Heliyon 2024; 10:e35486. [PMID: 39170333 PMCID: PMC11336750 DOI: 10.1016/j.heliyon.2024.e35486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
There is a surge in antibiotic consumption because of the emergence of resistance among microbial pathogens. In the escalating challenge of antibiotic resistance in microbial pathogens, silver nanoparticles (AgNPs)-mediated therapy has proven to be the most effective and alternative therapeutic strategy for bacterial infections and cancer treatment. This study aims to explore the potential of OsAgNPs derived from Ocimum sanctum's aqueous leaf extract as antimicrobial agents and anticancer drug delivery modalities. This study utilized a plant extract derived from Ocimum sanctum (Tulsi) leaves to synthesize silver nanoparticles (OsAgNPs), that were characterized by FTIR, TEM, SEM, and EDX. OsAgNPs were assessed for their antibacterial and anticancer potential. TEM analysis unveiled predominantly spherical or oval-shaped OsAgNPs, ranging in size from 4 to 98 nm. The (MICs) of OsAgNPs demonstrated a range from 0.350 to 19.53 μg/ml against clinical, multidrug-resistant (MDR), and standard bacterial isolates. Dual labelling with ethidium bromide and acridine orange demonstrated that OsAgNPs induced apoptosis in HeLa cells. The OsAgNPs-treated cells showed yellow-green fluorescence in early-stage apoptotic cells and orange fluorescence in late-stage cells. Furthermore, OsAgNPs exhibited a concentration-dependent decrease in HeLa cancer cell viability, with an IC50 value of 90 μg/ml noted. The study highlights the remarkable antibacterial efficacy of OsAgNPs against clinically significant bacterial isolates, including antibiotic-resistant strains. These results position the OsAgNPs as prospective therapeutic agents with the potential to address the growing challenges posed by antibiotic resistance and cervical cancer.
Collapse
Affiliation(s)
- Nayeem Ahmad
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Bahrain
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ali Al-Mahmeed
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Bahrain
| | - Ronni Mol Joji
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Bahrain
| | - Nermin Kamal Saeed
- Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Bahrain
| | - Mohammad Shahid
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine & Medical Sciences, Arabian Gulf University, Bahrain
| |
Collapse
|
7
|
Tavvabi-Kashani N, Hasanpour M, Baradaran Rahimi V, Vahdati-Mashhadian N, Askari VR. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol's potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024; 238:107607. [PMID: 38191032 DOI: 10.1016/j.toxicon.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The active biological phytochemicals, crucial compounds employed in creating hundreds of medications, are derived from valuable and medicinally significant plants. These phytochemicals offer excellent protection from various illnesses, including inflammatory disorders and chronic conditions caused by oxidative stress. A phenolic monoterpenoid known as eugenol (EUG), it is typically found in the essential oils of many plant species from the Myristicaceae, Myrtaceae, Lamiaceae, and Lauraceae families. One of the main ingredients of clove oil (Syzygium aromaticum (L.), Myrtaceae), it has several applications in industry, including flavoring food, pharmaceutics, dentistry, agriculture, and cosmeceuticals. Due to its excellent potential for avoiding many chronic illnesses, it has lately attracted attention. EUG has been classified as a nonmutant, generally acknowledged as a safe (GRAS) chemical by the World Health Organization (WHO). According to the existing research, EUG possesses notable anti-inflammatory, antioxidant, analgesic, antibacterial, antispasmodic, and apoptosis-promoting properties, which have lately gained attention for its ability to control chronic inflammation, oxidative stress, and mitochondrial malfunction and dramatically impact human wellness. The purpose of this review is to evaluate the scientific evidence from the most significant research studies that have been published regarding the protective role and detoxifying effects of EUG against a wide range of toxins, including biological and chemical toxins, as well as different drugs and pesticides that produce a variety of toxicities, throughout view of the possible advantages of EUG.
Collapse
Affiliation(s)
- Negin Tavvabi-Kashani
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Spisni E, Valerii MC, Massimino ML. Essential Oil Molecules Can Break the Loop of Oxidative Stress in Neurodegenerative Diseases. BIOLOGY 2023; 12:1504. [PMID: 38132330 PMCID: PMC10740714 DOI: 10.3390/biology12121504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Essential oils (EOs) are mixtures of volatile compounds, extracted from aromatic plants, with multiple activities including antioxidant and anti-inflammatory ones. EOs are complex mixtures easy to find on the market and with low costs. In this mini narrative review, we have collected the results of in vitro and in vivo studies, which tested these EOs on validated models of neurodegeneration and in particular of the two main neurodegenerative diseases (NDs) that afflict humans: Alzheimer's and Parkinson's. Since EO compositions can vary greatly, depending on the environmental conditions, plant cultivar, and extraction methods, we focused our attention to studies involving single EO molecules, and in particular those that have demonstrated the ability to cross the blood-brain barrier. These single EO molecules, alone or in defined mixtures, could be interesting new therapies to prevent or slow down oxidative and inflammatory processes which are common mechanisms that contribute to neuronal death in all NDs.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- CIRI Life Sciences and Health Technologies, University of Bologna, 40126 Bologna, Italy
| | - Maria Lina Massimino
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padova, Italy
| |
Collapse
|
9
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
10
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj J, Selvaraj D. The identification of cianidanol as a selective estrogen receptor beta agonist and evaluation of its neuroprotective effects on Parkinson's disease models. Life Sci 2023; 333:122144. [PMID: 37797687 DOI: 10.1016/j.lfs.2023.122144] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
AIM The present study aims to identify selective estrogen receptor beta (ERβ) agonists and to evaluate the neuroprotective mechanism in Parkinson's disease (PD) models. MAIN METHODS In-silico studies were carried out using Maestro and GROMACS. Neuroprotective activity and apoptosis were evaluated using cytotoxicity assay and flow cytometry respectively. Gene expression studies were carried out by reverse transcription polymerase chain reaction. Motor and cognitive functions were assessed by actophotometer, rotarod, catalepsy, and elevated plus maze. The neuronal population in the substantia nigra and striatum of rats was assessed by hematoxylin and eosin staining. KEY FINDINGS Cianidanol was identified as a selective ERβ agonist through virtual screening. The cianidanol-ERβ complex is stable during the 200 ns simulation and was able to retain the interactions with key amino acid residues. Cianidanol (25 μM) prevents neuronal toxicity and apoptosis induced by rotenone in differentiated SH-SY5Y cells. Additionally, cianidanol (25 μM) increases the expression of ERβ, cathepsin D, and Nrf2 transcripts. The neuroprotective effects of cianidanol (25 μM) were reversed in the presence of a selective ERβ antagonist. In this study, we found that selective activation of ERβ could decrease the transcription of α-synuclein gene. Additionally, cianidanol (10, 20, 30 mg/kg, oral) improves the motor and cognitive deficit in rats induced by rotenone. SIGNIFICANCE Cianidanol shows neuroprotective action in PD models and has the potential to serve as a novel therapeutic agent for the treatment of PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
11
|
Hasan MR, Alotaibi BS, Althafar ZM, Mujamammi AH, Jameela J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: "Elixir of Life". Molecules 2023; 28:1193. [PMID: 36770859 PMCID: PMC9919305 DOI: 10.3390/molecules28031193] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/27/2023] Open
Abstract
In most cases, cancer develops due to abnormal cell growth and subsequent tumour formation. Due to significant constraints with current treatments, natural compounds are being explored as potential alternatives. There are now around 30 natural compounds under clinical trials for the treatment of cancer. Tulsi, or Holy Basil, of the genus Ocimum, is one of the most widely available and cost-effective medicinal plants. In India, the tulsi plant has deep religious and medicinal significance. Tulsi essential oil contains a valuable source of bioactive compounds, such as camphor, eucalyptol, eugenol, alpha-bisabolene, beta-bisabolene, and beta-caryophyllene. These compounds are proposed to be responsible for the antimicrobial properties of the leaf extracts. The anticancer effects of tulsi (Ocimum sanctum L.) have earned it the title of "queen of herbs" and "Elixir of Life" in Ayurvedic treatment. Tulsi leaves, which have high concentrations of eugenol, have been shown to have anticancer properties. In a various cancers, eugenol exerts its antitumour effects through a number of different mechanisms. In light of this, the current review focuses on the anticancer benefits of tulsi and its primary phytoconstituent, eugenol, as apotential therapeutic agent against a wide range of cancer types. In recent years, tulsi has gained popularity due to its anticancer properties. In ongoing clinical trials, a number of tulsi plant compounds are being evaluated for their potential anticancer effects. This article discusses anticancer, chemopreventive, and antioxidant effects of tulsi.
Collapse
Affiliation(s)
- Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ziyad Mohammed Althafar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| | - Ahmed Hussain Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Jafar Jameela
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11971, Saudi Arabia
| |
Collapse
|