1
|
Liu Y, Liang J, Li X, Huang J, Huang J, Wang J. Interferon-induced transmembrane protein 2 is a prognostic marker in colorectal cancer and promotes its progression by activating the PI3K/AKT pathway. Discov Oncol 2024; 15:191. [PMID: 38802621 PMCID: PMC11130111 DOI: 10.1007/s12672-024-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Interferon-induced transmembrane protein 2 (IFITM2) is involved in repressing viral infection. This study aim to investigate the expression of IFITM2 in colorectal cancer (CRC) and explore its effect on cell proliferation, migration, and invasion. METHODS We analyzed The Cancer Genome Atlas (TCGA) database for IFITM2 expression in colorectal cancer and used western blots to detect IFITM2 protein in specimens and cell lines of colorectal cancers. To assess the association between IFITM2 and clinical features, both univariate and multivariate cox regression analysis were conducted. Kaplan-Meier plots were used in the TCGA database to assess IFITM2 gene expression's prognostic significance. Silencing IFITM2 in SW480 and HCT116 cells was achieved by transient transfection with siRNA. Proliferation of CRCs was examined using Cell Counting Kit-8. The effect of IFITM2 on the migration and invasion of CRC cells was studied using wound healing and transwell assays. Gene set enrichment analysis (GSEA) was used to examine IFITM2-associated pathways and Western blotting was used to confirm it. RESULTS IFITM2 was over-expressed in the CRC tissues and cells, with high IFITM2 expression related to the tumor N, M, and pathologic stages. The presence of IFITM2 significantly impacted patient survival in CRC. The proliferation of SW480 and HCT116 cells was suppressed when IFITM2 was silenced, resulting in weakened migration and invasion of CRC cells. GSEA analysis showed that IFITM2 was positively related to the phosphoinositide 3-kinase (PI3K)/AKT pathway, and western blot results confirmed that IFITM2 activated it. CONCLUSIONS IFITM2 was over-expressed in CRC and modulated the PI3K/AKT pathway to promote CRC cells proliferation and metastasis.
Collapse
Affiliation(s)
- Yonggang Liu
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China.
| | - Jiyun Liang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Xi Li
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Junyong Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Jiangyuan Huang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| | - Jiale Wang
- Department of Oncology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), No.1 Jiazi Road, Shunde District, Foshan, 528308, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Jeong SU, Park JM, Yoon SY, Hwang HS, Go H, Shin DM, Ju H, Sung CO, Lee JL, Jeong G, Cho YM. IFITM3-mediated activation of TRAF6/MAPK/AP-1 pathways induces acquired TKI resistance in clear cell renal cell carcinoma. Investig Clin Urol 2024; 65:84-93. [PMID: 38197755 PMCID: PMC10789540 DOI: 10.4111/icu.20230294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024] Open
Abstract
PURPOSE Vascular endothelial growth factor tyrosine kinase inhibitors (TKIs) have been the standard of care for advanced and metastatic clear cell renal cell carcinoma (ccRCC). However, the therapeutic effect of TKI monotherapy remains unsatisfactory given the high rates of acquired resistance to TKI therapy despite favorable initial tumor response. MATERIALS AND METHODS To define the TKI-resistance mechanism and identify new therapeutic target for TKI-resistant ccRCC, an integrative differential gene expression analysis was performed using acquired resistant cohort and a public dataset. Sunitinib-resistant RCC cell lines were established and used to test their malignant behaviors of TKI resistance through in vitro and in vivo studies. Immunohistochemistry was conducted to compare expression between the tumor and normal kidney and verify expression of pathway-related proteins. RESULTS Integrated differential gene expression analysis revealed increased interferon-induced transmembrane protein 3 (IFITM3) expression in post-TKI samples. IFITM3 expression was increased in ccRCC compared with the normal kidney. TKI-resistant RCC cells showed high expression of IFITM3 compared with TKI-sensitive cells and displayed aggressive biologic features such as higher proliferative ability, clonogenic survival, migration, and invasion while being treated with sunitinib. These aggressive features were suppressed by the inhibition of IFITM3 expression and promoted by IFITM3 overexpression, and these findings were confirmed in a xenograft model. IFITM3-mediated TKI resistance was associated with the activation of TRAF6 and MAPK/AP-1 pathways. CONCLUSIONS These results demonstrate IFITM3-mediated activation of the TRAF6/MAPK/AP-1 pathways as a mechanism of acquired TKI resistance, and suggest IFITM3 as a new target for TKI-resistant ccRCC.
Collapse
Affiliation(s)
- Se Un Jeong
- Department of Pathology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ja-Min Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sun Young Yoon
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee Sang Hwang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Myung Shin
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyein Ju
- Department of Cell and Genetic Engineering, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gowun Jeong
- AI Recommendation, T3K, SK Telecom, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Schelle L, Abrantes J, Baldauf HM, Esteves PJ. Evolution of primate interferon-induced transmembrane proteins (IFITMs): a story of gain and loss with a differentiation into a canonical cluster and IFITM retrogenes. Front Microbiol 2023; 14:1213685. [PMID: 37577422 PMCID: PMC10415907 DOI: 10.3389/fmicb.2023.1213685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023] Open
Abstract
Interferon-inducible transmembrane proteins (IFITMs) are a family of transmembrane proteins. The subgroup of immunity-related (IR-)IFITMs is involved in adaptive and innate immune responses, being especially active against viruses. Here, we suggest that IFITMs should be classified as (1) a canonical IFITM gene cluster, which is located on the same chromosome, and (2) IFITM retrogenes, with a random and unique location at different positions within the genome. Phylogenetic analyses of the canonical cluster revealed the existence of three novel groups of primate IFITMs (pIFITM) in the IR-IFITM clade: the prosimian pIFITMs(pro), the new world monkey pIFITMs(nwm) and the old world monkey pIFITMs(owm). Therefore, we propose a new nomenclature: IR-pIFITM1, IR-pIFITM2, IR-pIFITM3, IR-pIFITMnwm, IR-pIFITMowm, and IR-pIFITMpro. We observed divergent evolution for pIFITM5 and pIFITM10, and evidence for concerted evolution and a mechanism of birth-and-death evolution model for the IR-pIFITMs. In contrast, the IFITMs scattered throughout the genomes possessed features of retrogenes retrotransposed by class 1 transposable elements. The origin of the IFITM retrogenes correspond to more recent events. We hypothesize that the transcript of a canonical IFITM3 has been constantly retrotransposed using class 1 transposable elements resulting in the IFITM retro(pseudo)genes. The unique pattern of each species has most likely been caused by constant pseudogenization and loss of the retro(pseudo)genes. This suggests a third mechanism of evolution for the IR-IFITMs in primates, similar to the birth-and-death model of evolution, but via a transposable element mechanism, which resulted in retro(pseudo)genes.
Collapse
Affiliation(s)
- Luca Schelle
- Faculty of Medicine, Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Joana Abrantes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hanna-Mari Baldauf
- Faculty of Medicine, Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Pedro José Esteves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS - Center of Investigation in Health Technologies, CESPU, Gandra, Portugal
| |
Collapse
|
4
|
Qiao S, Zhang W, Su Y, Jiang Y. Integrated bioinformatics analysis of IFITM1 as a prognostic biomarker and investigation of its immunological role in prostate adenocarcinoma. Front Oncol 2022; 12:1037535. [PMID: 36591519 PMCID: PMC9795034 DOI: 10.3389/fonc.2022.1037535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Prostate adenocarcinoma (PRAD) is a highly aggressive malignancy with high mortality and poor prognosis, and its potential mechanism remains unclear. Our study aimed to identify novel markers for the prognosis of PRAD using bioinformatics technology. Methods The GSE32571 dataset was downloaded from the GEO database, and analyzed via the limma R package to identify differentially expressed genes (DEGs) and differentially expressed immune score-related genes (DEISRGs). The immune-related genes (IRGs) were further obtained by overlapping DEISRGs and DEGs, and the core gene was identified via survival analysis. Furthermore, the expression level, prognostic value, and potential functions of the core gene were evaluated via multiple bioinformatics databases. Results A total of 301 IRGs were identified from the GSE32571 dataset, and IFITM1 was a down-regulated gene in several types of cancer, including PRAD. Besides, low expression of IFITM1 was associated with a poor prognosis in PRAD. GSEA indicated that the vital pathways of IFITM1-associated genes were mainly enriched in primary immunodeficiency, Th17 cell differentiation, Th1, and Th2 cell differentiation, natural killer cell-mediated cytotoxicity, myeloid dendritic cell activation, regulation of leukocyte activation, etc. Furthermore, IFITM1 was closely correlated with 22 types of tumor-infiltrating immune cells. Discussion IFITM1 was a prognostic biomarker for PRAD patients, and it can be acted as a potential immune therapy target in PRAD.
Collapse
|
5
|
Cai S, Zheng Z, Cheng J, Zhong L, Shao R, Zheng F, Lai Z, Ou J, Xu L, Zhou P, Lu G, Zhang G. Swine Interferon-Inducible Transmembrane Proteins Potently Inhibit African Swine Fever Virus Replication. Front Immunol 2022; 13:827709. [PMID: 35401540 PMCID: PMC8989734 DOI: 10.3389/fimmu.2022.827709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
Abstract
African swine fever virus (ASFV) causes an acute, hemorrhagic, and highly contagious disease in domestic swine, leading to significant economic losses to the global porcine industry. Restriction factors of innate immunity play a critical in host antiviral action. However, function of swine restriction factors of innate immunity on ASFV has been seldomly investigated. In this study, we determined five homologues of swine interferon-induced transmembrane proteins (SwIFITM [named SwIFITM1a, -1b, -2, -3, and -5]), and we found that they all exhibit potent antiviral activity against ASFV. Expression profile analysis indicated that these SwIFITMs are constitutively expressed in most porcine tissues. Whether infected with ASFV or treated with swine interferon, the expression levels of SwIFITMs were induced in vitro. The subcellular localization of SwIFITMs was similar to that of their human homologues. SwIFITM1a and -1b localized to the plasma membrane, SwIFITM2 and -3 focused on the cytoplasm and the perinuclear region, while SwIFITM5 accumulated in the cell surface and cytoplasm. The overexpression of SwIFITM1a, -1b, -2, -3, or -5 could significantly inhibit ASFV replication in Vero cells, whereas knockdown of these genes could enhance ASFV replication in PAMs. We blocked the constitutive expression of endogenous IFITMs in Vero cells using a CRISPR-Cas9 system and then infected them with ASFV. The results indicated that the knockout of endogenous IFITMs could enhance ASFV replication. Finally, we expressed five SwIFITMs in knockout Vero cell lines and then challenged them with ASFV. The results showed that all of the SwIFITMs had a strong antiviral effect on ASFV. This research will further expand the understanding of the anti-ASFV activity of porcine IFITMs.
Collapse
Affiliation(s)
- Siqi Cai
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Zezhong Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - JiaoJiao Cheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Lintao Zhong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Ran Shao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Feiyan Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhiying Lai
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Jiajun Ou
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Liang Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Pei Zhou
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Gang Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
6
|
Zhu Y, Shan D, Guo L, Chen S, Li X. Immune-Related lncRNA Pairs Clinical Prognosis Model Construction for Hepatocellular Carcinoma. Int J Gen Med 2022; 15:1919-1931. [PMID: 35237066 PMCID: PMC8882675 DOI: 10.2147/ijgm.s343350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays an essential regulatory role in the occurrence and development of hepatocellular carcinoma (HCC). This paper aims to establish an immune-related lncRNA (irlncRNA) pairs model independent of expression level for risk assessment and prognosis prediction of HCC. Methods Transcriptome data and corresponding clinical data were downloaded from TCGA. HCC patients were randomly divided into training group and test group. Univariate Cox regression analysis, LASSO regression analysis, and stepwise multiple Cox regression analysis were used to establish a prognostic model. The prediction ability of the model was verified by ROC curves. Next, the patients were divided into low-risk and high-risk groups. We compared the differences between the two groups in survival rate, clinicopathological characteristics, tumor immune cell infiltration status, chemotherapeutic drug sensitivity and immunosuppressive molecules. Results A prognosis prediction model was established based on 7 irlncRNA pairs, namely irlncRNA pairs (IRLP). ROC curves of the training group and test group showed that the IRLP model had high sensitivity and specificity for survival prediction. Kaplan–Meier analysis showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group. Immune cell infiltration analysis showed that the high-risk group was significantly correlated with various immune cell infiltration. Finally, there were statistically significant differences in chemosensitivity and molecular marker expression between the two groups. Conclusion The prognosis prediction model established by irlncRNA pairs has a certain guiding significance for the prognosis prediction of HCC. It may provide valuable clinical applications in antitumor immunotherapy.
Collapse
Affiliation(s)
- Yinghui Zhu
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Dezhi Shan
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| | - Lianyi Guo
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Shujia Chen
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xiaofei Li
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Correspondence: Xiaofei Li, Jinzhou, Liaoning, 121000, People’s Republic of China, Email
| |
Collapse
|
7
|
Interferon-induced transmembrane protein 2 promotes epithelial-mesenchymal transition by activating transforming growth factor-β1/small mother against decapentaplegic 2 signaling in gastric cancer. Mol Biol Rep 2021; 49:997-1006. [PMID: 34855108 DOI: 10.1007/s11033-021-06919-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most prevalent malignancy around the world. Primary tumor cells are enabled to invade and migrate into adjacent normal tissues to form secondary tumors. Epithelial-mesenchymal transitions (EMT) plays a pivotal role in facilitating tumor progression. Abundant evidence suggested that the transforming growth factor-β1 (TGF-β1) triggered the process of EMT. Nonetheless, the precise molecular mechanisms underlying EMT requires further elucidation, and there still lacks effective specific therapeutic target. In our recent research, we demonstrated that the interferon (IFN)-induced transmembrane protein 2 (IFITM2) promoted the growth and metastasis of GC. However, it remains unclear whether IFITM2 involves in TGF-β1 mediated EMT in GC. METHODS AND RESULTS In the present research, we investigated the functional role of IFITM2 in EMT process and TGF-β1 signaling pathway in two GC cell lines. We noticed that silencing IFITM2 can effectively inhibit TGF-β1 signaling mediated EMT by regulating down stream small mother against decapentaplegic (SMAD) 2/3 and transcription factors.This finding was further determined in both tumor tissues from GC patients and normal tissues adjacent to cancer. Our data demonstrated the key role of IFITM2 in TGF-β1 signaling and EMT in GC. CONCLUSION The findings enriched our understanding of the underlying mechanism in EMT during the progression of GC. In addition, IFITM2 would be a potential target for treating GC and other malignant tumors.
Collapse
|