1
|
Soliman NS, Soliman MS, Khairat SM, Gad MA, Shawky S, Elkholy AA. Genetic diversities and drug resistance in Mycobacterium bovis isolates from zoonotic tuberculosis using whole genome sequencing. BMC Genomics 2024; 25:1024. [PMID: 39487429 PMCID: PMC11529264 DOI: 10.1186/s12864-024-10909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Zoonotic human tuberculosis (TB) caused by Mycobacterium bovis (M. bovis) is as vital as Mycobacterium tuberculosis, however with scarce available information. We aimed to use whole-genome sequencing (WGS) technology to take a deep insight into the circulating genotypes of human M. bovis and the genomic characteristics underlying virulence and drug resistance. METHODS The study included smear positive Ziehl-Neelsen samples from patients with suspected tuberculosis. Samples were cultured on Lowenstein-Jensen media and suspected colonies of M. bovis were selected to undergo DNA extraction and WGS. Data was analysed using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC), and online bioinformatics tools. A phylogenetic tree was constructed for our sequenced strains, in addition to a set of 59 previously sequenced M. bovis genomes from different hosts and countries. RESULTS Out of total 112 mycobacterial positive cultures, five M. bovis were isolated and underwent WGS. All sequenced strains belonged to Mycobacterium tuberculosis var bovis, spoligotype BOV_1; BOV_11. Resistance gene mutations were determined in 100% of strains to pyrazinamide (pncA and rpsA), isoniazid (KatG and ahpC), ethambutol (embB, embC, embR and ubiA), streptomycin (rpsl) and fluoroquinolones (gyrA and gyrB). Rifampin (rpoB and rpoC) and delamanid (fbiC) resistance genes were found in 80% of strains. The major represented virulence classes were the secretion system, cell surface components and regulation system. The phylogenetic analysis revealed close genetic relatedness of three sequenced M. bovis strains to previous reported cow strains from Egypt and human strains from France, as well as relatedness of one M. bovis strain to four human Algerian strains. One sequenced strain was related to one cow strain from Egypt and a human strain from South Africa. CONCLUSIONS All sequenced M. bovis isolates showed the same spoligotype, but diverse phylogeny. Resistance gene mutations were detected for anti-TB drugs including pyrazinamide, isoniazid, streptomycin, ethambutol, fluoroquinolones, cycloserine, rifampin and delamanid. The virulence profile comprised genes assigned mainly to secretion system, cell surface components and regulation system. Phylogenetic analysis revealed genetic relatedness between our isolates and previously sequenced bovine strains from Egypt as well as human strains from other nearby countries in the region.
Collapse
Affiliation(s)
- Noha Salah Soliman
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - May Sherif Soliman
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Maha Ali Gad
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherine Shawky
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amani Ali Elkholy
- Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Shahab M, de Farias Morais GC, Akash S, Fulco UL, Oliveira JIN, Zheng G, Akter S. A robust computational quest: Discovering potential hits to improve the treatment of pyrazinamide-resistant Mycobacterium tuberculosis. J Cell Mol Med 2024; 28:e18279. [PMID: 38634203 PMCID: PMC11024510 DOI: 10.1111/jcmm.18279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The rise of pyrazinamide (PZA)-resistant strains of Mycobacterium tuberculosis (MTB) poses a major challenge to conventional tuberculosis (TB) treatments. PZA, a cornerstone of TB therapy, must be activated by the mycobacterial enzyme pyrazinamidase (PZase) to convert its active form, pyrazinoic acid, which targets the ribosomal protein S1. Resistance, often associated with mutations in the RpsA protein, complicates treatment and highlights a critical gap in the understanding of structural dynamics and mechanisms of resistance, particularly in the context of the G97D mutation. This study utilizes a novel integration of computational techniques, including multiscale biomolecular and molecular dynamics simulations, physicochemical and medicinal chemistry predictions, quantum computations and virtual screening from the ZINC and Chembridge databases, to elucidate the resistance mechanism and identify lead compounds that have the potential to improve treatment outcomes for PZA-resistant MTB, namely ZINC15913786, ZINC20735155, Chem10269711, Chem10279789 and Chem10295790. These computational methods offer a cost-effective, rapid alternative to traditional drug trials by bypassing the need for organic subjects while providing highly accurate insight into the binding sites and efficacy of new drug candidates. The need for rapid and appropriate drug development emphasizes the need for robust computational analysis to justify further validation through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Muhammad Shahab
- State key laboratories of Chemical Resources Engineering Beijing, University of Chemical TechnologyBeijingChina
| | | | - Shopnil Akash
- Department of PharmacyDaffodil International UniversityDhakaBangladesh
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | - Guojun Zheng
- State key laboratories of Chemical Resources Engineering Beijing, University of Chemical TechnologyBeijingChina
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial ResearchDhakaBangladesh
| |
Collapse
|
3
|
Akhmetova A, Bismilda V, Chingissova L, Filipenko M, Akilzhanova A, Kozhamkulov U. Prevalence of Beijing Central Asian/Russian Cluster 94-32 among Multidrug-Resistant M. tuberculosis in Kazakhstan. Antibiotics (Basel) 2023; 13:9. [PMID: 38275319 PMCID: PMC10812519 DOI: 10.3390/antibiotics13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The Beijing genotype is the most distributed M. tuberculosis family in Kazakhstan. In this study, we identified dominant Beijing clusters in Kazakhstan and assessed their drug susceptibility profiles and association with the most widely spread mutation Ser531Leu of the rpoB gene and the mutation Ser315Thr of the katG gene associated with resistance to rifampicin and isoniazid, respectively. M. tuberculosis isolates (n = 540) from new TB cases were included in the study. MIRU-VNTR genotyping was performed for 540 clinical isolates to determine M. tuberculosis families using 24 loci. RD analysis was additionally performed for the Beijing isolates. The identification of mutations in the drug-resistance genes of M. tuberculosis was performed with allele-specific real-time PCR and Sanger sequencing. The Beijing genotype was identified in 60% (324/540) of the clinical isolates. Central Asian/Russian cluster 94-32 was the most distributed cluster among the Beijing isolates (50.3%; 163/324). Three other dominant Beijing clusters were identified as 94-33 (3.4%; 11/324), 100-32 (3.1%; 10/324) and 99-32 (3.1%; 10/324). The Beijing genotype was associated with drug-resistant TB (p < 0.0001), including multidrug-resistant TB (p < 0.0001), in our study. An association of the mutation Ser531Leu of the rpoB gene with the Beijing genotype was found (p < 0.0001; OR = 16.0000; 95%CI: 4.9161-52.0740). Among the Beijing isolates, cluster 94-32 showed an association with MDR-TB (p = 0.021). This is why the evaluation of the Beijing genotype and its clusters is needed to control MDR-TB in Kazakhstan.
Collapse
Affiliation(s)
- Ainur Akhmetova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Venera Bismilda
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty 050000, Kazakhstan
| | - Lyailya Chingissova
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty 050000, Kazakhstan
| | - Maxim Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630000, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ulan Kozhamkulov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
4
|
Li Y, Kong X, Li Y, Tao N, Wang T, Li Y, Hou Y, Zhu X, Han Q, Zhang Y, An Q, Liu Y, Li H. Association between fatty acid metabolism gene mutations and Mycobacterium tuberculosis transmission revealed by whole genome sequencing. BMC Microbiol 2023; 23:379. [PMID: 38041005 PMCID: PMC10691062 DOI: 10.1186/s12866-023-03072-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/16/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Fatty acid metabolism greatly promotes the virulence and pathogenicity of Mycobacterium tuberculosis (M.tb). However, the regulatory mechanism of fatty acid metabolism in M.tb remains to be elucidated, and limited evidence about the effects of gene mutations in fatty acid metabolism on the transmission of M.tb was reported. RESULTS Overall, a total of 3193 M.tb isolates were included in the study, of which 1596 (50%) were genomic clustered isolates. Most of the tuberculosis isolates belonged to lineage2(n = 2744,85.93%), followed by lineage4(n = 439,13.75%) and lineage3(n = 10,0.31%).Regression results showed that the mutations of gca (136,605, 317G > C, Arg106Pro; OR, 22.144; 95% CI, 2.591-189.272), ogt(1,477,346, 286G > C ,Gly96Arg; OR, 3.893; 95%CI, 1.432-10.583), and rpsA (1,834,776, 1235 C > T, Ala412Val; OR, 3.674; 95% CI, 1.217-11.091) were significantly associated with clustering; mutations in gca and rpsA were also significantly associated with clustering of lineage2. Mutation in arsA(3,001,498, 885 C > G, Thr295Thr; OR, 6.278; 95% CI, 2.508-15.711) was significantly associated with cross-regional clusters. We also found that 20 mutation sites were positively correlated with cluster size, while 11 fatty acid mutation sites were negatively correlated with cluster size. CONCLUSION Our research results suggested that mutations in genes related to fatty acid metabolism were related to the transmission of M.tb. This research could help in the future control of the transmission of M.tb.
Collapse
Affiliation(s)
- Yameng Li
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China
| | - Xianglong Kong
- Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250011, Shandong, People's Republic of China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, 250031, Shandong, People's Republic of China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, 250021, Shandong, People's Republic of China
| | - Tingting Wang
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China
| | - Yingying Li
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China
| | - Yawei Hou
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China
| | - Xuehan Zhu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Qilin Han
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Yuzhen Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Qiqi An
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, 250021, Shandong, People's Republic of China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, 250021, Shandong, People's Republic of China.
| | - Huaichen Li
- Deartment of Chinese Medicine Integrated with Western Medicine, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, 250355, Shandong, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jingwuweiqi Road, Huaiyin District, Jinan, 250021, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Tahir Khan M, Dumont E, Chaudhry AR, Wei DQ. Free energy landscape and thermodynamics properties of novel mutations in PncA of pyrazinamide resistance isolates of Mycobacterium tuberculosis. J Biomol Struct Dyn 2023; 42:12259-12270. [PMID: 37837425 DOI: 10.1080/07391102.2023.2268216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Pyrazinamide (PZA) is one of the first-line antituberculosis therapy, active against non-replicating Mycobacterium tuberculosis (Mtb). The conversion of PZA into pyrazinoic acid (POA), the active form, required the activity of pncA gene product pyrazinamidase (PZase) activity. Mutations occurred in pncA are the primary cause behind the PZA resistance. However, the resistance mechanism is important to explore using high throughput computational approaches. Here we aimed to explore the mechanism of PZA resistance behind novel P62T, L120R, and V130M mutations in PZase using 200 ns molecular dynamics (MD) simulations. MD simulations were performed to observe the structural changes for these three mutants (MTs) compared to the wild types (WT). Root means square fluctuation, the radius of gyration, free energy landscape, root means square deviation, dynamic cross-correlation motion, and pocket volume were found in variation between WT and MTs, revealing the effects of P62T, L120R, and V130M. The free energy conformational landscape of MTs differs significantly from the WT system, lowering the binding of PZA. The geometric shape complementarity of the drug (PZA) and target protein (PZase) further confirmed that P62T, L120R, and V130M affect the protein structure. These effects on PZase may cause vulnerability to convert PZA into POA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, PR China
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Elise Dumont
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR7272, Nice, France
- Institut Universitaire de France, Paris, France
| | | | | |
Collapse
|
6
|
Daniyarov A, Akhmetova A, Rakhimova S, Abilova Z, Yerezhepov D, Chingissova L, Bismilda V, Takenov N, Akilzhanova A, Kairov U, Kozhamkulov U. Whole-Genome Sequence-Based Characterization of Pre-XDR M. tuberculosis Clinical Isolates Collected in Kazakhstan. Diagnostics (Basel) 2023; 13:2005. [PMID: 37370900 DOI: 10.3390/diagnostics13122005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Kazakhstan has a high burden of multidrug-resistant tuberculosis in the Central Asian region. This study aimed to perform genomic characterization of Mycobacterium tuberculosis strains obtained from Kazakhstani patients with pre-extensively drug-resistant tuberculosis diagnosed in Kazakhstan. METHODS Whole-genome sequencing was performed on 10 pre-extensively drug-resistant M. tuberculosis strains from different regions of Kazakhstan. All strains had high-confidence resistance mutations according to the resistance grading system previously established by the World Health Organization. The genome analysis was performed using TB-Profiler, Mykrobe, CASTB, and ResFinder. RESULTS Valuable information for understanding the genetic diversity of tuberculosis in Kazakhstan can also be obtained from whole-genome sequencing. The results from the Phenotypic Drug Susceptibility Testing (DST) of bacterial strains were found to be consistent with the drug resistance information obtained from genomic data that characterized all isolates as pre-XDR. This information can help in developing targeted prevention and control strategies based on the local epidemiology of tuberculosis. Furthermore, the data obtained from whole-genome sequencing can help in tracing the transmission pathways of tuberculosis and facilitating early detection of outbreaks. CONCLUSIONS The results from whole-genome sequencing of tuberculosis clinical samples in Kazakhstan provide important insights into the drug resistance patterns and genetic diversity of tuberculosis in the country. These results can contribute to the improvement of tuberculosis control and management programs in Kazakhstan.
Collapse
Affiliation(s)
- Asset Daniyarov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ainur Akhmetova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Saule Rakhimova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhannur Abilova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Dauren Yerezhepov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Lyailya Chingissova
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty 050000, Kazakhstan
| | - Venera Bismilda
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty 050000, Kazakhstan
| | - Nurlan Takenov
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty 050000, Kazakhstan
| | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ulykbek Kairov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ulan Kozhamkulov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
7
|
Rajendran A, Palaniyandi K. Mutations Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis: A Review and Update. Curr Microbiol 2022; 79:348. [PMID: 36209317 DOI: 10.1007/s00284-022-03032-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Pyrazinamide (PZA) has remained a keystone of tuberculosis (TB) therapy, and it possesses high imperative sterilizing action that can facilitate reduction in the present chemotherapy regimen. The combination of PZA works both with first- and second-line TB drugs, notably fluoroquinolones, clofazimine, bedaquiline, delamanid and pretomanid. Pyrazinamide inhibits various targets that are involved in different cellular processes like energy production (pncA), trans-translation (rpsA) and pantothenate/coenzyme A (panD) which are required for persistence of the pathogen. It is well known that pncA gene encoding pyrazinamidase is involved in the transition of PZA into the active form of pyrazinoic acid, which implies that mutation in the pncA gene can develop PZA resistance in Mycobacterium tuberculosis (M. tuberculosis) strain leading to a major clinical and public health concern. Therefore, it is very crucial to understand its resistance mechanism and to detect it precisely to help in the management of the disease. Scope of this review is to have a deep understanding of molecular mechanism of PZA resistance with its multiple targets which would help study the association of mutations and its resistance in M. tuberculosis. This will in turn help learn about the resistance of PZA and develop more accurate molecular diagnostic tool for drug-resistant TB in future TB therapy.
Collapse
Affiliation(s)
- Ananthi Rajendran
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India.
| |
Collapse
|
8
|
Daniyarov A, Molkenov A, Rakhimova S, Akhmetova A, Yerezhepov D, Chingissova L, Bismilda V, Toksanbayeva B, Rakisheva A, Akilzhanova A, Kozhamkulov U, Kairov U. Genomic Analysis of Multidrug-Resistant Mycobacterium tuberculosis Strains From Patients in Kazakhstan. Front Genet 2021; 12:683515. [PMID: 34858467 PMCID: PMC8630622 DOI: 10.3389/fgene.2021.683515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease that remains an essential public health problem in many countries. Despite decreasing numbers of new cases worldwide, the incidence of antibiotic-resistant forms (multidrug resistant and extensively drug-resistant) of TB is increasing. Next-generation sequencing technologies provide a high-throughput approach to identify known and novel potential genetic variants that are associated with drug resistance in Mycobacterium tuberculosis (Mtb). There are limited reports and data related to whole-genome characteristics of drug-resistant Mtb strains circulating in Kazakhstan. Here, we report whole-genome sequencing and analysis results of eight multidrug-resistant strains collected from TB patients in Kazakhstan. Genotyping and validation of all strains by MIRU-VNTR and spoligotyping methodologies revealed that these strains belong to the Beijing family. The spectrum of specific and potentially novel genomic variants (single-nucleotide polymorphisms, insertions, and deletions) related to drug resistance was identified and annotated. ResFinder, CARD, and CASTB antibiotic resistance databases were used for the characterization of genetic variants in genes associated with drug resistance. Our results provide reference data and genomic profiles of multidrug-resistant isolates for further comparative studies and investigations of genetic patterns in drug-resistant Mtb strains.
Collapse
Affiliation(s)
- Asset Daniyarov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Askhat Molkenov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Saule Rakhimova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ainur Akhmetova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dauren Yerezhepov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Lyailya Chingissova
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty, Kazakhstan
| | - Venera Bismilda
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty, Kazakhstan
| | - Bekzat Toksanbayeva
- National Scientific Center of Phthisiopulmonology of the Republic of Kazakhstan, Almaty, Kazakhstan
| | - Anar Rakisheva
- Department of Phthisiopulmonology, School of General Medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ulan Kozhamkulov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ulykbek Kairov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
9
|
Comparative Performance of Genomic Methods for the Detection of Pyrazinamide Resistance and Heteroresistance in Mycobacterium tuberculosis. J Clin Microbiol 2021; 60:e0190721. [PMID: 34757831 PMCID: PMC8769725 DOI: 10.1128/jcm.01907-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pyrazinamide is an important component of both drug-susceptible and drug-resistant tuberculosis treatment regimens. Although approximately 50% of rifampin-resistant isolates are also resistant to pyrazinamide, pyrazinamide susceptibility testing is not routinely performed due to the challenging nature of the assay. We investigated the diagnostic accuracy of genotypic and phenotypic methods and explored the occurrence of pyrazinamide heteroresistance. We assessed pyrazinamide susceptibility among 358 individuals enrolled in the South African EXIT-RIF cohort using Sanger and targeted deep sequencing (TDS) of the pncA gene, whole-genome sequencing (WGS), and phenotypic drug susceptibility testing. We calculated the diagnostic accuracy of the different methods and investigated the prevalence and clinical impact of pncA heteroresistance. True pyrazinamide susceptibility status was assigned to each isolate using the Köser classification and expert rules. We observed 100% agreement across genotypic methods for detection of pncA fixed mutations; only TDS confidently identified three isolates (0.8%) with minor variants. For the 355 (99.2%) isolates that could be assigned true pyrazinamide status with confidence, phenotypic DST had a sensitivity of 96.5% (95% confidence interval [CI], 93.8 to 99.3%) and specificity of 100% (95% CI, 100 to 100%), both Sanger sequencing and WGS had a sensitivity of 97.1% (95% CI, 94.6 to 99.6%) and specificity of 97.8% (95% CI, 95.7 to 99.9%), and TDS had sensitivity of 98.8% (95% CI, 97.2 to 100%) and specificity of 97.8% (95% CI, 95.7 to 99.9%). We demonstrate high sensitivity and specificity for pyrazinamide susceptibility testing among all assessed genotypic methods. The prevalence of pyrazinamide heteroresistance in Mycobacterium tuberculosis isolates was lower than that identified for other first-line drugs.
Collapse
|
10
|
Bagheri M, Pormohammad A, Fardsanei F, Yadegari A, Arshadi M, Deihim B, Hajikhani B, Turner RJ, Khalili F, Mousavi SMJ, Dadashi M, Goudarzi M, Dabiri H, Goudarzi H, Mirsaeidi M, Nasiri MJ. Diagnostic Accuracy of Pyrazinamide Susceptibility Testing in Mycobacterium tuberculosis: A Systematic Review with Meta-Analysis. Microb Drug Resist 2021; 28:87-98. [PMID: 34582723 DOI: 10.1089/mdr.2021.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Pyrazinamide (PZA) susceptibility testing plays a critical role in determining the appropriate treatment regimens for multidrug-resistant tuberculosis. We conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of sequencing PZA susceptibility tests against culture-based susceptibility testing methods as the reference standard. Methods: We searched the MEDLINE/PubMed, Embase, and Web of Science databases for the relevant records. The QUADAS-2 tool was used to assess the quality of the studies. Diagnostic accuracy measures (i.e., sensitivity and specificity) were pooled with a random-effects model. All statistical analyses were performed with Meta-DiSc (version 1.4, Cochrane Colloquium, Barcelona, Spain), STATA (version 14, Stata Corporation, College Station, TX), and RevMan (version 5.3, The Nordic Cochrane Centre, the Cochrane Collaboration, Copenhagen, Denmark) software. Results: A total of 72 articles, published between 2000 and 2019, comprising data for 8,701 isolates of Mycobacterium tuberculosis were included in the final analysis. The pooled sensitivity and specificity of the PZA sequencing test against all reference tests (the combination of BACTEC mycobacteria growth indicator tube 960 (MGIT 960), BACTEC 460, and proportion method) were 87% (95% CI: 85-88) and 94.7% (95% CI: 94-95). The positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and the area under the curve estimates were found to be 12.0 (95% CI: 9.0-16.0), 0.17 (95% CI: 0.13-0.21), 106 (95% CI: 71-158), and 96%, respectively. Deek's test result indicated a low likelihood for publication bias (p = 0.01). Conclusions: Our analysis indicated that PZA sequencing may be used in combination with conventional tests due to the advantage of the time to result and in scenarios where culture tests are not feasible. Further work to improve molecular tests would benefit from the availability of standardized reference standards and improvements to the methodology.
Collapse
Affiliation(s)
- Mohammad Bagheri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pormohammad
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Fatemeh Fardsanei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Yadegari
- School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Maniya Arshadi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnaz Deihim
- Department of Bacteriology and Virology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ray J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Farima Khalili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Dabiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Nasr-Esfahani B, Moghim S, Salehi M, Keikha M. Evaluating the Frequency of Resistance to Pyrazinamide Among Drug-resistant Strains of Mycobacterium tuberculosis in Isfahan, Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021; 16. [DOI: 10.5812/archcid.101092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Pyrazinamide is one of the most important first-line medications for the treatment of tuberculosis and an alternative intake for MDR-TB and XDR-TB patients. Objectives: The purpose of this study was to evaluate resistance to pyrazinamide in the isolates resistant to the Mycobacterium tuberculosis drug in patients in the city of Isfahan. Methods: In this study, the drug susceptibility test was performed with pyrazinamide using the proportion method and PZA assay on 47 isolates resistant to Mycobacterium tuberculosis. Then, the mutations of the pncA and rpsA genes of the isolates resistant to pyrazinamide were evaluated by the sequencing method. Results: According to the proportion method, 19 cases were resistant to pyrazinamide, 16 of which had mutations in their pncA and rpsA genes. Besides, five new mutations were recorded, and three isolates lacked mutations in the mentioned genes. Conclusions: Pyrazinamide resistance is high in MDR-TB and INH mono-resistant isolates. Therefore, evaluating the susceptibility to pyrazinamide in patients with MDR-TB before the initiation of treatment with pyrazinamide is considered essential.
Collapse
|
12
|
Nangraj AS, Khan A, Umbreen S, Sahar S, Arshad M, Younas S, Ahmad S, Ali S, Ali SS, Ali L, Wei DQ. Insights Into Mutations Induced Conformational Changes and Rearrangement of Fe 2+ Ion in pncA Gene of Mycobacterium tuberculosis to Decipher the Mechanism of Resistance to Pyrazinamide. Front Mol Biosci 2021; 8:633365. [PMID: 34095218 PMCID: PMC8174790 DOI: 10.3389/fmolb.2021.633365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Pyrazinamide (PZA) is the first-line drug commonly used in treating Mycobacterium tuberculosis (Mtb) infections and reduces treatment time by 33%. This prodrug is activated and converted to an active form, Pyrazinoic acid (POA), by Pyrazinamidase (PZase) enzyme. Mtb resistance to PZA is the outcome of mutations frequently reported in pncA, rpsA, and panD genes. Among the mentioned genes, pncA mutations contribute to 72-99% of the total resistance to PZA. Thus, considering the vital importance of this gene in PZA resistance, its frequent mutations (D49N, Y64S, W68G, and F94A) were investigated through in-depth computational techniques to put conclusions that might be useful for new scaffolds design or structure optimization to improve the efficacy of the available drugs. Mutants and wild type PZase were used in extensive and long-run molecular dynamics simulations in triplicate to disclose the resistance mechanism induced by the above-mentioned point mutations. Our analysis suggests that these mutations alter the internal dynamics of PZase and hinder the correct orientation of PZA to the enzyme. Consequently, the PZA has a low binding energy score with the mutants compared with the wild type PZase. These mutations were also reported to affect the binding of Fe2+ ion and its coordinated residues. Conformational dynamics also revealed that β-strand two is flipped, which is significant in Fe2+ binding. MM-GBSA analysis confirmed that these mutations significantly decreased the binding of PZA. In conclusion, these mutations cause conformation alterations and deformities that lead to PZA resistance.
Collapse
Affiliation(s)
- Asma Sindhoo Nangraj
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Sana Sahar
- The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maryam Arshad
- Government College University Faisalabad, Sahiwal, Pakistan
| | | | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Drug resistance gene mutations and treatment outcomes in MDR-TB: A prospective study in Eastern China. PLoS Negl Trop Dis 2021; 15:e0009068. [PMID: 33471794 PMCID: PMC7850501 DOI: 10.1371/journal.pntd.0009068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/01/2021] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
Background Multidrug-resistant tuberculosis (MDR-TB) poses a serious challenge to TB control. It is of great value to search for drug resistance mutation sites and explore the roles that they play in the diagnosis and prognosis of MDR-TB. Methods We consecutively enrolled MDR-TB patients from five cities in Jiangsu Province, China, between January 2013 and December 2014. Drug susceptibility tests of rifampin, isoniazid, ofloxacin, and kanamycin were routinely performed by proportion methods on Lowenstein–Jensen (LJ) medium. Drug resistance-related genes were sequenced, and the consistency of genetic mutations and phenotypic resistance was compared. The association between mutations and treatment outcomes was expressed as odds ratios (ORs) and 95% confidence intervals (CIs). Results Among 87 MDR-TB patients, 71 with treatment outcomes were involved in the analysis. The proportion of successful treatment was 50.7% (36/71). The rpoB gene exhibited the highest mutation rate (93.0%) followed by katG (70.4%), pncA (33.8%), gyrA (29.6%), eis (15.5%), rrs (12.7%), gyrB (9.9%) and rpsA (4.2%). Multivariable analysis demonstrated that patients with pncA gene mutations (adjusted OR: 19.69; 95% CI: 2.43–159.33), advanced age (adjusted OR: 13.53; 95% CI: 1.46–124.95), and nonstandard treatment (adjusted OR: 7.72; 95% CI: 1.35–44.35) had a significantly higher risk of poor treatment outcomes. Conclusions These results suggest that Mycobacterium tuberculosis gene mutations may be related to phenotypic drug susceptibility. The pncA gene mutation along with treatment regimen and age are associated with the treatment outcomes of MDR-TB. Multidrug-resistant tuberculosis (MDR-TB) exacerbates the already serious tuberculosis epidemic, poses a notable threat to global tuberculosis control, and places a considerable burden on developing countries, as treatments for MDR-TB tend to be expensive, of limited efficacy, and toxic. Genotypic determinants of resistance to specific drugs or drug classes offer a rapid and highly specific alternative to phenotypic drug susceptibility testing. Although the relationship between gene mutations and drug resistance has been described previously, the strength of the association of mutations with the treatment outcomes of MDR tuberculosis have not been fully elucidated. The results of our study, which was conducted in a Chinese population, suggest that gene mutations in Mycobacterium tuberculosis may be related to phenotypic drug susceptibility. Mutation of the pncA gene contributes to a poor prognosis and can be applied to predict the treatment outcomes of MDR-TB.
Collapse
|
14
|
Li K, Yang Z, Gu J, Luo M, Deng J, Chen Y. Characterization of pncA Mutations and Prediction of PZA Resistance in Mycobacterium tuberculosis Clinical Isolates From Chongqing, China. Front Microbiol 2021; 11:594171. [PMID: 33505367 PMCID: PMC7832174 DOI: 10.3389/fmicb.2020.594171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023] Open
Abstract
Pyrazinamide (PZA) is widely used to treat drug-sensitive or multidrug resistance tuberculosis. However, conventional PZA susceptibility tests of clinical isolates are rather difficult because of the requirement of acid pH. Since resistance to pyrazinamide is primary mediated by mutation of pncA, an alternative way of PZA susceptibility test is to analyze the pyrazinamidase activities of Mycobacterium tuberculosis clinical isolates. Therefore, a database containing the full spectrum of pncA mutations along with pyrazinamidase activities will be beneficial. To characterize mutations of pncA in M. tuberculosis from Chongqing, China, the pncA gene was sequenced and analyzed in 465 clinical isolates. A total of 124 types of mutations were identified in 424 drug-resistant isolates, while no mutation was identified in the 31 pan-susceptible isolates. Ninety-four of the 124 mutations had previously been reported, and 30 new mutations were identified. Based on reported literatures, 294 isolates could be predicted resistant to pyrazinamide. Furthermore, pyrazinamidase activities of the 30 new mutations were tested using the Escherichia coli pncA gene knockout strain. The results showed that 24 of these new mutations (28 isolates) led to loss of pyrazinamidase activity and six (8 isolates) of them did not. Taken together, 322 isolates with pncA mutations could be predicted to be PZA resistant among the 424 drug-resistant isolates tested. Analysis of pncA mutations and their effects on pyrazinamidase activity will not only enrich our knowledge of comprehensive pncA mutations related with PZA resistance but also facilitate rapid molecular diagnosis of pyrazinamide resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Zhongping Yang
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Gu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Luo
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaokai Chen
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
15
|
Khan T, Khan A, Ali SS, Ali S, Wei DQ. A computational perspective on the dynamic behaviour of recurrent drug resistance mutations in the pncA gene from Mycobacterium tuberculosis. RSC Adv 2021; 11:2476-2486. [PMID: 35424144 PMCID: PMC8693711 DOI: 10.1039/d0ra09326b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis is still one of the top 10 causes of death worldwide, particularly with the emergence of multidrug-resistant tuberculosis. As the most effective first-line anti-tuberculosis drug, pyrazinamide also develops resistance due to the mutation in the pncA gene. Among these mutations, seven mutations at positions F94L, F94S, K96N, K96R, G97C, G97D, and G97S are classified as high-level resistance mutations. However, the resistance mechanism of Mtb to PZA (pyrazinamide) caused by these mutations is still unclear. In this work, we combined molecular dynamics simulation, molecular mechanics/generalized-Born surface area calculation, principal component analysis, and free energy landscape analysis to explore the resistance mechanism of Mtb to PZA due to F94L, F94S, K96N, K96R, G97C, G97D, and G97S mutations, as well as compare interaction changes in wild-type and mutant PZA-bound complexes. The results of molecular mechanics/generalized-Born surface area calculations indicated that the binding free energy of PZA with seven mutants decreased. In mutant systems, the most significant interactions with His137 and Cys138 were lost. Besides, PCA and FEL confirmed significant variations in the protein dynamics during the simulation specifically by altering the Fe2+ binding and its destabilization. Furthermore, mutants also flipped the β-sheet 2, which also affects the binding of Fe2+ and PZA. In the G97D mutant, reported as most lethal, mutation causes the binding pocket to change considerably, so that the position of PZA has a large movement in the binding pocket. In this study, the resistance mechanism of PZA at the atomic level is proposed. The proposed drug-resistance mechanism will provide valuable guidance for the design of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Taimoor Khan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Abbas Khan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat Swat KP Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat Swat KP Pakistan
| | - Dong-Qing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200240 P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai 200030 P.R. China
- Peng Cheng Laboratory Vanke Cloud City Phase I Building 8, Xili Street, Nashan District Shenzhen Guangdong 518055 P.R. China
| |
Collapse
|
16
|
Daniyarov A, Molkenov A, Rakhimova S, Akhmetova A, Nurkina Z, Yerezhepov D, Chingissova L, Bismilda V, Toxanbaeva B, Akilzhanova A, Kozhamkulov U, Kairov U. Whole genome sequence data of Mycobacterium tuberculosis XDR strain, isolated from patient in Kazakhstan. Data Brief 2020; 33:106416. [PMID: 33102665 PMCID: PMC7578676 DOI: 10.1016/j.dib.2020.106416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
Drug-resistant tuberculosis (TB) is a major public health problem. Clinical Mycobacterium tuberculosis (MTB) isolate with Extensively drug-resistant tuberculosis (MTB-XDR) profile was subjected to whole-genome sequencing using a next-generation sequencing platform (NGS) Roche 454 GS FLX+ followed by bioinformatics sequence analysis. Quality of read was checked by FastQC, paired-end reads were trimmed using Trimmomatic. De novo genome assembly was conducted using Velvet v.1.2.10. The assembled genome of XDR-TB-1599 strain was functionally annotated using the PATRIC platform. Analysis of de novo assembled genome was performed using ResFinder, CARD, CASTB and TB-Profiler tools. MIRU_VNTR genotyping on 12 loci and spoligotyping have been performed for XDR-TB-1599 isolate. M. tuberculosis XDR-TB-1599 strain yielded an average read depth of 21-fold with overall 4 199 325 bp. The assembled genome contains 5528 protein-coding genes, including key drug resistance and virulence-associated genes and GC content of 65.4%. We identified that all proteins encoded by this strain contain conserved domains associated with the first-line anti-tuberculosis drugs such as rifampicin, isoniazid, streptomycin and ethionamide. TB-Profiler had higher average concordance results with phenotypic DST (drug susceptibility testing) in comparison with ResFinder, CARD, CASTB profiling to first-line (75% vs 50%) and second-line (25% vs 0%) of anti-TB drugs, correspondingly. To our knowledge, this is the first report of a highly annotated and characterized whole-genome sequence and de novo assembled XDR-TB M.tuberculosis strain isolated from a sputum of new TB case-patient from Kazakhstan performed on Roche 454 GS FLX+ platform. This report highlights an important role of whole-genome sequencing technology and analysis as an advanced approach for drug-resistance investigations of circulated TB isolates.
Collapse
|
17
|
Khan MT, Chinnasamy S, Cui Z, Irfan M, Wei DQ. Mechanistic analysis of A46V, H57Y, and D129N in pyrazinamidase associated with pyrazinamide resistance. Saudi J Biol Sci 2020; 27:3150-3156. [PMID: 33100877 PMCID: PMC7569123 DOI: 10.1016/j.sjbs.2020.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Pyrazinamide (PZA) is a component of first-line drugs, active against latent Mycobacterium tuberculosis (MTB) isolates. The prodrug is activated into the active form, pyrazinoic acid (POA) via pncA gene-encoded pyrazinamidase (PZase). Mutations in pncA have been reported, most commonly responsible for PZA-resistance in more than 70% of the resistant cases. In our previous study, we detected many mutations in PZase among PZA-resistance MTB isolates including A46V, H71Y, and D129N. The current study was aimed to investigate the molecular mechanism of PZA-resistance behind mutants (MTs) A46V, H71Y, and D129N in comparison with the wild type (WT) through molecular dynamic (MD) simulation. MTB positive samples were subjected to PZA drug susceptibility testing (DST) against critical concentration (100ug/ml). The resistant samples were subjected to pncA sequencing. Thirty-six various mutations have been observed in the coding region of pncA of PZA-resistant isolates (GenBank accession No. MH461111) including A46V, H71Y, and D129N. The post-simulation analysis revealed a significant variation in MTs structural dynamics as compared to the WT. Root means square deviations (RMSD) and Root means square fluctuation (RMSF) has been found in variation between WT and MTs. Folding effect and pocket volume were altered in MTs when compared with WT. Geometric matching supports the effect of mutation A46V, H71Y, and D129N on PZase structure that may have an insight effect on PZase dynamics, making them vulnerable to convert pro-PZA into active form, POA. In conclusion, the current analyses will provide useful information behind PZA-resistance for better management of drug-resistant TB.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Pakistan
| | - Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilei Cui
- Department of Respiratory Medicine, XinHua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Muhammad Irfan
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, China
| |
Collapse
|
18
|
Ali A, Khan MT, Khan A, Ali S, Chinnasamy S, Akhtar K, Shafiq A, Wei DQ. Pyrazinamide resistance of novel mutations in pncA and their dynamic behavior. RSC Adv 2020; 10:35565-35573. [PMID: 35515677 PMCID: PMC9056903 DOI: 10.1039/d0ra06072k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022] Open
Abstract
Pyrazinamide (PZA) is one of the essential anti-mycobacterium drugs, active against non-replicating Mycobacterium tuberculosis (MTB) isolates. PZA is converted into its active state, called pyrazinoic acid (POA), by action of pncA encoding pyrazinamidase (PZase). In the majority of PZA-resistance isolates, pncA harbored mutations in the coding region. In our recent report, we detected a number of novel variants in PZA-resistance (PZAR) MTB isolates, whose resistance mechanisms were yet to be determined. Here we performed several analyses to unveil the PZAR mechanism of R123P, T76P, G150A, and H71R mutants (MTs) through molecular dynamics (MD) simulations. In brief, culture positive MTB isolates were subjected to PZA susceptibility tests using the WHO recommended concentration of PZA (100 μg ml-1). The PZAR samples were screened for mutations in pncA along sensitive isolates through polymerase chain reactions and sequencing. A large number of variants (GeneBank accession no. MH461111), including R123P, T76P, G150A, and H71R, have been spotted in more than 70% of isolates. However, the mechanism of PZAR for mutants (MTs) R123P, T76P, G150A, and H71R was unknown. For the MTs and native PZase structures (WT), thermodynamic properties were compared using molecular dynamics simulations for 100 ns. The MTs structural activity was compared to the WT. Folding effect and pocket volume variations have been detected when comparing between WT and MTs. Geometric matching further confirmed the effect of R123P, T76P, G150A, and H71R mutations on PZase dynamics, making them vulnerable for activating the pro-drug into POA. This study offers a better understanding for management of PZAR TB. The results may be used as alternative diagnostic tools to infer PZA resistance at a structural dynamics level.
Collapse
Affiliation(s)
- Arif Ali
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai, Minhang District Shanghai 200240 China +86-21-3420-4573
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology Pakistan
| | - Abbas Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai, Minhang District Shanghai 200240 China +86-21-3420-4573
| | - Sajid Ali
- Quaid-i-Azam University Islamabad, Provincial Tuberculosis Reference Laboratory Hayatabad Medical Complex Peshawar Pakistan
| | - Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai, Minhang District Shanghai 200240 China +86-21-3420-4573
| | - Khalid Akhtar
- National University of Science and Technology Pakistan
| | - Athar Shafiq
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai, Minhang District Shanghai 200240 China +86-21-3420-4573
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai, Minhang District Shanghai 200240 China +86-21-3420-4573
- Peng Cheng Laboratory Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District Shenzhen Guangdong 518055 China
| |
Collapse
|
19
|
Vallejos-Sánchez K, Lopez JM, Antiparra R, Toscano E, Saavedra H, Kirwan DE, Amzel LM, Gilman RH, Maruenda H, Sheen P, Zimic M. Mycobacterium tuberculosis ribosomal protein S1 (RpsA) and variants with truncated C-terminal end show absence of interaction with pyrazinoic acid. Sci Rep 2020; 10:8356. [PMID: 32433489 PMCID: PMC7239899 DOI: 10.1038/s41598-020-65173-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/29/2020] [Indexed: 01/31/2023] Open
Abstract
Pyrazinamide (PZA) is an antibiotic used in first- and second-line tuberculosis treatment regimens. Approximately 50% of multidrug-resistant tuberculosis and over 90% of extensively drug-resistant tuberculosis strains are also PZA resistant. Despite the key role played by PZA, its mechanisms of action are not yet fully understood. It has been postulated that pyrazinoic acid (POA), the hydrolyzed product of PZA, could inhibit trans-translation by binding to Ribosomal protein S1 (RpsA) and competing with tmRNA, the natural cofactor of RpsA. Subsequent data, however, indicate that these early findings resulted from experimental artifact. Hence, in this study we assess the capacity of POA to compete with tmRNA for RpsA. We evaluated RpsA wild type (WT), RpsA ∆A438, and RpsA ∆A438 variants with truncations towards the carboxy terminal end. Interactions were measured using Nuclear Magnetic Resonance spectroscopy (NMR), Isothermal Titration Calorimetry (ITC), Microscale Thermophoresis (MST), and Electrophoretic Mobility Shift Assay (EMSA). We found no measurable binding between POA and RpsA (WT or variants). This suggests that RpsA may not be involved in the mechanism of action of PZA in Mycobacterium tuberculosis, as previously thought. Interactions observed between tmRNA and RpsA WT, RpsA ∆A438, and each of the truncated variants of RpsA ∆A438, are reported.
Collapse
Affiliation(s)
- Katherine Vallejos-Sánchez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Juan M Lopez
- Pontificia Universidad Católica del Perú, Departamento de Ciencias, Sección Química, Centro de Espectroscopía de Resonancia Magnética Nuclear (CERMN), Lima, Perú
| | - Ricardo Antiparra
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Emily Toscano
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Harry Saavedra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD., USA
| | - Daniela E Kirwan
- Infection and Immunity Research Institute, St George's, University of London, London, England
| | - L M Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD., USA
| | - R H Gilman
- International Health Department. Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Helena Maruenda
- Pontificia Universidad Católica del Perú, Departamento de Ciencias, Sección Química, Centro de Espectroscopía de Resonancia Magnética Nuclear (CERMN), Lima, Perú
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos. Laboratorios de Investigación y Desarrollo. Facultad de Ciencias y Filosofía. Universidad Peruana Cayetano Heredia, Lima, Perú.
| |
Collapse
|
20
|
Junaid M, Li CD, Li J, Khan A, Ali SS, Jamal SB, Saud S, Ali A, Wei DQ. Structural insights of catalytic mechanism in mutant pyrazinamidase of Mycobacterium tuberculosis. J Biomol Struct Dyn 2020; 39:3172-3185. [PMID: 32340563 DOI: 10.1080/07391102.2020.1761879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pyrazinamidase (PZase) is a member of Fe-dependent amidohydrolases that activates pyrazinamide (PZA) into active pyrazinoic acid (POA). PZA, a nicotinamide analogue, is an essential first-line drug used in Mycobacterium tuberculosis (Mtb) treatment. The active form of PZA, POA, is toxic and potently inhibits the growth of latent Mtb, which makes it possible to shorten the conventional 9-month tuberculosis treatment to 6 months. In this study, an extensive molecular dynamics simulation was carried out to the study the resistance mechanism offered by the three mutations Q10P and D12A and G97D. Our results showed that two regions Gln10-His43, Phe50-Gly75 are profoundly affected by these mutations. Among the three mutations, Q10P and D12A mutations strongly disturb the communication among the catalytic triad (Asp8, Lys98 and Cys138). The oxyanion hole is formed between the backbone nitrogen atoms of A134 and C138 which stabilizes the hydroxyl anion of nicotinamide. The D12A mutation greatly disturbs the oxyanion hole formation followed by the Q10P and G97D. Our results also showed that these mutations destabilize the interaction between Fe2+ ion and Asp49, His51, His57 and His71. The binding pocket analysis showed that these mutations increase the cavity volume, which results in loose binding of PZA. MMGBSA analyzes have shown that these mutations reduce the binding affinity to the PZA drug. Our results may provide useful information for the design of new and effective PZase inhibitors based on structural information of WT and mutant PZases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China.,Peng Cheng Laboratory, Shenzhen, Guangdong, P.R China.,Ministry of Education, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, P.R China
| | - Cheng-Dong Li
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China.,Peng Cheng Laboratory, Shenzhen, Guangdong, P.R China.,Ministry of Education, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, P.R China
| | - Jiayi Li
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China
| | - Abbas Khan
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China.,Peng Cheng Laboratory, Shenzhen, Guangdong, P.R China.,Ministry of Education, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, P.R China
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Syed Baber Jamal
- Department of biological sciences, National University of Medical Sciences, Punjab, Rawalpendi, Pakistan
| | - Shah Saud
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China
| | - Arif Ali
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China.,Peng Cheng Laboratory, Shenzhen, Guangdong, P.R China.,Ministry of Education, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, P.R China
| | - Dong-Qing Wei
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China.,Peng Cheng Laboratory, Shenzhen, Guangdong, P.R China.,Ministry of Education, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, P.R China
| |
Collapse
|
21
|
Draft Genome Sequence of an Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate, 3485_MTB, from Nur-Sultan, Kazakhstan. Microbiol Resour Announc 2020; 9:9/10/e00025-20. [PMID: 32139580 PMCID: PMC7171203 DOI: 10.1128/mra.00025-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Here, we report the draft genome sequence of an extensively drug-resistant Mycobacterium tuberculosis clinical isolate, 3485_MTB, from Nur-Sultan, Kazakhstan. The genome sequence is composed of 4,836,003 bp. The genome will provide more data on the genetic variations occurring in local drug-resistant isolates. Here, we report the draft genome sequence of an extensively drug-resistant Mycobacterium tuberculosis clinical isolate, 3485_MTB, from Nur-Sultan, Kazakhstan. The genome sequence is composed of 4,836,003 bp. The genome will provide more data on the genetic variations occurring in local drug-resistant isolates.
Collapse
|
22
|
Abstract
Pyrazinamide (PZA) is a cornerstone antimicrobial drug used exclusively for the treatment of tuberculosis (TB). Due to its ability to shorten drug therapy by 3 months and reduce disease relapse rates, PZA is considered an irreplaceable component of standard first-line short-course therapy for drug-susceptible TB and second-line treatment regimens for multidrug-resistant TB. Despite over 60 years of research on PZA and its crucial role in current and future TB treatment regimens, the mode of action of this unique drug remains unclear. Defining the mode of action for PZA will open new avenues for rational design of novel therapeutic approaches for the treatment of TB. In this review, we discuss the four prevailing models for PZA action, recent developments in modulation of PZA susceptibility and resistance, and outlooks for future research and drug development.
Collapse
|
23
|
Khan A, Ashfaq-Ur-Rehman, Junaid M, Li CD, Saleem S, Humayun F, Shamas S, Ali SS, Babar Z, Wei DQ. Dynamics Insights Into the Gain of Flexibility by Helix-12 in ESR1 as a Mechanism of Resistance to Drugs in Breast Cancer Cell Lines. Front Mol Biosci 2020; 6:159. [PMID: 32039233 PMCID: PMC6992541 DOI: 10.3389/fmolb.2019.00159] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
Incidents of breast cancer (BC) are on the rise on a daily basis and have proven to be the most prevelant cause of death for women in both developed and developing countries. Among total BC cases diagnosed after menopause, 70% of cases are Estrogen Receptor (ER) positive (ER-positive or ER+). Mutations in the LBD (ligand-binding domain) of the ER have recently been reported to be the major cause of resistance to potent antagonists. In this study, the experimentally reported mutations K303R, E380Q, V392I, S463P, V524E, P535H, P536H, Y537C, Y537N, Y537S, and D538G were analyzed, and the most significant mutations were shortlisted based on multiple analyses. Initial analyses, such as mCSM stability, occluded depth analysis, mCSM-binding affinity, and FoldX energy changes shortlisted only six mutations as being highly resistant. Finally, simulations of force field-based molecular dynamics (MD on wild type (WT) ERα) on six mERα variants (E380Q, S463P, Y537S, Y537C, Y537N, and D538G) were carried out to justify mechanism of the resistance. It was observed that these mutations increased the flexibility of the H12. A bonding analysis suggested that previously reported important residue His524 lost bonding upon mutation. Other parameters, such as PCA (principal component analysis), DCCM (dynamics cross-correlation), and FEL (free energy landscape), verified that the shortlisted mutations affect the H12 helix, which opens up the co-activator binding conformation. These results provide deep insight into the mechanism of relative resistance posed to fulvestrant due to mutations in breast cancer. This study will facilitate further understanding of the important aspects of designing specific and more effective drugs.
Collapse
Affiliation(s)
- Abbas Khan
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ashfaq-Ur-Rehman
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Junaid
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shoaib Saleem
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fahad Humayun
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shazia Shamas
- Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Zainib Babar
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Peng Cheng Laboratory, Shenzhen, China.,Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai, China
| |
Collapse
|
24
|
Hameed HA, Tan Y, Islam MM, Lu Z, Chhotaray C, Wang S, Liu Z, Fang C, Tan S, Yew WW, Zhong N, Liu J, Zhang T. Detection of Novel Gene Mutations Associated with Pyrazinamide Resistance in Multidrug-Resistant Mycobacterium tuberculosis Clinical Isolates in Southern China. Infect Drug Resist 2020; 13:217-227. [PMID: 32158237 PMCID: PMC6986415 DOI: 10.2147/idr.s230774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Objective Pyrazinamide (PZA) is a cornerstone of modern tuberculosis regimens. This study aimed to investigate the performance of genotypic testing of pncA + upstream region, rpsA, panD, Rv2783c, and clpC1 genes to add insights for more accurate molecular diagnosis of PZA-resistant (R) Mycobacterium tuberculosis. Methods Drug susceptibility testing, sequencing analysis of PZA-related genes including the entire operon of pncA (Rv2044c-pncA-Rv2042c) and PZase assay were performed for 448 M. tuberculosis clinical isolates. Results Our data showed that among 448 M. tuberculosis clinical isolates, 113 were MDR, 195 pre-XDR and 70 XDR TB, while the remaining 70 strains had other combinations of drug-resistance. A total of 60.04% (269/448) M. tuberculosis clinical isolates were resistant to PZA, of which 78/113 were MDR, 119/195 pre-XDR and 29/70 XDR TB strains. PZAR isolates have predominance (83.3%) of Beijing genotype. Genotypic characterization of Rv2044c-pncA-Rv2042c revealed novel nonsynonymous mutations in Rv2044c with negative PZase activity which led to confer PZAR. Compared with phenotypic data, 84.38% (227/269) PZAR strains with mutations in pncA + upstream region exhibited 83.64% sensitivity but the combined evaluation of the mutations in rpsA 2.60% (7/269), panD 1.48% (4/269), Rv2783c 1.11% (3/269) and Rv2044c 0.74% (2/269) increased the sensitivity to 89.59%. Fifty-seven novel mutations were identified in this study. Interestingly, a frameshift deletion (C-114del) in upstream of pncAwt nullified the effect of A-11G mutation and induced positive PZase activity, divergent from five PZase negative A-11G PZAR mutants. Twenty-six PZAR strains having wild-type-sequenced genes with positive or negative PZase suggest the existence of unknown resistance mechanisms. Conclusion Our study revealed that PZAR rate in MDR and pre-XDR TB was markedly higher in southern China. The concomitant evaluation of pncA + UFR, rpsA, panD, Rv2783c, and Rv2044c provides more dependable genotypic results of PZA resistance. Fifty-seven novel mutations/indels in this study may play a vital role as diagnostic markers. The upstream region of pncA and PZase regulation are valuable to explore the unknown mechanism of PZA-resistance.
Collapse
Affiliation(s)
- Hm Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People's Republic of China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People's Republic of China
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Nanshan Zhong
- National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People's Republic of China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China.,National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
25
|
Xia H, van den Hof S, Cobelens F, Zhou Y, Zhao B, Wang S, Zhao Y. Value of pyrazinamide for composition of new treatment regimens for multidrug-resistant Mycobacterium tuberculosis in China. BMC Infect Dis 2020; 20:19. [PMID: 31910878 PMCID: PMC6947908 DOI: 10.1186/s12879-020-4758-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
Background Pyrazinamide still may be a useful drug for treatment of rifampin-resistant (RR-TB) or multidrug-resistant tuberculosis (MDR-TB) in China while awaiting scale up of new drugs and regimens including bedaquiline and linezolid. The level of pyrazinamide resistance among MDR-TB patients in China is not well established. Therefore, we assessed pyrazinamide resistance in a representative sample and explored determinants and patterns of pncA mutations. Methods MDR-TB isolates from the 2007 national drug resistance survey of China were sub-cultured and examined for pyrazinamide susceptibility by BACTEC MGIT 960 method. pncA mutations were identified by sequencing. Characteristics associated with pyrazinamide resistance were analyzed using univariable and multivariable log-binominal regression. Results Of 401 MDR-TB isolates, 324 were successfully sub-cultured and underwent drug susceptibility testing. Pyrazinamide resistance was prevalent in 40.7% of samples, similarly among new and previously treated MDR-TB patients. Pyrazinamide resistance in MDR-TB patients was associated with lower age (adjusted OR 0.54; 95% CI, 0.34–0.87 for those aged ≧60 years compared to < 40 years). Pyrazinamide resistance was not associated with gender, residential area, previous treatment history and Beijing genotype. Of 132 patients with pyrazinamide resistant MDR-TB, 97 (73.5%) had a mutation in the pncA gene; with 61 different point mutations causing amino acid change, and 11 frameshifts in the pncA gene. The mutations were scattered throughout the whole pncA gene and no hot spot region was identified. Conclusions Pyrazinamide resistance among MDR-TB patients in China is common, although less so in elderly patients. Therefore, pyrazinamide should only be used for treatment of RR/MDR-TB in China if susceptibility is confirmed. Molecular testing for detection of pyrazinamide resistance only based on pncA mutations has certain value for the rapid detection of pyrazinamide resistance in MDR-TB strains but other gene mutations conferring to pyrazinamide resistance still need to be explored to increase its predictive ability .
Collapse
Affiliation(s)
- Hui Xia
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Susan van den Hof
- KNCV Tuberculosis Foundation, The Hague, The Netherlands.,National Institute of Public Health and the Environment, Centre for Infectious Disease Epidemiology and Surveillance, Bilthoven, The Netherlands
| | - Frank Cobelens
- Department of Global Health and Amsterdam Institute for Global Health and Development, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Yang Zhou
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shengfen Wang
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
26
|
Mehmood A, Khan MT, Kaushik AC, Khan AS, Irfan M, Wei DQ. Structural Dynamics Behind Clinical Mutants of PncA-Asp12Ala, Pro54Leu, and His57Pro of Mycobacterium tuberculosis Associated With Pyrazinamide Resistance. Front Bioeng Biotechnol 2019; 7:404. [PMID: 31921809 PMCID: PMC6914729 DOI: 10.3389/fbioe.2019.00404] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 11/15/2022] Open
Abstract
Pyrazinamide (PZA) is one of the main FDA approved drugs to be used as the first line of defense against Mycobacterium Tuberculosis (MTB). It is activated into pyrazinoic acid (POA) via MTB's pncA gene-encoded pyrazinamidase (PZase). Mutations are most commonly responsible for PZA-resistance in nearly 70% of the resistant samples. In the present work, MTB positive samples were chosen for PZA drug susceptibility testing (DST) against critical concentration (100 ug/ml) of PZA. The resistant samples were subjected to pncA sequencing. As a result, 36 various mutations have been observed in the PZA resistant samples, uploaded to the NCBI (GeneBank accession no. MH461111). Here we report the mechanism of PZA resistance behind the three mutants (MTs), Asp12Ala, Pro54Leu, and His57Pro in comparison with the wild type (WT) through molecular dynamics simulation to unveil how these mutations affect the overall conformational stability. The post-simulation analyses revealed notable deviations as compared to the WT structure. Molecular docking studies of PZA with MTs and WT, pocket volume inspection and overall shape complementarity analysis confirmed the deleterious nature of these mutations and gave an insight into the mechanism behind PZA-resistance. These analyses provide vital information regarding MTB drug resistance and could be extremely useful in therapy management and overcoming its global burden.
Collapse
Affiliation(s)
- Aamir Mehmood
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | | | - Anwar Sheed Khan
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Irfan
- Department of Microbiology and Cell Science, Genetics Institute and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Dong-Qing Wei
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Cao Z, Lan Y, Chen L, Xiang M, Peng Z, Zhang J, Zhang H. Resistance To First-Line Antituberculosis Drugs And Prevalence Of pncA Mutations In Clinical Isolates Of Mycobacterium tuberculosis From Zunyi, Guizhou Province Of China. Infect Drug Resist 2019; 12:3093-3102. [PMID: 31686870 PMCID: PMC6777635 DOI: 10.2147/idr.s222943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/29/2019] [Indexed: 11/23/2022] Open
Abstract
Background China is one of the high-burden countries for multidrug-resistant tuberculosis (MDR-TB), and pyrazinamide is one of the anti-TB drugs used for the shorter MDR-TB treatment regimen. The aim of this study was to determine the correlation between pncA gene mutations and resistance to four first-line anti-TB drugs as well as treatment history in clinical isolates of Mycobacterium tuberculosis. Patients and methods M. tuberculosis clinical isolates were collected from 318 in-patients with smear-positive TB between October 2008 and September 2016 at a major hospital in Zunyi, Guizhou Province of China, and used for drug susceptibility testing against four first-line anti-TB drugs. Genomic DNA extracted from clinical isolates was used for PCR amplification and DNA sequencing of the pncA gene. Results Among 318 clinical isolates, 129 (40.6%), 170 (53.5%), 66 (20.8%) and 109 (34.3%) were resistant to rifampicin, isoniazid, ethambutol and streptomycin respectively. In addition, 124 clinical isolates were MDR-TB and 71.8% of them were previously treated cases. Sequencing results showed that 46.8% of MDR-TB and 2.2% of drug susceptible isolates harbored a pncA mutation, and 52 types of pncA mutations were detected from 64 isolates. The prevalence of pncA mutations in isolates resistant to first-line anti-TB drugs and previously treated TB cases was significantly higher than that in drug-susceptible isolates and new cases of TB. Conclusion High prevalence of pncA mutations in clinical isolates of M. tuberculosis from Zunyi, Guizhou Province of China, is correlated with resistance to four first-line anti-TB drugs, MDR-TB and previously treated TB cases.
Collapse
Affiliation(s)
- Zhimin Cao
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Yuanbo Lan
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Ling Chen
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Min Xiang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Zhiyuan Peng
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Jianyong Zhang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Hong Zhang
- Tuberculosis Division, Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China.,Department of R & D, Z-BioMed, Inc, Rockville, MD, 20855, USA
| |
Collapse
|
28
|
Abstract
Tuberculosis (TB) is a major issue in global health and affects millions of people each year. Multidrug-resistant tuberculosis (MDR-TB) annually causes many deaths worldwide. Development of a way to diagnose and treat patients with MDR-TB can potentially reduce the incidence of the disease. The current study reviews the risk factors, pattern of progression, mechanism of resistance, and interaction between bacteria and the host immune system, which disrupts the immune response. It also targets the components of Mycobacterium tuberculosis (Mtb) and diagnosis and treatment options that could be available for clinical use in the near future. Mutations play an important role in development of MDR-TB and the selection of appropriate mutations can help to understand the type of resistance in patients to anti-TB drugs. In this way, they can be initially treated with proper and effective therapeutic choices, which can accelerate the course of treatment and improve patient health. Targeting the components and enzymes of Mtb is necessary for understanding bacterial survival and finding a way to destroy the pathogen and allow patients to recover faster and prevent the spread of disease, especially resistant strains.
Collapse
Affiliation(s)
- Majid Faridgohar
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
29
|
Khan MT, Malik SI. Structural dynamics behind variants in pyrazinamidase and pyrazinamide resistance. J Biomol Struct Dyn 2019; 38:3003-3017. [PMID: 31357912 DOI: 10.1080/07391102.2019.1650113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pyrazinamide (PZA) is an important component of first-line anti-tuberculosis (anti-TB) drugs. The anti-TB agent is activated into an active form, pyrazinoic acid (POA), by Mycobacterium tuberculosis (MTB) pncA gene encoding pyrazinamidase (PZase). The major cause of PZA-resistance has been associated with mutations in the pncA gene. We have detected several novel mutations including V131F, Q141P, R154T, A170P, and V180F (GeneBank Accession No. MH461111) in the pncA gene of PZA-resistant isolates during PZA drug susceptibility testing followed by pncA gene sequencing. Here, we investigated molecular mechanism of PZA-resistance by comparing the results of experimental and molecular dynamics. The mutants (MTs) and wild type (WT) PZase structures in apo and complex with PZA were subjected to molecular dynamic simulations (MD) at the 40 ns. Multiple factors, including root mean square deviations (RMSD), binding pocket, total energy, dynamic cross correlation, and root mean square fluctuations (RMSF) of MTs and WT were compared. The MTs attained a high deviation and fluctuation compared to WT. Binding pocket volumes of the MTs, were found, lower than the WT, and the docking scores were high than WT while shape complementarity scores were lower than that of the WT. Residual motion in MTs are seemed to be dominant in anti-correlated motion. Mutations at locations, V131F, Q141P, R154T, A170P, and V180F, might be involved in the structural changes, possibly affecting the catalytic property of PZase to convert PZA into POA. Our study provides useful information that will enhance the understanding for better management of TB. AbbreviationsDSTdrug susceptibility testingΔelecelectrostatic energyLJLowenstein-Jensen mediumMGITmycobacterium growth indicator tubesMTsmutantsMDmolecular dynamic simulationsMTBMycobacterium tuberculosisNALC-NaOHN-acetyl-l-cysteine-sodium hydroxideNIHNational Institutes of HealthNPTamount of substance (N), pressure (P) temperature (T)NVTmoles (N), volume (V) temperature (T)PZasepyrazinamidaseΔpspolar solvation energyPTRLProvincial Tuberculosis Reference LaboratoryRMSDroot mean square deviationsRMSFroot mean square fluctuationsΔSASAsolvent accessible surface area energyTBtuberculosisGTotaltotal binding free energyΔvdWVan der Waals energyWTwild typeCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
30
|
Khan MT, Khan A, Rehman AU, Wang Y, Akhtar K, Malik SI, Wei DQ. Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Sci Rep 2019; 9:7482. [PMID: 31097767 PMCID: PMC6522564 DOI: 10.1038/s41598-019-44013-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/29/2019] [Indexed: 02/04/2023] Open
Abstract
Resistance to key first-line drugs is a major hurdle to achieve the global end tuberculosis (TB) targets. A prodrug, pyrazinamide (PZA) is the only drug, effective in latent TB, recommended in drug resistance and susceptible Mycobacterium tuberculosis (MTB) isolates. The prodrug conversion into active form, pyrazinoic acid (POA), required the activity of pncA gene encoded pyrazinamidase (PZase). Although pncA mutations have been commonly associated with PZA resistance but a small number of resistance cases have been associated with mutationss in RpsA protein. Here in this study a total of 69 PZA resistance isolates have been sequenced for pncA mutations. However, samples that were found PZA resistant but pncA wild type (pncAWT), have been sequenced for rpsA and panD genes mutation. We repeated a drug susceptibility testing according to the WHO guidelines on 18 pncAWT MTB isolates. The rpsA and panD genes were sequenced. Out of total 69 PZA resistant isolates, 51 harbored 36 mutations in pncA gene (GeneBank Accession No. MH46111) while, fifteen different mutations including seven novel, were detected in the fourth S1 domain of RpsA known as C-terminal (MtRpsACTD) end. We did not detect any mutations in panD gene. Among the rpsA mutations, we investigated the molecular mechanism of resistance behind mutations, D342N, D343N, A344P, and I351F, present in the MtRpsACTD through molecular dynamic simulations (MD). WT showed a good drug binding affinity as compared to mutants (MTs), D342N, D343N, A344P, and I351F. Binding pocket volume, stability, and fluctuations have been altered whereas the total energy, protein folding, and geometric shape analysis further explored a significant variation between WT and MTs. In conclusion, mutations in MtRpsACTD might be involved to alter the RpsA activity, resulting in drug resistance. Such molecular mechanism behind resistance may provide a better insight into the resistance mechanism to achieve the global TB control targets.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Abbas Khan
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Ashfaq Ur Rehman
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Wang
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid Akhtar
- National University of Science and Technology, Islamabad, Pakistan
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan.
| | - Dong-Qing Wei
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
31
|
Khan MT, Junaid M, Mao X, Wang Y, Hussain A, Malik SI, Wei DQ. Pyrazinamide resistance and mutations L19R, R140H, and E144K in Pyrazinamidase of Mycobacterium tuberculosis. J Cell Biochem 2019; 120:7154-7166. [PMID: 30485476 DOI: 10.1002/jcb.27989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Pyrazinamide (PZA) is an important component of first-line antituberculosis drugs activated by Mycobacterium tuberculosis pyrazinamidase (PZase) into its active form pyrazinoic acid. Mutations in the pncA gene have been recognized as the major cause of PZA resistance. We detected some novel mutations, Leucine19Arginine (L19R), Arginine140Histidine (R140H), and Glutamic acid144 Lysine (E144K), in the pncA gene of PZA-resistant isolates in our wet lab PZA drug susceptibility testing and sequencing. As the molecular mechanism of resistance of these variants has not been reported earlier, we have performed multiple analyses to unveil different mechanisms of resistance because of PZase mutations L19R, R140H, and E144K. The mutants and native PZase structures were subjected to comprehensive computational molecular dynamics (MD) simulations at 100 nanoseconds in apo and drug-bound form. Mutants and native PZase binding pocket were compared to observe the consequence of mutations on the binding pocket size. Hydrogen bonding, Gibbs free energy, and natural ligand Fe +2 effect were also analyzed between native and mutants. A significant variation between native and mutant PZase structure activity was observed. The native PZase protein docking score was found to be the maximum, showing strong binding affinity in comparison with mutants. MD simulations explored the effect of the variants on the biological function of PZase. Hydrogen bonding, metal ion Fe +2 deviation, and fluctuation also seemed to be affected because of the mutations L19R, R140H, and E144K. The variants L19R, R140H, and E144K play a significant role in PZA resistance, altering the overall activity of native PZase, including metal ion Fe +2 displacement and free energy. This study offers valuable evidence for better management of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan.,Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Junaid
- Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xueying Mao
- Department of Bioinformatics and Biostatistics, Qianweichang College, Shanghai University, Shanghai, China
| | - Yanjie Wang
- Department of Computer Science, College of Computer Science and Information Tech, Henan Normal University, Xixiang, China
| | - Abid Hussain
- Department of Pharmaceutics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Junaid M, Khan MT, Malik SI, Wei DQ. Insights into the Mechanisms of the Pyrazinamide Resistance of Three Pyrazinamidase Mutants N11K, P69T, and D126N. J Chem Inf Model 2018; 59:498-508. [PMID: 30481017 DOI: 10.1021/acs.jcim.8b00525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In an effort to discover the mechanism of resistance offered by Mycobacterium tuberculosis (Mtb) toward the pyrazinamide (PZA) drug, an extensive molecular dynamics strategy was employed. PZA is a first-line prodrug that effectively cuts therapy time by 33% (from 9 to 6 months). Pyrazinamidase enzyme (PZase), encoded by the pncA gene, is responsible for the activation of prodrug PZA into pyrazinoic acid (POA). POA is toxic and potently inhibits the growth of latent Mtb even at low pH values. PZA resistance is caused by three genes pncA, rpsA, and panD. Among them, the pncA gene contributes 72-99% to the resistance. Hence, the present study focused on the novel mutations N11K, P69T, and D126N in the pncA gene. In the present study, the possible mechanism of these three mutations was studied through molecular dynamics simulation and docking techniques. Our in-depth analysis and results are in strong agreement with our experimental observation. The binding pocket analysis showed that mutations decrease the volume of the active site and hinder the correct orientation of PZA drug in the active site. Moreover, the Patchdock score was found to be low as compared to WT showing the disturbance of shape complementarity between PZase and PZA drug. These mutations were found to disturb the position of the Fe2+ ion. Among the mutations, D126N allosterically disturbed the position of the Fe2+ ion. MMGBSA analyses showed that these mutations decrease the binding affinity toward the PZA drug. In conclusion, mutations N11K, P69T, and D126N result in weak binding affinity with PZA and also cause significant structural deformations that lead to PZA resistance. This study provides useful information that mutations in other than active parts may also cause protein folding and ligand displacement effects, altering the biological functions.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , Minhang District, China 200240
| | - Muhammad Tahir Khan
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , Minhang District, China 200240.,Department of Bioinformatics and Biosciences , Capital University of Science and Technology , Islamabad , Pakistan 44000
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences , Capital University of Science and Technology , Islamabad , Pakistan 44000
| | - Dong-Qing Wei
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai , Minhang District, China 200240
| |
Collapse
|
33
|
Khan MT, Rehaman AU, Junaid M, Malik SI, Wei DQ. Insight into novel clinical mutants of RpsA-S324F, E325K, and G341R of Mycobacterium tuberculosis associated with pyrazinamide resistance. Comput Struct Biotechnol J 2018; 16:379-387. [PMID: 30402208 PMCID: PMC6205349 DOI: 10.1016/j.csbj.2018.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
Pyrazinamide (PZA) is an important component of first-line anti-tuberculosis drugs which is converted into active form, pyrazinoic acid (POA), by Mycobacterium tuberculosis (MTB) pncA gene encoded, pyrazinamidase (PZase). Mutations in pncA are detected in >70% of PZA resistant isolates but, noticeably, not in all. In this study, we selected 18 PZA-resistant but wild type pncA (pncAWT) MTB isolates. Drug susceptibility testing (DST) of all the isolates were repeated at the critical concentration of PZA drug. All these PZA-resistance but pncAWT isolates were subjected to RpsA sequencing. Fifteen different mutations were identified in eleven isolates, where seven were present in a conserved region including, Ser324Phe, Glu325Lys, Gly341Arg. As the molecular mechanism of resistance behind these variants has not been reported earlier, we have performed multiple analysis to unveil the mechanisms of resistance behind mutations S324F, E325K, and G341R. The mutant and wild type RpsA structures were subjected to comprehensive computational molecular dynamic simulations at 50 ns. Root mean square deviation (RMSD), Root mean square fluctuation (RMSF), and Gibbs free energy of mutants were analyzed in comparison with wild type. Docking score of wild type-RpsA has been found to be maximum, showing a strong binding affinity in comparison with mutants. Pocket volume, RMSD and RMSF have also been found to be altered, whereas total energy, folding effect (radius of gyration) and shape complimentarily analysis showed that variants S324F, E325K, and G341R have been playing a significant role behind PZA-resistance. The study offers valuable information for better management of drug resistance tuberculosis.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Pakistan
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China
| | - Ashfaq Ur Rehaman
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China
| | - Muhammad Junaid
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Pakistan
| | - Dong-Qing Wei
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, China
| |
Collapse
|
34
|
Allana S, Shashkina E, Mathema B, Bablishvili N, Tukvadze N, Shah NS, Kempker RR, Blumberg HM, Moodley P, Mlisana K, Brust JCM, Gandhi NR. pncA Gene Mutations Associated with Pyrazinamide Resistance in Drug-Resistant Tuberculosis, South Africa and Georgia. Emerg Infect Dis 2018; 23:491-495. [PMID: 28221108 PMCID: PMC5382742 DOI: 10.3201/eid2303.161034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although pyrazinamide is commonly used for tuberculosis treatment, drug-susceptibility testing is not routinely available. We found polymorphisms in the pncA gene for 70% of multidrug-resistant and 96% of extensively drug-resistant Mycobacterium tuberculosis isolates from South Africa and Georgia. Assessment of pyrazinamide susceptibility may be prudent before using it in regimens for drug-resistant tuberculosis.
Collapse
|
35
|
Gopal P, Nartey W, Ragunathan P, Sarathy J, Kaya F, Yee M, Setzer C, Manimekalai MSS, Dartois V, Grüber G, Dick T. Pyrazinoic Acid Inhibits Mycobacterial Coenzyme A Biosynthesis by Binding to Aspartate Decarboxylase PanD. ACS Infect Dis 2017; 3:807-819. [PMID: 28991455 DOI: 10.1021/acsinfecdis.7b00079] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previously, we showed that a major in vitro and in vivo mechanism of resistance to pyrazinoic acid (POA), the bioactive component of the critical tuberculosis (TB) prodrug pyrazinamide (PZA), involves missense mutations in the aspartate decarboxylase PanD, an enzyme required for coenzyme A biosynthesis. What is the mechanism of action of POA? Upon demonstrating that treatment of M. bovis BCG with POA resulted in a depletion of intracellular coenzyme A and confirming that this POA-mediated depletion is prevented by either missense mutations in PanD or exogenous supplementation of pantothenate, we hypothesized that POA binds to PanD and that this binding blocks the biosynthetic pathway. Here, we confirm both hypotheses. First, metabolomic analyses showed that POA treatment resulted in a reduction of the concentrations of all coenzyme A precursors downstream of the PanD-mediated catalytic step. Second, using isothermal titration calorimetry, we established that POA, but not its prodrug PZA, binds to PanD. Binding was abolished for mutant PanD proteins. Taken together, these findings support a mechanism of action of POA in which the bioactive component of PZA inhibits coenzyme A biosynthesis via binding to aspartate decarboxylase PanD. Together with previous works, these results establish PanD as a genetically, metabolically, and biophysically validated target of PZA.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Wilson Nartey
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798
| | - Jansy Sarathy
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Firat Kaya
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Michelle Yee
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Claudia Setzer
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | | | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 639798
| | - Thomas Dick
- Department of Microbiology
and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| |
Collapse
|
36
|
Nusrath Unissa A, Hanna LE. Molecular mechanisms of action, resistance, detection to the first-line anti tuberculosis drugs: Rifampicin and pyrazinamide in the post whole genome sequencing era. Tuberculosis (Edinb) 2017; 105:96-107. [DOI: 10.1016/j.tube.2017.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/02/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
|
37
|
Gopal P, Yee M, Sarathy J, Low JL, Sarathy JP, Kaya F, Dartois V, Gengenbacher M, Dick T. Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infect Dis 2016; 2:616-626. [PMID: 27759369 DOI: 10.1021/acsinfecdis.6b00070] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pyrazinamide (PZA) is a critical component of first- and second-line treatments of tuberculosis (TB), yet its mechanism of action largely remains an enigma. We carried out a genetic screen to isolate Mycobacterium bovis BCG mutants resistant to pyrazinoic acid (POA), the bioactive derivative of PZA, followed by whole genome sequencing of 26 POA resistant strains. Rather than finding mutations in the proposed candidate targets fatty acid synthase I and ribosomal protein S1, we found resistance conferring mutations in two pathways: missense mutations in aspartate decarboxylase panD, involved in the synthesis of the essential acyl carrier coenzyme A (CoA), and frameshift mutations in the vitro nonessential polyketide synthase genes mas and ppsA-E, involved in the synthesis of the virulence factor phthiocerol dimycocerosate (PDIM). Probing for cross resistance to two structural analogs of POA, nicotinic acid and benzoic acid, showed that the analogs share the PDIM- but not the CoA-related mechanism of action with POA. We demonstrated that POA depletes CoA in wild-type bacteria, which is prevented by mutations in panD. Sequencing 10 POA-resistant Mycobacterium tuberculosis H37Rv isolates confirmed the presence of at least 2 distinct mechanisms of resistance to the drug. The emergence of resistance through the loss of a virulence factor in vitro may explain the lack of clear molecular patterns in PZA-resistant clinical isolates, other than mutations in the prodrug-converting enzyme. The apparent interference of POA with virulence pathways may contribute to the drug's excellent in vivo efficacy compared to its modest in vitro potency.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Michelle Yee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jickky Sarathy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jian Liang Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jansy P. Sarathy
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Firat Kaya
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Véronique Dartois
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Martin Gengenbacher
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
38
|
Njire M, Tan Y, Mugweru J, Wang C, Guo J, Yew W, Tan S, Zhang T. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Adv Med Sci 2016; 61:63-71. [PMID: 26521205 DOI: 10.1016/j.advms.2015.09.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 07/29/2015] [Accepted: 09/17/2015] [Indexed: 11/28/2022]
Abstract
The global control and management of tuberculosis (TB) is faced with the formidable challenge of worsening scenarios of drug-resistant disease. Pyrazinamide (PZA) is an indispensable first-line drug used for the treatment of TB. It plays a key role in reducing TB relapse rates, shortening the course of the disease treatment from 9-12 months to 6 months, and the treatment of patients infected with bacillary strains that are resistant to at least isoniazid and rifampicin. Additionally, it is the only first-line anti-TB drug most likely to be maintained in all new regimens, which are aimed at reducing the treatment period of susceptible, multi-drug resistant and extensively drug-resistant TB. It has a preferential sterilizing activity against non-replicating persister bacilli with low metabolism at acid pH in vitro or in vivo during active inflammation where other drugs may not act so well. PZA seem to have a non-specific cellular target and instead, exerts its anti-mycobacterial effect by disrupting the membrane energetics, the trans-translation process, acidification of the cytoplasm and perhaps coenzyme A synthesis, which is required for survival of Mycobacterium tuberculosis (MTB) persisters. Indeed, the emergence of MTB strains resistant to PZA represents an important clinical and public health problem. The essential role of PZA in TB treatment underlines the need for accurate and rapid detection of its resistance. This article presents an updated review of the molecular mechanisms of drug action and resistance in MTB against PZA, commenting on the several research gaps and proposed drug targets for PZA.
Collapse
|
39
|
Engström A. Fighting an old disease with modern tools: characteristics and molecular detection methods of drug-resistant Mycobacterium tuberculosis. Infect Dis (Lond) 2015; 48:1-17. [PMID: 26167849 DOI: 10.3109/23744235.2015.1061205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB) is an ancient disease, but not a disease of the past. The increasing prevalence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, demands new measures to combat the situation. Rapid and accurate detection of the pathogen, and its drug susceptibility pattern, is essential for timely initiation of treatment, and ultimately, control of the disease. Molecular-based methods offer a great chance to improve detection of drug-resistant TB; however, their development and usage should be accompanied with a profound understanding of drug resistance mechanisms and circulating M. tuberculosis strains in specific settings, as otherwise, the usefulness of such tests may be limited. This review gives an overview of the history of TB treatment and drug resistance, drug resistance mechanisms for the most commonly used drugs and molecular methods designed to detect drug-resistant strains.
Collapse
Affiliation(s)
- Anna Engström
- a From the Department of Medical Biochemistry and Microbiology , Uppsala University , Uppsala , Sweden and Molecular Mycobacteriology, Research Center Borstel , Borstel , Germany
| |
Collapse
|
40
|
Molecular snapshot of Mycobacterium tuberculosis population in Kazakhstan: a country-wide study. Tuberculosis (Edinb) 2015; 95:538-46. [PMID: 26076582 DOI: 10.1016/j.tube.2015.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/21/2015] [Accepted: 04/26/2015] [Indexed: 01/22/2023]
Abstract
Republic of Kazakhstan is among the 27 high multidrug-resistant tuberculosis (MDR-TB) burden countries in the world. Here, we analyzed the population structure and phylogeography of Mycobacterium tuberculosis in Kazakhstan and impact of the identified genotypes on spread of drug resistant strains. A total of 159 M. tuberculosis isolates from different regions of Kazakhstan were typed using 24-MIRU-VNTR and spoligotyping, and the profiles were compared to the MIRU-VNTRplus and SITVIT_WEB databases. Eight isolates with double VNTR alleles were excluded from further analysis that was performed on 151 isolates. They were assigned to 10 families, Beijing (n = 109) being the largest and dominated by a single clonal cluster 94-32 and derived profiles (n = 101). The other families were represented mainly by LAM (n = 17), Ural (n = 8), NEW-1 (n = 3) and a new cluster named KAZ-1 (n = 8). Beijing, LAM and Ural isolates were detected in all parts of the country while Iran-specific family NEW-1 was found only in southern Kazakhstan (P = 0.001). A reduced scheme of 10 most polymorphic VNTR loci provided a discrimination similar to that achieved by 15-MIRU scheme and may be recommended for rapid preliminary screening of the clinical isolates in Kazakhstan. Multi-drug resistance was significantly more prevalent among Beijing (64/109) and LAM (7/17) strains compared to strains of other families (1/25; P = 0.0006 and 0.01, respectively). High prevalence of the genetically closely related MDR strains of the Beijing genotype found in different regions of Kazakhstan highlights their crucial impact on the current TB epidemic in this country.
Collapse
|