1
|
Kang Z, Zhang L, Yang Z. Role of non-coding RNAs in the pathogenesis of viral myocarditis. Virulence 2025; 16:2466480. [PMID: 39950847 PMCID: PMC11849450 DOI: 10.1080/21505594.2025.2466480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/04/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025] Open
Abstract
Viral myocarditis (VMC) is a common inflammatory disease of the myocardium that is characterized mainly by inflammatory cell infiltration and cardiomyocyte necrosis. Coxsackievirus B3 (CVB3) is a common cause of VMC, although major progress has been made in the treatment of VMC, the long-term prognosis is still not ideal and further research is needed. Non-coding RNAs (ncRNAs) are RNA molecules without coding functions and include microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), which play extensive regulatory roles in gene expression; however, their mechanisms of action in CVB3-induced VMC remain incompletely understood. Here, we review the currently known roles of various ncRNAs in CVB3-induced VMC models, with a focus on cell death, inflammation and viral replication, with the aim of providing a reference for their therapeutic or vaccine development for the treatment of VMC.
Collapse
Affiliation(s)
- Zhijuan Kang
- Department of Nephrology, Rheumatology and Immunology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan children’s hospital), Changsha, Hunan, China
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liang Zhang
- Department of Nephrology, Rheumatology and Immunology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan children’s hospital), Changsha, Hunan, China
| | - Zuocheng Yang
- Department of Pediatrics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Młynarska E, Badura K, Kurciński S, Sinkowska J, Jakubowska P, Rysz J, Franczyk B. The Role of MicroRNA in the Pathophysiology and Diagnosis of Viral Myocarditis. Int J Mol Sci 2024; 25:10933. [PMID: 39456716 PMCID: PMC11507602 DOI: 10.3390/ijms252010933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Myocarditis is a non-ischemic condition with a heterogeneous etiology, clinical course and prognosis. The most common etiology of myocarditis are viral infections, whereas the most severe complications are acute and chronic heart failure and sudden cardiac death. The heterogeneous clinical course of the disease, as well as the availability and costs of diagnostic tools such as cardiac magnetic resonance and endomyocardial biopsy, hinder the diagnosis of myocarditis and its underlying cause. Non-coding RNAs such as micro-RNAs (miRNAs; miR) have been shown to be involved in the disease's pathophysiology; however, their potential in disease diagnosis and treatment should also be considered. Non-coding RNAs are RNAs that are not translated into proteins, and they have the ability to regulate several intracellular pathways. MiRNAs regulate gene expression by binding with their targets and inhibiting protein synthesis by interfering with the translation of coding genes or causing the degradation of messenger RNA. Several miRNAs, such as miR-1, -133, -21, -15, -98, -126, -155, -148, -203, -208, -221, -222, -203 and -590, have been shown to be involved in the pathophysiology of viral myocarditis (VMC), and some of them have been shown to have diagnostic abilities. This article summarizes the available data on miRNAs and their associations with VMC.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Krzysztof Badura
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Szymon Kurciński
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Julia Sinkowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Paulina Jakubowska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
3
|
Pasławska M, Grodzka A, Peczyńska J, Sawicka B, Bossowski AT. Role of miRNA in Cardiovascular Diseases in Children-Systematic Review. Int J Mol Sci 2024; 25:956. [PMID: 38256030 PMCID: PMC10816020 DOI: 10.3390/ijms25020956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The number of children suffering from cardiovascular diseases (CVDs) is rising globally. Therefore, there is an urgent need to acquire a better understanding of the genetic factors and molecular mechanisms related to the pathogenesis of CVDs in order to develop new prevention and treatment strategies for the future. MicroRNAs (miRNAs) constitute a class of small non-coding RNA fragments that range from 17 to 25 nucleotides in length and play an essential role in regulating gene expression, controlling an abundance of biological aspects of cell life, such as proliferation, differentiation, and apoptosis, thus affecting immune response, stem cell growth, ageing and haematopoiesis. In recent years, the concept of miRNAs as diagnostic markers allowing discrimination between healthy individuals and those affected by CVDs entered the purview of academic debate. In this review, we aimed to systematise available information regarding miRNAs associated with arrhythmias, cardiomyopathies, myocarditis and congenital heart diseases in children. We focused on the targeted genes and metabolic pathways influenced by those particular miRNAs, and finally, tried to determine the future of miRNAs as novel biomarkers of CVD.
Collapse
Affiliation(s)
| | | | | | | | - Artur Tadeusz Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (M.P.); (A.G.); (J.P.); (B.S.)
| |
Collapse
|
4
|
Procyk G, Grodzka O, Procyk M, Gąsecka A, Głuszek K, Wrzosek M. MicroRNAs in Myocarditis-Review of the Preclinical In Vivo Trials. Biomedicines 2023; 11:2723. [PMID: 37893097 PMCID: PMC10604573 DOI: 10.3390/biomedicines11102723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Myocarditis is an inflammatory heart disease with viruses as the most common cause. Regardless of multiple studies that have recently been conducted, the diagnostic options still need to be improved. Although endomyocardial biopsy is known as a diagnostic gold standard, it is invasive and, thus, only sometimes performed. Novel techniques of cardiac magnetic resonance are not readily available. Therapy in viral infections is based mainly on symptomatic treatment, while steroids and intravenous immunoglobulins are used in autoimmune myocarditis. The effectiveness of neither of these methods has been explicitly proven to date. Therefore, novel diagnostic and therapeutic strategies are highly needed. MiRNAs are small, non-coding molecules that regulate fundamental cell functions, including differentiation, metabolism, and apoptosis. They present altered levels in different diseases, including myocarditis. Numerous studies investigating the role of miRNAs in myocarditis have already been conducted. In this review, we discussed only the original preclinical in vivo research. We eventually included 30 studies relevant to the discussed area. The altered miRNA levels have been observed, including upregulation and downregulation of different miRNAs in the mice models of myocarditis. Furthermore, the administration of mimics or inhibitors of particular miRNAs was shown to significantly influence inflammation, morphology, and function of the heart and overall survival. Finally, some studies presented prospective advantages in vaccine development.
Collapse
Affiliation(s)
- Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Olga Grodzka
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Ceglowska 80, 01-809 Warsaw, Poland
| | - Marcelina Procyk
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Katarzyna Głuszek
- Collegium Medicum, Jan Kochanowski University of Kielce, 25-406 Kielce, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Zhou M, Zhai C, Shen K, Liu G, Liu L, He J, Chen J, Xu Y. miR-1 Inhibits the Ferroptosis of Chondrocyte by Targeting CX43 and Alleviates Osteoarthritis Progression. J Immunol Res 2023; 2023:2061071. [PMID: 37425490 PMCID: PMC10328732 DOI: 10.1155/2023/2061071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Dysregulation of miRNAs in chondrocytes has been confirmed to participate in osteoarthritis (OA) progression. Previous study has screen out several key miRNAs may play crucial role in OA based on bioinformatic analysis. Herein, we identified the downregulation of miR-1 in OA samples and inflamed chondrocytes. The further experiments revealed that miR-1 played an essential role in maintaining chondrocytes proliferation, migration, antiapoptosis, and anabolism. Connexin 43 (CX43) was further predicted and confirmed to be the target of miR-1, and mediated the promotion effects of miR-1 in regulating chondrocyte functions. Mechanistically, miR-1 maintained the expression of GPX4 and SLC7A11 by targeting CX43, attenuated the accumulation of intracellular ROS, lipid ROS, MDA, and Fe2+ in chondrocytes, thereby inhibiting the ferroptosis of chondrocytes. Finally, experimental OA model was constructed by anterior cruciate ligament transection surgery, and Agomir-1 was injected into the joint cavity of mice to assess the protective effect of miR-1 in OA progression. Histological staining, immunofluorescence staining and Osteoarthritis Research Society International score revealed that miR-1 could alleviate the OA progression. Therefore, our study elucidated the mechanism of miR-1 in OA in detail and provided a new insight for the treatment of OA.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Chenjun Zhai
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Kai Shen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Gang Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Lei Liu
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Jian He
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Jun Chen
- Department of Orthopedics, Yixing People's Hospital, Yixing 214200, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
6
|
Fan M, Zhang J, Zeng L, Wang D, Chen J, Xi X, Long J, Huang J, Li X. Non-coding RNA mediates endoplasmic reticulum stress-induced apoptosis in heart disease. Heliyon 2023; 9:e16246. [PMID: 37251826 PMCID: PMC10209419 DOI: 10.1016/j.heliyon.2023.e16246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Apoptosis is a complex and highly self-regulating form of cell death, which is an important cause of the continuous decline in ventricular function and is widely involved in the occurrence and development of heart failure, myocardial infarction, and myocarditis. Endoplasmic reticulum stress plays a crucial role in apoptosis-inducing. Accumulation of misfolded or unfolded proteins causes cells to undergo a stress response called unfolded protein response (UPR). UPR initially has a cardioprotective effect. Nevertheless, prolonged and severe ER stress will lead up to apoptosis of stressed cells. Non-coding RNA is a type of RNA that does not code proteins. An ever-increasing number of studies have shown that non-coding RNAs are involved in regulating endoplasmic reticulum stress-induced cardiomyocyte injury and apoptosis. In this study, the effects of miRNA and LncRNA on endoplasmic reticulum stress in various heart diseases were mainly discussed to clarify their protective effects and potential therapeutic strategies for apoptosis.
Collapse
Affiliation(s)
- Mingyuan Fan
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Zhang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lei Zeng
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Danpeng Wang
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jiao Chen
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaorong Xi
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jing Long
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jinzhu Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xueping Li
- Department of Senile Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
7
|
Yang Y, Li W, You B, Zhou C. Advances in cell death mechanisms involved in viral myocarditis. Front Cardiovasc Med 2022; 9:968752. [PMID: 36017100 PMCID: PMC9395613 DOI: 10.3389/fcvm.2022.968752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Viral myocarditis is an acute inflammatory disease of the myocardium. Although many etiopathogenic factors exist, coxsackievirus B3 is a the leading cause of viral myocarditis. Abnormal cardiomyocyte death is the underlying problem for most cardiovascular diseases and fatalities. Various types of cell death occur and are regulated to varying degrees. In this review, we discuss the different cell death mechanisms in viral myocarditis and the potential interactions between them. We also explore the role and mechanism of cardiomyocyte death with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exploring the mechanisms may help in the early identification and the development of effective treatments, thus improving the quality of life of patients with viral myocarditis. We believe that the inhibition of cardiomyocyte death has immense therapeutic potential in increasing the longevity and health of the heart.
Collapse
Affiliation(s)
- Yang Yang
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
- *Correspondence: Yang Yang,
| | - Wang Li
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
| | - Benshuai You
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chenglin Zhou
- Taizhou People’s Hospital Affiliated to Nanjing Medical University, Taizhou, China
- Clinical Laboratory Center, Jiangsu Taizhou People’s Hospital, Taizhou, China
- Chenglin Zhou,
| |
Collapse
|
8
|
Jiahui C, Jiadai Z, Nan Z, Rui Z, Lipin H, Jian H, Wenzong Z, Riyuan Z. miR-19b-3p/PKNOX1 Regulates Viral Myocarditis by Regulating Macrophage Polarization. Front Genet 2022; 13:902453. [PMID: 35812737 PMCID: PMC9264346 DOI: 10.3389/fgene.2022.902453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Objective: The purpose of this study was to study the role and mechanism of miR-19b-3p in regulating myocardial inflammation and injury of viral myocarditis in viral myocarditis induced by Coxsackievirus B3 (CVB3). A CVB3 infection mouse model was established, the survival rate of mice was recorded after different treatments, cardiac function was detected, the degree of myocardial inflammatory infiltration and injury was detected by immunohistochemical and biochemical analyses, miR-19b-3p and PKNOX1 expression in cardiac tissue and cardiac infiltrating macrophages was detected using RT-PCR, and isolated mouse bone marrow-derived macrophages and the differentiation of macrophages after different transfections were detected. Finally, the binding of miR-19b-3p and PKNOX1 was verified by the dual luciferase reporter gene. The results showed that the expression of miR-19b-3p was significantly downregulated in the cardiac tissue and infiltrating macrophages of CVB3-infected mice, while the expression of PKNOX1 was upregulated. Upregulation of miR-19b-3p has protective effects against CVB3-induced myocardial injury in mice, such as weight gain, prolonged survival, increased left ventricular ejection fraction and left ventricular short axis shortening, reduced inflammation, creatine kinase isoenzyme (CK)-MB, and lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) levels decreased, while interferon-γ and interleukin-6 (IL-6) increased, and the M2/M1 cell ratio was upregulated. In conclusion, miR-19b-3p can regulate macrophage polarization by targeting PKNOX1, and has a protective effect against CVB3-induced inflammation and myocardial injury.
Collapse
Affiliation(s)
- Chen Jiahui
- Yining Hospital Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Zheng Jiadai
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Nan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhou Rui
- Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Huang Lipin
- Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - He Jian
- Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Zhu Wenzong
- Yining Hospital Affiliated to Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhu Wenzong, ; Zhang Riyuan,
| | - Zhang Riyuan
- Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Zhu Wenzong, ; Zhang Riyuan,
| |
Collapse
|
9
|
Peron D, Prates RA, Antonio EL, Teixeira ILA, de Oliveira HA, Mansano BSDM, Bergamo A, Almeida DR, Dariolli R, Tucci PJF, Serra AJ. A common oral pathogen Porphyromonas gingivalis induces myocarditis in rats. J Clin Periodontol 2022; 49:506-517. [PMID: 35066916 DOI: 10.1111/jcpe.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
AIM To evaluate whether Porphyromonas gingivalis (P. gingivalis) inoculation could induce cardiac remodelling in rats. MATERIALS AND METHODS The study was conducted on 33 Wistar rats, which were distributed in the following experimental groups: not inoculated; inoculated with 1 × 108 CFU/ml of bacteria; inoculated with 3 × 108 CFU/ml of bacteria. The animals were inoculated at baseline and on the 15th day of follow-up. Blood collection was performed at baseline and 60 min after each inoculation. At 29 days, the animals were subjected to echocardiography and at 30 days to haemodynamic studies before sacrificing them. RESULTS Impact of the bacteria was more evident in rats that received higher P. gingivalis concentration. Thus, 3 × 108 CFU/ml of bacteria increased the rectal temperature and water content in the lung as well as myocardial necrosis and fibrosis. P. gingivalis induced the intensification of DNA fragmentation and increased the levels of malondialdehyde, oxidized proteins, and macrophage expression in the myocardium. These findings were associated with lower LV isovolumetric relaxation time, +dP/dt, -dP/dt, and higher end-diastolic pressure. CONCLUSIONS P. gingivalis bacteraemia is significantly associated with adverse cardiac remodelling and may play a biological role in the genesis of heart failure.
Collapse
Affiliation(s)
- Daniele Peron
- Biophotonics Applied to Health Science, Nove de Julho University, São Paulo, Brazil
| | - Renato Araujo Prates
- Biophotonics Applied to Health Science, Nove de Julho University, São Paulo, Brazil
| | - Ednei Luiz Antonio
- Department of Medicine, Cardiology Division, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alexandre Bergamo
- Biophotonics Applied to Health Science, Nove de Julho University, São Paulo, Brazil
| | | | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,PluriCell Biotech, São Paulo, Brazil
| | | | - Andrey Jorge Serra
- Department of Medicine, Cardiology Division, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
11
|
Zhang Y, Lai Y, Zhou X, Zhu F. The Role of microRNA-133 in Hemocyte Proliferation and Innate Immunity of Scylla paramamosain. Front Immunol 2022; 12:812717. [PMID: 35154084 PMCID: PMC8828940 DOI: 10.3389/fimmu.2021.812717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/28/2021] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are important signaling regulators that are involved in regulating the innate immunity of crustacean. However, few studies focus on the role of crustacean miRNAs in the cellular immunity have been reported. In this study, we showed that the expression of miR-133 was significantly up-regulated in the mud crab Scylla paramamosain after infection by white spot syndrome virus (WSSV) or Vibrio parahaemolyticus. The anti-miRNA oligonucleotide AMO-miR-133 was used to knock down miR-133 expression in S. paramamosain. The number of WSSV copies increased significantly in WSSV-infected crabs after miR-133 knockdown. Knockdown of miR-133 also enhanced the mortality rates of WSSV-infected and V. parahaemolyticus-infected mud crabs, and it significantly enhanced the expression of the astakine, which was confirmed by real-time quantitative PCR and western blot analysis. The data also indicate that miR-133 may affect hemocyte proliferation in S. paramamosain by regulating astakine expression. miR-133 Knockdown enhanced the apoptosis or phagocytosis of crab hemocytes, and increased the mortality of mud crabs after WSSV or V. parahaemolyticus infection. These results indicate that miR-133 is involved in the host immune response to WSSV and V. parahaemolyticus infection in mud crabs. Taken together, our research provides new insights for the control of viral or vibrio diseases in S. paramamosain.
Collapse
Affiliation(s)
- Yunfei Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yongyong Lai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiujuan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Fei Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
12
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
13
|
MiR-24-3p Conservatively Regulates Muscle Cell Proliferation and Apoptosis by Targeting Common Gene CAMK2B in Rat and Cattle. Animals (Basel) 2022; 12:ani12040505. [PMID: 35203213 PMCID: PMC8868287 DOI: 10.3390/ani12040505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle plays an important role in the growth and development of meat animals. MicroRNAs (miRNAs) can participate in the regulation of muscle development-related functions; however, there have been few reports on whether there are related miRNAs that conservatively regulate muscle development among different species. In this study, the miRNA transcriptome sequencing data of the muscle tissue of cattle, rat, goat, and pig showed that miR-24-3p may conservatively regulate muscle development in these species. Furthermore, mmu-miR-24-3p can positively regulate C2C12 cell proliferation and apoptosis by regulating key proliferation and apoptosis genes in muscle development, which was verified by CCK-8 and RT-qPCR. Bta-miR-24-3p can also positively regulate the proliferation and apoptosis of bovine muscle primary cells by regulating key proliferation and apoptosis genes in the process of muscle development, as verified by CCK-8 and RT-qPCR. The target genes of miR-24-3p in cattle, rat, goat, and pig, which include a large proportion of target genes shared among the four species, are enriched in multiple cell functions and signal pathways that are closely related to muscle development, as revealed by GO and KEGG enrichment analysis. A double luciferase test showed that the shared target genes WNT4, CAMK2B, and TCF7 were targeted by mmu-miR-24-3p in rat and bta-miR-24-3p in cattle. These three shared target genes WNT4, CAMK2B, and TCF7 are involved in the Wnt signaling pathway, which showed that miR-24-3p plays an important role in rat and cattle. The shared target gene (CAMK2B) in rat and cattle increased significantly after the inhibition of miR-24-3p by RT-qPCR. The findings of this study contribute to a better understanding of the role of miR-24-3p in the regulation of muscle development.
Collapse
|
14
|
Deng HY, He ZY, Dong ZC, Zhang YL, Han X, Li HH. MicroRNA-451a attenuates angiotensin II-induced cardiac fibrosis and inflammation by directly targeting T-box1. J Physiol Biochem 2021; 78:257-269. [PMID: 34851490 DOI: 10.1007/s13105-021-00861-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022]
Abstract
Hypertension or angiotensin II (Ang II) induces cardiac inflammation and fibrosis, thus contributing to cardiac remodeling. MicroRNAs (miRNAs) are considered crucial regulators of cardiac homeostasis and remodeling in response to various types of stress. It has been reported that miR-451a is involved in regulating ischemic heart injury. However, its role in Ang II-induced cardiac fibrosis remains unknown. Cardiac remodeling was induced in mice by infusion of low-dose Ang II (490 ng/kg/min) with a minipump for 2 weeks. Echocardiography and histological examinations were performed to evaluate cardiac function and pathological changes. We observed that miR-451a expression was the most significantly downregulated in the hearts of Ang II-infused mice and in both primary cardiac myocytes and fibroblasts. Overexpression of miR-451a in mice significantly attenuated Ang II-induced cardiac fibrosis and inflammation. Conversely, knockdown of miR-451a in mice aggravated this effect. Bioinformatics analysis and a luciferase reporter assay revealed that TBX1 was a direct target of miR-451a. Mechanistically, miR-451a directly targeted TBX1 expression, which inhibited TGF-β1 production in both cardiac myocytes and fibroblasts, inactivating of TGF-β1/SMAD2/3 signaling, inhibiting myofibroblast differentiation and proinflammatory cytokine expression, and leading to attenuation of cardiac fibrosis and inflammation. In conclusion, these results indicate that miR-451a acts as a novel regulator of Ang II-induced cardiac fibrosis and inflammation by directly targeting TBX1, and may be a promising therapeutic target for treating hypertensive cardiac diseases.
Collapse
Affiliation(s)
- Hao-Yuan Deng
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Ze-Yin He
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Zhi-Chao Dong
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yun-Long Zhang
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiao Han
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hui-Hua Li
- Emergency Medicine Clinical Research Center, Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
15
|
Li Q, Jin Y, Ye X, Wang W, Deng G, Zhang X. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-133a Restrains Myocardial Fibrosis and Epithelial-Mesenchymal Transition in Viral Myocarditis Rats Through Suppressing MAML1. NANOSCALE RESEARCH LETTERS 2021; 16:111. [PMID: 34215939 PMCID: PMC8253878 DOI: 10.1186/s11671-021-03559-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/31/2021] [Indexed: 05/12/2023]
Abstract
Myocarditis is a disease characterized by localized or diffuse inflammation of the myocardium without efficient treatment. This study explored the regulatory mechanism of microRNA-133 (miR-133) secreted from bone marrow mesenchymal stem cell-derived exosome (BMSC-Exo) on myocardial fibrosis and epithelial-mesenchymal transition (EMT) in viral myocarditis (VMC) rats through regulating mastermind-like 1 (MAML1). BMSCs in rats were isolated and cultured to identify their immune phenotype and osteogenic and adipogenic ability, and BMSC-Exo were extracted and identified. Exosomes were obtained through ultracentrifugation, which were identified by transmission electron microscope and western blot analysis. The rats were injected with Coxsackie B3 virus for preparation of VMC model, and cardiomyocytes were isolated, cultured and grouped in the same way as animal experiments (NCExo, Ad-miR-133aExo, Adas-miR-133aExo). In vivo and in vitro experiments were conducted to figure out the roles of exosomal miR-133a and MAML1 in inflammation, apoptosis, EMT, fibrosis, and cell viability. The targeting relationship between miR-133a and MAML1 was verified by dual luciferase reporter gene assay. BMSC-Exo raised miR-133a expression in VMC rats and effectively improved the VMC rat cardiac function and myocardial fibrosis, increased cardiomyocyte viability and inhibited the EMT process. Elevated miR-133a in exosomes strengthened the improvements. Silenced miR-133a effectively reversed the effects of BMSC-Exo on VMC rats. miR-133a targeted MAML1. Inhibition of MAML1 improved cardiac function and myocardial fibrosis in VMC rats and could reverse the effect of miR-133a-silenced exosomes on VMC rats. Our study suggests that elevated exosomal miR-133a suppresses myocardial fibrosis and EMT in rats with VMC via down-regulating MAML1, thereby inhibiting the progression of myocarditis.
Collapse
Affiliation(s)
- Qiming Li
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, 322000, Zhejiang, China.
| | - Yunpeng Jin
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, 322000, Zhejiang, China
| | - Xiaoqi Ye
- Nursing Department, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
| | - Wei Wang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, 322000, Zhejiang, China
| | - Gang Deng
- The Ningbo Central Blood Station, Ningbo, 315040, Zhejiang, China
| | - Xiaojian Zhang
- The Department of Cardiology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu, 322000, Zhejiang, China
| |
Collapse
|
16
|
Zhu P, Chen S, Zhang W, Duan G, Jin Y. Essential Role of Non-Coding RNAs in Enterovirus Infection: From Basic Mechanisms to Clinical Prospects. Int J Mol Sci 2021; 22:ijms22062904. [PMID: 33809362 PMCID: PMC7999384 DOI: 10.3390/ijms22062904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/31/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that can cause various types of human diseases and conditions such as hand, foot, and mouth disease (HFMD), myocarditis, meningitis, sepsis, and respiratory disorders. Although EV infections in most patients are generally mild and self-limiting, a small number of young children can develop serious complications such as encephalitis, acute flaccid paralysis, myocarditis, and cardiorespiratory failure, resulting in fatalities. Established evidence has suggested that certain non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) are involved in the occurrence and progression of many human diseases. Recently, the involvement of ncRNAs in the course of EV infection has been reported. Herein, the authors focus on recent advances in the understanding of ncRNAs in EV infection from basic viral pathogenesis to clinical prospects, providing a reference basis and new ideas for disease prevention and research directions.
Collapse
Affiliation(s)
- Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (P.Z.); (S.C.); (W.Z.); (G.D.)
- Correspondence: ; Tel.: +86-0371-67781453
| |
Collapse
|
17
|
Zhao N, Qin W, Wang D, Raquel AG, Yuan L, Mao Y, Ma C, Xiao Z, Ma J. MicroRNA-1 affects the development of the neural crest and craniofacial skeleton via the mitochondrial apoptosis pathway. Exp Ther Med 2021; 21:379. [PMID: 33680101 PMCID: PMC7918114 DOI: 10.3892/etm.2021.9810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
The neural crest is one of the key features of craniofacial development. MicroRNA-1 (miR-1) is a single-stranded noncoding RNA that serves an important role in embryonic development. However, the function of miR-1 in neural crest cells (NCCs) is unknown. Therefore, to evaluate the role of miR-1 in NCC development, a miR-1 mutant zebrafish was generated in the current study. Mouse NCCs were isolated from the first branchial arch of embryos at gestational day E9.5, and miR-1 was silenced using a miR-1 inhibitor. To the best of our knowledge, the present study was the first to report that homozygous zebrafish lacking miR-1 exhibited developmental defects in NCC-derived craniofacial bones, heart, melanocytes and iridophores. These defects may be caused by an increase in apoptosis of NCCs during their migration and differentiation in embryonic development. Moreover, the apoptosis analysis and western blotting results demonstrated that this effect was modulated via the mitochondrial apoptosis pathway, and miR-1 inhibited NCC apoptosis by modulating this pathway. These results collectively suggested that miR-1 in NCCs may be essential for craniofacial development.
Collapse
Affiliation(s)
- Na Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenhao Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongyue Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Anakarina González Raquel
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yelin Mao
- Department of Orthodontics, The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, Jiangsu 215002, P.R. China
| | - Changyan Ma
- Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, P.R. China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
18
|
Safa A, Bahroudi Z, Shoorei H, Majidpoor J, Abak A, Taheri M, Ghafouri-Fard S. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother 2020; 132:110903. [PMID: 33096351 DOI: 10.1016/j.biopha.2020.110903] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-1 (miR-1) is a conserved miRNA with high expression in the muscle tissues. In humans, two discrete genes, MIRN1-1 and MIRN1-2 residing on a genomic region on 18q11.2 produce a single mature miRNA which has 21 nucleotides. miR-1 has a regulatory role on a number of genes including heat shock protein 60 (HSP60), Kruppel-like factor 4 (KLF4) and Heart And Neural Crest Derivatives Expressed 2 (HAND2). miR-1 has critical roles in the physiological processes in the smooth and skeletal muscles as well as other tissues, thus being involved in the pathogenesis of a wide range of disorders. Moreover, dysregulation of miR-1 has been noted in diverse types of cancers including gastric, colorectal, breast, prostate and lung cancer. In the current review, we provide the summary of the data regarding the role of this miRNA in the normal development and the pathogenic processes.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciecnes, Tehran, Iran.
| |
Collapse
|
19
|
Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. DISEASE MARKERS 2020; 2020:1215802. [PMID: 32626540 PMCID: PMC7306098 DOI: 10.1155/2020/1215802] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
The prevalence of heart failure (HF) due to cardiac remodelling after acute myocardial infarction (AMI) does not decrease regardless of implementation of new technologies supporting opening culprit coronary artery and solving of ischemia-relating stenosis with primary percutaneous coronary intervention (PCI). Numerous studies have examined the diagnostic and prognostic potencies of circulating cardiac biomarkers in acute coronary syndrome/AMI and heart failure after AMI, and even fewer have depicted the utility of biomarkers in AMI patients undergoing primary PCI. Although complete revascularization at early period of acute coronary syndrome/AMI is an established factor for improved short-term and long-term prognosis and lowered risk of cardiovascular (CV) complications, late adverse cardiac remodelling may be a major risk factor for one-year mortality and postponded heart failure manifestation after PCI with subsequent blood flow resolving in culprit coronary artery. The aim of the review was to focus an attention on circulating biomarker as a promising tool to stratify AMI patients at high risk of poor cardiac recovery and developing HF after successful PCI. The main consideration affects biomarkers of inflammation, biomechanical myocardial stress, cardiac injury and necrosis, fibrosis, endothelial dysfunction, and vascular reparation. Clinical utilities and predictive modalities of natriuretic peptides, cardiac troponins, galectin 3, soluble suppressor tumorogenicity-2, high-sensitive C-reactive protein, growth differential factor-15, midregional proadrenomedullin, noncoding RNAs, and other biomarkers for adverse cardiac remodelling are discussed in the review.
Collapse
|