1
|
Merzoug M, Bendida K, Aireche M, Zater ZY, Brakna CN, Hammadi AI, Saidi Y, Todorov SD, Saidi D. Isolation and Characterization of Enterocin-Producing Enterococcus faecium Strains from Algerian Traditional Food "Dried Figs Marinated in Olive Oil": Functional and Safety Evaluations. Foods 2025; 14:766. [PMID: 40077468 PMCID: PMC11899104 DOI: 10.3390/foods14050766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
The increasing consumer demand for natural and sustainable food preservation methods has highlighted the potential of lactic acid bacteria (LAB) and their bioactive metabolites, particularly bacteriocins, as effective antimicrobial agents. This study aimed to isolate and characterize Enterococcus faecium strains from Algerian traditional dried figs marinated in olive oil, a nutrient-dense and underexplored food matrix. Twelve isolates were identified as E. faecium using MALDI-TOF MS and 16S rRNA gene sequencing, ensuring precise taxonomic classification. Genotypic analyses (BOX-PCR, GTG-PCR, and ERIC-PCR) revealed substantial genetic diversity, with BOX-PCR demonstrating superior discriminatory power. Functional screening confirmed the presence of enterocin genes, including entA (100% of strains), entB (60%), and entL50A/B (20%), which correlated with inhibition zones against Enterococcus faecium VCY, Micrococcus luteus GPE 3001, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, and Acinetobacter lwoffii GPE 3002. Genotype-phenotype correlation analysis identified strain HFM7 as the most potent antimicrobial strain, exhibiting the largest inhibition zone (20.0 ± 1.0 mm) and harboring three enterocin genes (entA, entL50A, and entL50B). Protease sensitivity confirmed the proteinaceous nature of the antimicrobial compounds. Importantly, no virulence factors (esp, gelE, and hyl) or antibiotic resistance genes (vanA, vanB, ermA, ermB, and aac(6')-Ie-alph(2″)) were detected, underscoring the safety of these isolates for food applications. These findings suggest that E. faecium strains from traditional foods are promising candidates as natural biopreservatives and starter cultures in clean-label food systems. By bridging traditional food ecosystems and modern biotechnological advancements, this study provides a foundation for sustainable, minimally processed food preservation strategies with potential applications in enhancing food safety and shelf life.
Collapse
Affiliation(s)
- Mohamed Merzoug
- Higher School of Biological Sciences of Oran, BP 1042 Saim Mohamed, Cité Emir Abdelkader (EX-INESSMO), Oran 31000, Algeria; (M.M.); (K.B.); (M.A.); (C.N.B.); (A.I.H.); (Y.S.); (D.S.)
| | - Keltoum Bendida
- Higher School of Biological Sciences of Oran, BP 1042 Saim Mohamed, Cité Emir Abdelkader (EX-INESSMO), Oran 31000, Algeria; (M.M.); (K.B.); (M.A.); (C.N.B.); (A.I.H.); (Y.S.); (D.S.)
| | - Marwa Aireche
- Higher School of Biological Sciences of Oran, BP 1042 Saim Mohamed, Cité Emir Abdelkader (EX-INESSMO), Oran 31000, Algeria; (M.M.); (K.B.); (M.A.); (C.N.B.); (A.I.H.); (Y.S.); (D.S.)
| | - Zohra Yasmine Zater
- Laboratory of Biology of Microorganisms and Biotechnology, University of Oran 1 Ahmed Ben Bella, Oran 31000, Algeria;
| | - Chaimaa Naila Brakna
- Higher School of Biological Sciences of Oran, BP 1042 Saim Mohamed, Cité Emir Abdelkader (EX-INESSMO), Oran 31000, Algeria; (M.M.); (K.B.); (M.A.); (C.N.B.); (A.I.H.); (Y.S.); (D.S.)
| | - Amaria Ilhem Hammadi
- Higher School of Biological Sciences of Oran, BP 1042 Saim Mohamed, Cité Emir Abdelkader (EX-INESSMO), Oran 31000, Algeria; (M.M.); (K.B.); (M.A.); (C.N.B.); (A.I.H.); (Y.S.); (D.S.)
| | - Yasmine Saidi
- Higher School of Biological Sciences of Oran, BP 1042 Saim Mohamed, Cité Emir Abdelkader (EX-INESSMO), Oran 31000, Algeria; (M.M.); (K.B.); (M.A.); (C.N.B.); (A.I.H.); (Y.S.); (D.S.)
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | - Djamal Saidi
- Higher School of Biological Sciences of Oran, BP 1042 Saim Mohamed, Cité Emir Abdelkader (EX-INESSMO), Oran 31000, Algeria; (M.M.); (K.B.); (M.A.); (C.N.B.); (A.I.H.); (Y.S.); (D.S.)
| |
Collapse
|
2
|
Geniş B, Öztürk H, Özden Tuncer B, Tuncer Y. Safety assessment of enterocin-producing Enterococcus strains isolated from sheep and goat colostrum. BMC Microbiol 2024; 24:391. [PMID: 39375633 PMCID: PMC11457484 DOI: 10.1186/s12866-024-03551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND This study investigates the safety evaluation of enterocin-producing 11 E. mundtii and two E. faecium strains previously isolated from small livestock colostrums. Enterococcus species do not possess Generally Recognized as Safe (GRAS) status. Hence, it is critical to scrutinize enterococci's antibiotic resistance, virulence characteristics, and biogenic amine production capabilities in order to assess their safety before using them as starter or adjunct cultures. RESULTS Enterococcus strains showed susceptibility to medically significant antibiotics. Multiple-drug resistance (MDR) was found in only E. faecium HC121.4, and its multiple antibiotic resistance (MAR) index was detected to be 0.22. The tetL and aph(3')-IIIa were the most commonly found antibiotic resistance genes in the strains. However, E. mundtii strains HC56.3, HC73.1, HC147.1, and E. faecium strain HC121.4 were detected to lack any of the antibiotic resistance genes examined in this study. Only E. mundtii HC166.3 showed hemolytic activity, while none of the strains engage in gelatinase activity. The strains were identified to have virulence factor genes with a low rate. None of the virulence factor genes could be detected in E. mundtii HC26.1, HC56.3, HC73.1, HC165.3, HC166.8, and E. faecium HC121.4. The E. mundtii HC73.2 strain displayed the highest presence of virulence factor genes, namely gelE, efaAfs, cpd, and ccf. Similarly, the E. mundtii HC112.1 strain showed a significant presence of genes efaAfm, ccf, and acm. There was no decarboxylation of histidine, ornithine, or lysine seen in any of the strains. Nevertheless, E. faecium HC121.4 and HC161.1 strains could decarboxylate tyrosine, but E. mundtii HC26.1, HC56.3, HC73.1, HC73.2, HC112.1, HC147.1, HC155.2, HC165.3, HC166.3, HC166.5, and HC166.8 strains only showed a limited capacity for tyrosine decarboxylation. None of the strains possessed the hdc, odc, or ldc genes, but all of them had the tdc gene. CONCLUSION The E. mundtii HC56.3 and HC73.1 strains were deemed appropriate for utilization in food production. Using the remaining 11 strains as live cultures in food production activities could pose a possible risk to consumer health.
Collapse
Affiliation(s)
- Burak Geniş
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye
| | - Hüseyin Öztürk
- Department of Food Technology, Manavgat Vocational School, Akdeniz University, Antalya, 07600, Türkiye
| | - Banu Özden Tuncer
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye
| | - Yasin Tuncer
- Faculty of Engineering and Natural Sciences, Department of Food Engineering, Süleyman Demirel University, Isparta, 32260, Türkiye.
| |
Collapse
|
3
|
Öztürk H, Geniş B, Özden Tuncer B, Tuncer Y. Bacteriocin production and technological properties of Enterococcus mundtii and Enterococcus faecium strains isolated from sheep and goat colostrum. Vet Res Commun 2023; 47:1321-1345. [PMID: 36738399 DOI: 10.1007/s11259-023-10080-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Enterococci are lactic acid bacteria (LAB) that play a role in the aroma formation, maturation, and sensory development of fermented foods such as meat and dairy products. They also contribute to the improvement of the extended shelf life of fermented foods by producing bacteriocin. The aim of this study was to isolate bacteriocin-producing LAB from sheep and goat colostrum, to characterize the bacteriocin-producing strains, and determine the technological properties of the strains. A total of 13 bacteriocin-producing LAB was isolated and identified as 11 Enterococcus mundtii and two Enterococcus faecium. The strains were found to be genetically different from each other by phylogenetic analysis of 16S rRNA gene sequences and random amplified polymorphic-DNA (RAPD-PCR). It has been determined that bacteriocins show activity in a wide pH range and are resistant to heat, lose their activity with proteolytic enzymes and α-amylase, but are resistant to detergents. While the presence of the munKS gene was detected in all of the strains, it was determined that E. faecium HC121.4, HC161.1, E. mundtii HC147.1, HC166.5, and HC166.8 strains contained multiple enterocin genes. Trisin-SDS-PAGE analysis revealed two active protein bands of approximately 5.1 and 5.5 kDa in E. faecium HC121.4 and one active protein band with a weight of approximately 4.96 kDa in other strains. E. mundtii strains and E. faecium HC161.1 were identified as mundticin KS producers, and E. faecium HC121.4 was defined as an enterocin A and B producer. Except for E. mundtii HC166.8, acid production of strains was found to be slow at 6 h and moderate at 24 h. None of them showed extracellular proteolytic and lipolytic activities. It was found that the strains had esterase, esterase lipase, leucine arylamidase, acid phosphatase, and naphthol-AS-Bl-phosphohydrolase activities, while protease activities were low and peptidase activities were high. In conclusion, bacteriocin producer 13 Enterococcus strains isolated from sheep and goat colostrum were found to have the potential to be included in starter culture combinations.
Collapse
Affiliation(s)
- Hüseyin Öztürk
- Department of Food Technology, Manavgat Vocational School, Akdeniz University, 07600, Antalya, Turkey
| | - Burak Geniş
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Banu Özden Tuncer
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Yasin Tuncer
- Faculty of Engineering, Department of Food Engineering, Süleyman Demirel University, 32260, Isparta, Turkey.
| |
Collapse
|
4
|
Cheriet S, Lengliz S, Romdhani A, Hynds P, Abbassi MS, Ghrairi T. Selection and Characterization of Bacteriocinogenic Lactic Acid Bacteria from the Intestine of Gilthead Seabream ( Sparus aurata) and Whiting Fish ( Merlangius merlangus): Promising Strains for Aquaculture Probiotic and Food Bio-Preservation. Life (Basel) 2023; 13:1833. [PMID: 37763237 PMCID: PMC10532712 DOI: 10.3390/life13091833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
This study sought to evaluate the probiotic properties and the food preservation ability of lactic acid bacteria isolates collected from the intestines of wild marine fishes (gilthead seabream (Sparus aurata) (n = 60) and whiting fish (Merlangius merlangus) (n = 40)) from the Mediterranean sea in the area of Mostaganem city, Algeria. Forty-two isolates were identified as: Enterococcus durans (n = 19), Enterococcus faecium (n = 15), Enterococcus faecalis (n = 4), Lactococcus lactis subp. lactis (n = 3), and Lactobacillus plantarum (n = 1). All isolates showed inhibition to at least one indicator strain, especially against Listeria monocytogenes, Staphylococcus aureus, Paenibacillus larvae, Vibrio alginolyticus, Enterococcus faecalis, Bacillus cereus, and Bacillus subtilis. In all collected isolates, PCR analysis of enterocin-encoding genes showed the following genes: entP (n = 21), ent1071A/B (n = 11), entB (n = 8), entL50A/B (n = 7), entAS48 (n = 5), and entX (n = 1). Interestingly, 15 isolates harbored more than one ent gene. Antimicrobial susceptibility, phenotypic virulence, and genes encoding virulence factors were investigated by PCR. Resistance to tetracycline (n = 8: tetL + tetK), erythromycin (n = 7: 5 ermA, 2 msrA, and 1 mef(A/E)), ciprofloxacin (n = 1), gentamicin (n = 1: aac(6')-aph(2″)), and linezolid (n = 1) were observed. Three isolates were gelatinase producers and eight were α-hemolytic. Three E. durans and one E. faecium harbored the hyl gene. Eight isolates showing safety properties (susceptible to clinically relevant antibiotics, free of genes encoding virulence factors) were tested to select probiotic candidates. They showed high tolerance to low pH and bile salt, hydrophobicity power, and co-culture ability. The eight isolates showed important phenotypic and genotypic traits enabling them to be promising probiotic candidates or food bio-conservers and starter cultures.
Collapse
Affiliation(s)
- Sarah Cheriet
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 2092, Tunisia;
| | - Sana Lengliz
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
- Laboratory of Materials, Molecules and Application LR11ES22, Preparatory Institute for Scientific and Technical Studies, University of Carthage, Tunis 1054, Tunisia
| | - Amel Romdhani
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Grangegorman, Dublin 7, D07 H6K8 Dublin, Ireland;
| | - Mohamed Salah Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia; (S.C.); (S.L.); (A.R.)
- Research Laboratory «Antimicrobial Resistance» LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecule Valorisation LR18ES03, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis 2092, Tunisia;
| |
Collapse
|
5
|
Özdemir R, Tuncer Y. Detection of antibiotic resistance profiles and aminoglycoside-modifying enzyme (AME) genes in high-level aminoglycoside-resistant (HLAR) enterococci isolated from raw milk and traditional cheeses in Turkey. Mol Biol Rep 2020; 47:1703-1712. [PMID: 31989429 DOI: 10.1007/s11033-020-05262-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/04/2020] [Accepted: 01/18/2020] [Indexed: 12/29/2022]
Abstract
The aim of this study was isolation and identification of the high-level aminoglycoside-resistant (HLAR) enterococci in raw milk and dairy products and to analyze their antibiotic resistance and the presence of aminoglycoside-modifying enzyme (AME) genes. A total of 59 HLAR enterococci were isolated from raw milk and traditional cheese samples. Thirty-nine of the 59 HLAR enterococci were isolated on streptomycin-containing agar medium, while the other 20 HLAR strains were isolated on gentamicin containing agar medium. The 59 HLAR enterococci were identified as 26 E. faecalis (44.07%), 18 E. faecium (30.51%), 13 E. durans (22.03%), and two E. gallinarum (3.39%) by species-specific PCR. Disk diffusion tests showed that teicoplanin were the most effective antibiotics used in this study, while 89.83% of isolates were found to be resistant to tetracycline. High rates of multiple antibiotic resistance were detected in HLAR isolates. Minimum inhibitory concentration (MIC) values of HLAR enterococci against streptomycin and gentamicin were found in the range of 64 to > 4096 µg/mL. Forty-seven (79.66%) of the 59 HLAR enterococci were found to be both high-level streptomycin-resistant (HLSR) and high-level gentamicin-resistant (HLGR) by MIC tests. However, no correlation was found between the results of the disk diffusion and MIC tests for gentamicin and streptomycin in some HLAR strains. The aph(3')-IIIa (94.92%) was found to be most prevalent AME gene followed by ant(4')-Ia (45.76%), ant(6')-Ia (20.34%) and aph(2'')-Ic (10.17%). None of the isolates contained the aac(6')-Ie-aph(2'')-Ia, aph(2'')-Ib or aph(2'')-Id genes. None of the AME-encoding genes were identified in E. durans RG20.1, E. faecalis RG22.4, or RG26.1. In conclusion, HLAR enterococci strains isolated in this study may act as reservoirs in the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Rahime Özdemir
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey
| | - Yasin Tuncer
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey.
| |
Collapse
|
6
|
Furlaneto-Maia L, Ramalho R, Rocha KR, Furlaneto MC. Antimicrobial activity of enterocins against Listeria sp. and other food spoilage bacteria. Biotechnol Lett 2020; 42:797-806. [PMID: 31970555 DOI: 10.1007/s10529-020-02810-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To determine bacteriocin producers and the prevalence of structural enterocin genes and to detect the spectrum of activity against foodborne pathogens, from isolates of Enterococcus faecium and Enterococcus faecalis that were isolated from food and the environment. RESULTS The entA, entB, entP, ent1071 and entX genes, which encode enterocins were the most frequently observed. Enterocins were thermostable, proteinaceous, and resistant to catalase. None of the isolates produced hemolysin, and inhibition resulting from bacteriophage lysis was excluded. The bactericidal effect of enterocins against L. innocua 12612 was determined by optical density and colony forming units. For the activity spectrum, elimination of mainly Listeria strains, Bacillus sp. and clinical enterococci, was observed. Imaging with scanning electron microscopy after treatment with enterocin Efm22 showed irregular rod-shaped cells and loss of cellular integrity. CONCLUSIONS The isolates evaluated in this study are candidates for the production of enterocins that will be used as food biopreservatives, because they have high anti-listerial activity even after 24 h of experimentation, and used in the pharmaceutical area because they inhibit clinical microorganisms.
Collapse
Affiliation(s)
- Luciana Furlaneto-Maia
- Department of Food Technology, Federal Technological University of Paraná, Campus Londrina, Paraná, 86036-370, Brazil.
| | - Regiane Ramalho
- Department of Food Technology, Federal Technological University of Paraná, Campus Londrina, Paraná, 86036-370, Brazil
| | - Kátia Real Rocha
- Department of Microbiology, State University of Londrina, Londrina, Paraná, C.P. 6001, 86051990, Brazil
| | - Márcia Cristina Furlaneto
- Department of Microbiology, State University of Londrina, Londrina, Paraná, C.P. 6001, 86051990, Brazil
| |
Collapse
|
7
|
Bacteriocinogenic properties and safety evaluation of Enterococcus faecium YT52 isolated from boza, a traditional cereal based fermented beverage. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01213-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Zommiti M, Cambronel M, Maillot O, Barreau M, Sebei K, Feuilloley M, Ferchichi M, Connil N. Evaluation of Probiotic Properties and Safety of Enterococcus faecium Isolated From Artisanal Tunisian Meat "Dried Ossban". Front Microbiol 2018; 9:1685. [PMID: 30127770 PMCID: PMC6088202 DOI: 10.3389/fmicb.2018.01685] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022] Open
Abstract
Enterococcus faecium strains were isolated from an original biotope, artisanal dried Tunisian meat “Dried Ossban,” and evaluated for safety and capacity as probiotics. Gram-positive, catalase negative, and bacteriocin-producing bacteria were screened using selective microbiological media. All isolates were identified by phenotypic and molecular tools. Five E. faecium strains (MZF1, MZF2, MZF3, MZF4, and MZF5) were selected and further assessed for their probiotic properties. They were found to be resistant to the physiological concentrations of bile salts, and the harsh conditions of the gastrointestinal tract, and showed autoaggregation and adhesion ability. All these isolates possess at least one enterocin and could efficiently inhibit the growth of Listeria innocua HPB13. The analysis of their safety profile revealed for almost all the strains the absence of cytotoxicity and virulence determinants, and susceptibility to clinically important antibiotics such as vancomycin. These data suggest that these bacteria, isolated from “Dried Ossban,” do not present a risk to human health, and may be considered as interesting candidates for future use as probiotics and bioprotective cultures for application in the food and/or feed industries.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mélyssa Cambronel
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, Évreux, France
| | - Magalie Barreau
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, Évreux, France
| | - Khaled Sebei
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, Évreux, France
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisia.,Clinical Laboratory Department, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, Évreux, France
| |
Collapse
|