1
|
Ivanova OE, Eremeeva TP, Morozova NS, Mikhailova YM, Kozlovskaya LI, Baikova OY, Shakaryan AK, Krasota AY, Korotkova EA, Yakovchuk EV, Shustova EY, Lukashev AN. Non-Polio Enteroviruses Isolated by Acute Flaccid Paralysis Surveillance Laboratories in the Russian Federation in 1998-2021: Distinct Epidemiological Features of Types. Viruses 2024; 16:135. [PMID: 38257835 PMCID: PMC10819661 DOI: 10.3390/v16010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
More than 100 types of non-polio enteroviruses (NPEVs) are ubiquitous in the human population and cause a variety of symptoms ranging from very mild to meningitis and acute flaccid paralysis (AFP). Much of the information regarding diverse pathogenic properties of NPEVs comes from the surveillance of poliovirus, which also yields NPEV. The analysis of 265 NPEV isolations from 10,433 AFP cases over 24 years of surveillance and more than 2500 NPEV findings in patients without severe neurological lesions suggests that types EV-A71, E13, and E25 were significantly associated with AFP. EV-A71 was also significantly more common among AFP patients who had fever at the onset and residual paralysis compared to all AFP cases. In addition, a significant disparity was noticed between types that were common in humans (CV-A2, CVA9, EV-A71, E9, and E30) or in sewage (CVA7, E3, E7, E11, E12, and E19). Therefore, there is significant evidence of non-polio viruses being implicated in severe neurological lesions, but further multicenter studies using uniform methodology are needed for a definitive conclusion.
Collapse
Affiliation(s)
- Olga E. Ivanova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia (E.V.Y.); (E.Y.S.)
- Department of Organization and Technology of Production of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | - Tatiana P. Eremeeva
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia (E.V.Y.); (E.Y.S.)
| | - Nadezhda S. Morozova
- The Federal Budgetary Health Institution “Federal Center of Hygiene and Epidemiology” of the Federal Office for Inspectorate in the Field of Customers and Human Well-Being Protection”(FBHI FCH&E), 117105 Moscow, Russia
| | - Yulia M. Mikhailova
- The Federal Budgetary Health Institution “Federal Center of Hygiene and Epidemiology” of the Federal Office for Inspectorate in the Field of Customers and Human Well-Being Protection”(FBHI FCH&E), 117105 Moscow, Russia
| | - Liubov I. Kozlovskaya
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia (E.V.Y.); (E.Y.S.)
- Department of Organization and Technology of Production of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
| | - Olga Y. Baikova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia (E.V.Y.); (E.Y.S.)
| | - Armen K. Shakaryan
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia (E.V.Y.); (E.Y.S.)
- Department of Childrenʹs Infectious Diseases, Pediatric Faculty, Pirogov Russian National Research Medical University, 119121 Moscow, Russia
| | - Alexandr Y. Krasota
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia (E.V.Y.); (E.Y.S.)
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Ekaterina A. Korotkova
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Elizaveta V. Yakovchuk
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia (E.V.Y.); (E.Y.S.)
| | - Elena Y. Shustova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia (E.V.Y.); (E.Y.S.)
| | - Alexander N. Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119048 Moscow, Russia
- Research Institute for Systems Biology and Medicine, 117246 Moscow, Russia
| |
Collapse
|
2
|
Yan R, He J, Liu G, Zhong J, Xu J, Zheng K, Ren Z, He Z, Zhu Q. Drug Repositioning for Hand, Foot, and Mouth Disease. Viruses 2022; 15:75. [PMID: 36680115 PMCID: PMC9861398 DOI: 10.3390/v15010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a highly contagious disease in children caused by a group of enteroviruses. HFMD currently presents a major threat to infants and young children because of a lack of antiviral drugs in clinical practice. Drug repositioning is an attractive drug discovery strategy aimed at identifying and developing new drugs for diseases. Notably, repositioning of well-characterized therapeutics, including either approved or investigational drugs, is becoming a potential strategy to identify new treatments for virus infections. Various types of drugs, including antibacterial, cardiovascular, and anticancer agents, have been studied in relation to their therapeutic potential to treat HFMD. In this review, we summarize the major outbreaks of HFMD and the progress in drug repositioning to treat this disease. We also discuss the structural features and mode of action of these repositioned drugs and highlight the opportunities and challenges of drug repositioning for HFMD.
Collapse
Affiliation(s)
- Ran Yan
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jiahao He
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Ge Liu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jianfeng Zhong
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Jiapeng Xu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
3
|
Ivanova OE, Shakaryan AK, Morozova NS, Vakulenko YA, Eremeeva TP, Kozlovskaya LI, Baykova OY, Shustova EY, Mikhailova YM, Romanenkova NI, Rozaeva NR, Dzhaparidze NI, Novikova NA, Zverev VV, Golitsyna LN, Lukashev AN. Cases of Acute Flaccid Paralysis Associated with Coxsackievirus A2: Findings of a 20-Year Surveillance in the Russian Federation. Microorganisms 2022; 10:microorganisms10010112. [PMID: 35056561 PMCID: PMC8780984 DOI: 10.3390/microorganisms10010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Surveillance for acute flaccid paralysis syndrome (AFP) in children under 15 is the backbone of the Global Polio Eradication Initiative. Laboratory examination of stool samples from AFP cases allows the detection of, along with polioviruses, a variety of non-polio enteroviruses (NPEV). The etiological significance of these viruses in the occurrence of AFP cases has been definitively established only for enteroviruses A71 and D68. Enterovirus Coxsackie A2 (CVA2) is most often associated with vesicular pharyngitis and hand, foot and mouth disease. Among 7280 AFP cases registered in Russia over 20 years (2001–2020), CVA2 was isolated only from five cases. However, these included three children aged 3 to 4 years, without overt immune deficiency, immunized with 4–5 doses of poliovirus vaccine in accordance with the National Vaccination Schedule. The disease resulted in persistent residual paralysis. Clinical and laboratory data corresponded to poliomyelitis developing during poliovirus infection. These findings are compatible with CVA2 being the cause of AFP. Molecular analysis of CVA2 from these patients and a number of AFP cases in other countries did not reveal association with a specific phylogenetic group, suggesting that virus genetics is unlikely to explain the pathogenic profile. The overall results highlight the value of AFP surveillance not just for polio control but for studies of uncommon AFP agents.
Collapse
Affiliation(s)
- Olga E. Ivanova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
- Department of Organization and Technology of Production of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: (O.E.I.); (A.N.L.); Tel.: +7-916-677-2403 (O.E.I.); +7-915-160-7489 (A.N.L.)
| | - Armen K. Shakaryan
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
- Pirogov Russian National Research Medical University, 119121 Moscow, Russia
| | - Nadezhda S. Morozova
- Federal Budget Institution of Healthcare of Rospotrebnadzor “Center for Hygiene and Epidemiology in Moscow”, 129626 Moscow, Russia; (N.S.M.); (Y.M.M.)
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Meidcal Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Tatyana P. Eremeeva
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
| | - Liubov I. Kozlovskaya
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
- Department of Organization and Technology of Production of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Olga Y. Baykova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
| | - Elena Y. Shustova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
| | - Yulia M. Mikhailova
- Federal Budget Institution of Healthcare of Rospotrebnadzor “Center for Hygiene and Epidemiology in Moscow”, 129626 Moscow, Russia; (N.S.M.); (Y.M.M.)
| | | | - Nadezhda R. Rozaeva
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia; (N.I.R.); (N.R.R.)
| | - Natela I. Dzhaparidze
- Federal Budgetary Institution of Healthcare of Rospotrebnadzor “Center for Hygiene and Epidemiology in the Vladimir Region”, 600005 Vladimir, Russia;
| | - Nadezhda A. Novikova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, 603950 Nizhny Novgorod, Russia; (N.A.N.); (V.V.Z.); (L.N.G.)
| | - Vladimir V. Zverev
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, 603950 Nizhny Novgorod, Russia; (N.A.N.); (V.V.Z.); (L.N.G.)
| | - Lyudmila N. Golitsyna
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, 603950 Nizhny Novgorod, Russia; (N.A.N.); (V.V.Z.); (L.N.G.)
| | - Alexander N. Lukashev
- Martsinovsky Institute of Meidcal Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: (O.E.I.); (A.N.L.); Tel.: +7-916-677-2403 (O.E.I.); +7-915-160-7489 (A.N.L.)
| |
Collapse
|
4
|
Suresh S, Rawlinson WD, Andrews PI, Stelzer‐Braid S. Global epidemiology of nonpolio enteroviruses causing severe neurological complications: A systematic review and meta‐analysis. Rev Med Virol 2019; 30:e2082. [DOI: 10.1002/rmv.2082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Sarika Suresh
- Melbourne Medical SchoolUniversity of Melbourne Parkville Australia
- Virology Research LaboratoryPrince of Wales Hospital Randwick Australia
| | - William D. Rawlinson
- Virology Research LaboratoryPrince of Wales Hospital Randwick Australia
- School of Medical Sciences, and School of Women's and Children's Health, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South Wales Sydney Australia
- Serology and Virology Division (SAViD)Microbiology NSW Health Pathology Randwick Australia
| | - Peter Ian Andrews
- School of Medical Sciences, and School of Women's and Children's Health, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South Wales Sydney Australia
- Department of Paediatric NeurologySydney Children's Hospital Randwick Australia
| | - Sacha Stelzer‐Braid
- Virology Research LaboratoryPrince of Wales Hospital Randwick Australia
- School of Medical Sciences, and School of Women's and Children's Health, Faculty of Medicine, and School of Biotechnology and Biomolecular Sciences, Faculty of ScienceUniversity of New South Wales Sydney Australia
| |
Collapse
|
5
|
Wieczorek M, Ciąćka A, Krzysztoszek A, Figas A, Szenborn L. Genetic Characterization of Human Enteroviruses Associated with Hand, Foot and Mouth Diseases in Poland, 2013-2016. Pol J Microbiol 2019; 66:405-409. [PMID: 29319516 DOI: 10.5604/01.3001.0010.4889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of the present study was to describe the molecular characteristics of enteroviruses associated with hand, food, and mouth disease (HFMD) in Poland. Clinical material from HFMD cases, that occurred during 2013-2016 were examined. It has been showed that coxsackievirus A6 (CVA6), CVA10 and CVA16 were circulating in the country. Phylogenetic analysis showed that Polish CVA6 strains were divided into two distinct clusters suggesting two independent introductions. This is the first report of CVA6 infections associated with HFMD in Poland. These results emphasize the need for continuous monitoring of HFMD and facilitation of the diagnosis using molecular approaches.
Collapse
Affiliation(s)
- Magdalena Wieczorek
- Department of Virology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Ciąćka
- Department of Virology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Arleta Krzysztoszek
- Department of Virology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Figas
- Department of Virology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Leszek Szenborn
- Department and Clinic of Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
6
|
Divergent Pathogenic Properties of Circulating Coxsackievirus A6 Associated with Emerging Hand, Foot, and Mouth Disease. J Virol 2018; 92:JVI.00303-18. [PMID: 29563294 DOI: 10.1128/jvi.00303-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) is an emerging pathogen associated with hand, foot, and mouth disease (HFMD). Its genetic characterization and pathogenic properties are largely unknown. Here, we report 39 circulating CV-A6 strains isolated in 2013 from HFMD patients in northeast China. Three major clusters of CV-A6 were identified and related to CV-A6, mostly from Shanghai, indicating that domestic CV-A6 strains were responsible for HFMD emerging in northeast China. Four full-length CV-A6 genomes representing each cluster were sequenced and analyzed further. Bootscanning tests indicated that all four CV-A6-Changchun strains were most likely recombinants between the CV-A6 prototype Gdula and prototype CV-A4 or CV-A4-related viruses, while the recombination pattern was related to, yet distinct from, the strains isolated from other regions of China. Furthermore, different CV-A6 strains showed different capabilities of viral replication, release, and pathogenesis in a mouse model. Further analyses indicated that viral protein 2C contributed to the diverse pathogenic abilities of CV-A6 by causing autophagy and inducing cell death. To our knowledge, this study is the first to report lethal and nonlethal strains of CV-A6 associated with HFMD. The 2C protein region may play a key role in the pathogenicity of CV-A6 strains.IMPORTANCE Hand, foot, and mouth disease (HFMD) is a major and persistent threat to infants and children. Besides the most common pathogens, such as enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16), other enteroviruses are increasingly contributing to HFMD. The present study focused on the recently emerged CV-A6 strain. We found that CV-A6 strains isolated in Changchun City in northeast China were associated with domestic origins. These Changchun viruses were novel recombinants of the CV-A6 prototype Gdula and CV-A4. Our results imply that measures to control CV-A6 transmission are urgently needed. Further analyses revealed differing pathogenicities in strains isolated in a neonatal mouse model. One of the possible causes has been narrowed down to the viral protein 2C, using phylogenetic studies, viral sequences, and direct tests on cultured human cells. Thus, the viral 2C protein is a promising target for antiviral drugs to prevent CV-A6-induced tissue damage.
Collapse
|