1
|
Pokora I, Drzazga Z, Wyderka P, Binek M. Determination of the Effects of a Series of Ten Whole-Body Cryostimulation Sessions on Physiological Responses to Exercise and Skin Temperature Behavior following Exercise in Elite Athletes. J Clin Med 2023; 12:6159. [PMID: 37834804 PMCID: PMC10573447 DOI: 10.3390/jcm12196159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The present study investigated the effects of a series of 10 whole-body cryostimulation (WBC) sessions (3 min; -110 °C) on physiological and thermal responses to a submaximal exercise test in 17 elite athletes. Participants performed an exercise test twice at similar levels of intensity before and after a series of ten WBC sessions. Before and during the test, each participant's oxygen uptake (VO2), heart rate (HR), internal temperature (Ti), and skin temperature in selected areas of the skin were measured, and the mean arterial pressure (MAP), physiological strain index (PSI), and mean skin temperature (Tsk) were calculated. The results show that during exercise, increases in Ti and the PSI were significantly lower after the WBC sessions, and although there were no significant changes in HR or the MAP, the Tsk was significantly higher. Following exercise, an increase in skin temperature asymmetry over the lower-body muscles was detected. A series of WBC sessions induced a tendency toward a decrease in temperature asymmetry over the thigh muscles. In conclusion, a series of ten WBC sessions does not induce significant modifications in physiological variables but does influence the PSI and Ti during exercise. Moreover, a series of ten WBC sessions influences the distribution of skin temperature and the magnitude of temperature asymmetries in the early phase of recovery.
Collapse
Affiliation(s)
- Ilona Pokora
- Department of Physiology, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland
| | - Zofia Drzazga
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Piotr Wyderka
- Department of Physiology, Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72a, 40-065 Katowice, Poland
| | - Mariusz Binek
- The Silesian Centre for Education and Interdisciplinary Research, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
2
|
CHENG Q, MAO Y, DING X. Establishment of a mouse pneumonia model under cold stress. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.52721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Nowak R, Kostrzewa-Nowak D, Buryta R. Analysis of Selected Lymphocyte (CD45+) Subset Distribution in Capillary Blood of Young Soccer Players. J Strength Cond Res 2021; 35:2279-2286. [PMID: 34398078 DOI: 10.1519/jsc.0000000000003105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Nowak, R, Kostrzerwa-Nowak, D, and Buryta, R. Analysis of selected lymphocyte (CD45+) subset distribution in capillary blood of young soccer players. J Strength Cond Res 35(8): 2279-2286, 2021-Mechanisms responsible for increasing athletes' physical capacity and induction of exercise-induced immunosuppression processes are not fully understood. The aim of the study was to monitor changes in percentages of lymphocyte subsets: T, Th, Tc, B, and NK cells in capillary blood of junior soccer players. Ten subjects median aged 18 years (range 17-19 years) were recruited form young soccer players. Capillary blood was collected 24 hours after each soccer match during the 8 weeks of the final phase of Central Junior League competition, and white blood cell (WBC) phenotyping was performed to determine the percentages of B lymphocytes, NK cells, and T-lymphocyte subsets. Cumulative match-time (a sum of time spend playing the game by each athlete during the observation period) was also calculated. Significant changes in the percentage of total lymphocytes (p = 0.00005) and T cells (p = 0.00006) were observed. The slight increases in lymphocytes' and Th cells' median percentages correlated with increasing cumulative match-time of studied subjects, although the correlation was not strong (R = 0.24; p = 0.0205 and R = 0.30; p = 0.0035, for lymphocytes and Th cells, respectively). It seems that the exercise bouts are among considerable factors influencing the changes in WBC subsets, especially in CD3+ cells, among young soccer players. Regarding the number of games played and training loads, they are more susceptible to immunosuppression and subsequent infections and thus should be monitored regarding WBC phenotype assessment.
Collapse
Affiliation(s)
- Robert Nowak
- Department of Biological Bases of Physical Education, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland
- Center for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland ; and
| | - Dorota Kostrzewa-Nowak
- Department of Biological Bases of Physical Education, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland
- Center for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland ; and
| | - Rafał Buryta
- Department of Biological Bases of Physical Education, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland
- Center for Human Structural and Functional Research, Faculty of Physical Education and Health Promotion, University of Szczecin, Szczecin, Poland ; and
- Pogoń Szczecin S.A. Soccer Club, Szczecin, Poland
| |
Collapse
|
4
|
Eimonte M, Paulauskas H, Daniuseviciute L, Eimantas N, Vitkauskiene A, Dauksaite G, Solianik R, Brazaitis M. Residual effects of short-term whole-body cold-water immersion on the cytokine profile, white blood cell count, and blood markers of stress. Int J Hyperthermia 2021; 38:696-707. [PMID: 33910456 DOI: 10.1080/02656736.2021.1915504] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: One of the most challenging environmental extremes is immersion in cold/icy water, and consequent common assumption is that even a brief exposure to cold can lead to cold-related illnesses. The increase in the concentrations of the stress hormones cortisol, epinephrine (Epi), and norepinephrine (NE) in response to acute cold stress are thought to suppress the release of proinflammatory cytokines. No previous study has explored the residual consequences of whole-body short-term cold-water immersion (CWI; 14 °C for 10 min) on the immune response in healthy non-acclimated young adult men (aged 20-30 years).Materials and methods: In the current study, we tested the hypothesis that short-term acute whole-body CWI would induce high blood levels of cortisol, NE, and Epi, which in turn would increase circulating leukocyte numbers and delay the production of proinflammatory cytokines (tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6). Results: Short-term whole-body CWI produced a stressful physiological reaction, as manifested by hyperventilation and increased muscle shivering, metabolic heat production, and heart rate. CWI also induced the marked release of the stress hormones Epi, NE, and cortisol. The change in IL-6 concentration after CWI was delayed and TNF-α production was decreased, but IL-1β was not affected within 48 h after CWI. A delayed increase in neutrophil percentage and decrease in lymphocyte percentage occurred after CWI.Conclusion: These findings suggest that, even though CWI caused changes in stress and immune markers, the participants showed no predisposition to symptoms of the common cold within 48 h after CWI.
Collapse
Affiliation(s)
- Milda Eimonte
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Henrikas Paulauskas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Laura Daniuseviciute
- Faculty of Social Sciences, Arts and Humanities, Kaunas University of Technology, Kaunas, Lithuania
| | - Nerijus Eimantas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gintare Dauksaite
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| |
Collapse
|
5
|
Xavier A, Cesaro A. Impact of Exercise Intensity on Calprotectin Levels in Healthy Volunteers and Patients with Inflammatory Rheumatic Diseases. Life (Basel) 2021; 11:377. [PMID: 33922149 PMCID: PMC8143494 DOI: 10.3390/life11050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Exercise influences inflammatory response and immune system performance. The regular practice of a moderate activity positively regulates immunity and the inflammatory process, while intensive training depresses it and enhances inflammatory marker secretion. Calprotectin is involved in the inflammatory process, promoting neutrophil recruitment, cell degranulation, and inflammatory mediators. Furthermore, calprotectin has been associated with various inflammatory diseases, including inflammatory rheumatic diseases. The present review explores the effect of exercise on calprotectin levels in both healthy and inflammatory rheumatic conditions. Data show that the intensity duration and the type of exercise modulate calprotectin levels and participant inflammatory status. The exact role of calprotectin in the exercise response is yet unknown. Calprotectin could constitute an interesting biomarker for monitoring both the effect of exercise on the inflammatory process in healthy volunteers and the efficiency of exercise treatment programs in a patient with inflammatory rheumatic disease.
Collapse
Affiliation(s)
| | - Annabelle Cesaro
- I3MTO (Imagerie Multimodale Multiéchelle et Modélisation du Tissu Osseux et Articulaire)/EA 4708, Université d’Orléans, 45000 Orléans, France;
| |
Collapse
|
6
|
Callanan MC, Christensen KD, Plummer HA, Torres J, Anz AW. Elevation of Peripheral Blood CD34+ and Platelet Levels After Exercise With Cooling and Compression. Arthrosc Sports Med Rehabil 2021; 3:e399-e410. [PMID: 34027448 PMCID: PMC8129037 DOI: 10.1016/j.asmr.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/09/2020] [Indexed: 11/11/2022] Open
Abstract
Purpose To analyze the cellular response and chemokine profiles following exercise using cooling and blood flow restriction on the Vasper system. Methods Healthy male patients between the ages of 20 and 39 years were recruited. Testing was performed on the Vasper system, a NuStep cross-trainer with concomitant 4-limb venous compression with proximal arm cuffs at 40 mm Hg and proximal leg cuffs at 65 mm Hg. A cooling vest and cooling mat (8.3°C) were used. A 7-minute warm-up followed by alternating 30- and 60-second sprints with 1.5 and 2 minutes of active recovery, respectively, between each sprint. Peripheral blood was drawn before exercise, immediately following exercise (T20), 10 minutes after the first post-exercise blood draw (T30), and then every 30 minutes (T60, T90, T120, T150, T180). A blood draw occurred at 24 hours’ postexercise. Complete blood count, monoclonal flow cytometry for CD34+, and enzyme-linked immunosorbent assay were used to analyze the samples. Results Sixteen healthy male patients (29.5 ± 4.5years, 1.78 ± 0.05m, 83.7 ± 11.4 kg) were enrolled. There was an immediate, temporary increase in white blood cell counts, marked by an increase in lymphocyte differential (38.3 ± 6.5 to 44.3 ± 9.0%, P = .001), decrease in neutrophil differential (47.8 ± 6.6 to 42.0 ± 9.1%, P < .001), and platelets (239.5 ± 57.2 to 268.6 ± 86.3 K⋅μL–1, P = .01). Monocytes significantly decreased from PRE to T90 (9.8 ± 1.1 to 8.9 ± 1.1K/μL, P < .001) and T120 (8.9 ± 1.1 K/μL, P < .0001). There was a significant increase in CD34+ cells (3.9 ± 2.0 to 5.3 ± 2.8 cells⋅μL–1, P < .001). No detectable differences in measured cytokine levels of interleukin (IL)-10, IL-6, granulocyte-macrophage colony-stimulating factor , IL-1ra, tumor necrosis factor-α, or IL-2 were observed. Conclusions A significant elevation of peripheral blood CD34+ and platelet levels immediately following the exercise session was observed; however, there was no effect on peripheral circulation of IL-10, IL-6, IL-1ra, tumor necrosis factor-α, or IL-2. Clinical Relevance Exercise can be considered as a way to manipulate point-of-care blood products like platelet-rich plasma and may increase product yield.
Collapse
Affiliation(s)
| | | | | | | | - Adam W Anz
- Andrews Institute for Orthopedics & Sports Medicine, U.S.A
| |
Collapse
|
7
|
Kurowski M, Jurczyk J, Olszewska-Ziąber A, Jarzębska M, Krysztofiak H, Kowalski ML. A similar pro/anti-inflammatory cytokine balance is present in the airways of competitive athletes and non-exercising asthmatics. Adv Med Sci 2018; 63:79-86. [PMID: 28822267 DOI: 10.1016/j.advms.2017.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/01/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Intensive exercise modifies airway inflammation and infection susceptibility. We aimed to determine the effect of exercise on pro- and anti-inflammatory cytokine (TNF-α, IL-1ra, IL-10) and innate immunity protein (HSPA1, sCD14) levels in exhaled breath condensate (EBC) and nasal secretions of competitive athletes, non-exercising asthmatics and healthy controls (HC). MATERIAL AND METHODS The study group consisted of 15 competitive athletes (five speed skaters and ten swimmers) aged 15-25. The control groups comprised 10 mild-to-moderate asthmatics (AC) and seven HC. Athletes were assessed in- and off-training while asthmatics and controls at one time point. Nasal lavages and EBC were collected before and after a treadmill exercise challenge. Protein levels were assessed using ELISA. RESULTS TNF-α levels in EBC were significantly higher in athletes than HC, but similar to asthmatic patients. In contrast, IL-1ra EBC concentrations were significantly lower in athletes than in HC, but again similar to asthmatics. Significant positive correlations were seen between baseline concentrations of TNF-α in EBC and fall in FEV1 following exercise challenge in athletes during training period (R=0.74, p<0.01) and in asthmatics (R=0.64, p<0.05). In nasal secretions, baseline IL-1ra levels were significantly higher in athletes and asthmatics than in HC. Exercise caused a slight, yet significant, increase in EBC HSPA1 in athletes (p=0.02). The exercise challenge did not considerably influence TNF-α, IL-1ra, HSPA1 and sCD14 in EBC or nasal secretions. CONCLUSIONS Dysregulation of the TNF-α/IL-1ra balance in EBC and nasal secretions from athletes may reflect the presence of airway inflammation induced by repeated strenuous exercise.
Collapse
|
8
|
Kurowski M, Jurczyk J, Moskwa S, Jarzębska M, Krysztofiak H, Kowalski ML. Winter ambient training conditions are associated with increased bronchial hyperreactivity and with shifts in serum innate immunity proteins in young competitive speed skaters. Arch Med Sci 2018; 14:60-68. [PMID: 29379533 PMCID: PMC5783158 DOI: 10.5114/aoms.2017.69438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/26/2016] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Regular training modulates airway inflammation and modifies susceptibility to respiratory infections. The impact of exercise and ambient conditions on airway hyperreactivity and innate immunity has not been well studied. We aimed to assess exercise-related symptoms, lung function, airway hyperresponsiveness and innate immunity proteins in relation to meteorological conditions and exercise load in competitive athletes. MATERIAL AND METHODS Thirty-six speed skaters were assessed during winter (WTP) and summer (STP) periods. The control group comprised 22 non-exercising subjects. An allergy questionnaire for athletes (AQUA) and IPAQ (International Physical Activity Questionnaire) were used to assess symptoms and exercise. Meteorological parameters were acquired from World Meteorological Organization resources. Serum innate immunity proteins were measured by ELISA. RESULTS Exercise-associated respiratory symptoms were reported by 79.4% of skaters. Despite similar exercise load and lung parameters during both periods, positive methacholine challenge was more frequent during winter (p = 0.04). Heat shock protein HSPA1 and IL-1RA were significantly decreased during STP compared to WTP and controls. During WTP, IL-1RA was elevated in skaters reporting exercise-induced symptoms (p = 0.007). sCD14 was elevated in athletes versus controls in both periods (p < 0.05). HSPA1 was significantly higher in WTP compared to STP irrespective of presence of respiratory tract infections (RTIs). IL-1RA in WTP was elevated versus STP (p = 0.004) only in RTI-negative athletes. Serum IL-1RA negatively correlated with most meteorological parameters during WTP. CONCLUSIONS Ambient training conditions, but not training load, influence bronchial hyperreactivity and the innate immune response in competitive athletes assessed during winter. The protective effect of regular exercise against respiratory infections is associated with a shift in serum innate immunity proteins.
Collapse
Affiliation(s)
- Marcin Kurowski
- Department of Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| | - Janusz Jurczyk
- National Centre for Sports Medicine (COMS), Warsaw, Poland
| | - Sylwia Moskwa
- Department of Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| | - Marzanna Jarzębska
- Department of Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| | - Hubert Krysztofiak
- National Centre for Sports Medicine (COMS), Warsaw, Poland
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Marek L. Kowalski
- Department of Immunology, Rheumatology and Allergy, Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Wang Y, Zhang B, Zhang X, Wang X, Cheng J, Chen B. Detection and Identification of Hematologic Malignancies and Solid Tumors by an Electrochemical Technique. PLoS One 2016; 11:e0153821. [PMID: 27115355 PMCID: PMC4845976 DOI: 10.1371/journal.pone.0153821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/04/2016] [Indexed: 01/29/2023] Open
Abstract
Purpose Develop and evaluate an electrochemical method to identify healthy individuals, malignant hematopathic patients and solid tumor patients by detecting the leukocytes in whole-blood. Methods A total of 114 individual blood samples obtained from our affiliated hospital in China (June 2015- August 2015) were divided into three groups: healthy individuals (n = 35), hematologic malignancies (n = 41) and solid tumors (n = 38). An electrochemical workstation system was used to measure differential pulse voltammetry due to the different electrochemical behaviors of leukocytes in blood samples. Then, one-way analysis of variance (ANOVA) was applied to analyze the scanning curves and to compare the peak potential and peak current. Results The scanning curve demonstrated the specific electrochemical behaviors of the blank potassium ferricyanide solution and that mixed with blood samples in different groups. Significant differences in mean peak potentials of mixture and shifts (ΔEp (mV)) were observed of the three groups (P< = 0.001). 106.00±9.00 and 3.14±7.48 for Group healthy individuals, 120.90±11.18 and 18.10±8.81 for Group hematologic malignancies, 136.84±11.53 and 32.89±10.50 for Group solid tumors, respectively. In contrast, there were no significant differences in the peak currents and shifts. Conclusions The newly developed method to apply the electrochemical workstation system to identify hematologic malignancies and solid tumors with good sensitivity and specificity might be effective, suggesting a potential utility in clinical application.
Collapse
Affiliation(s)
- Yujie Wang
- Department of hematology and oncology (key Discipline of Jiangshu Province), Zhongda Hospital, School of Medicine, Southeast University, Nangjing, Jiangsu Province, People’s Republic of China
| | - Bowen Zhang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Xiaoping Zhang
- Department of hematology and oncology (key Discipline of Jiangshu Province), Zhongda Hospital, School of Medicine, Southeast University, Nangjing, Jiangsu Province, People’s Republic of China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Laboratory), Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jian Cheng
- Department of hematology and oncology (key Discipline of Jiangshu Province), Zhongda Hospital, School of Medicine, Southeast University, Nangjing, Jiangsu Province, People’s Republic of China
| | - Baoan Chen
- Department of hematology and oncology (key Discipline of Jiangshu Province), Zhongda Hospital, School of Medicine, Southeast University, Nangjing, Jiangsu Province, People’s Republic of China
- * E-mail: ;
| |
Collapse
|
10
|
Morabito C, Lanuti P, Caprara GA, Guarnieri S, Verratti V, Ricci G, Catizone A, Marchisio M, Fanò-Illic G, Mariggiò MA. Responses of peripheral blood mononuclear cells to moderate exercise and hypoxia. Scand J Med Sci Sports 2015; 26:1188-99. [PMID: 26432186 DOI: 10.1111/sms.12557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to analyze the physiological features of peripheral blood mononuclear cells (PBMCs) isolated from healthy female trekkers before and after physical activity carried out under both normoxia (low altitude, < 2000 m a.s.l.) and hypobaric hypoxia (high altitude, > 3700 m a.s.l.). The experimental design was to differentiate effects induced by exercise and those related to external environmental conditions. PBMCs were isolated from seven female subjects before and after each training period. The PBMCs were phenotypically and functionally characterized using fluorimetric and densitometric analyses, to determine cellular activation, and their intracellular Ca(2+) levels and oxidative status. After a period of normoxic physical exercise, the PBMCs showed an increase in fully activated T lymphocytes (CD3(+) CD69(+) ) and a reduction in intracellular Ca(2+) levels. On the other hand, with physical exercise performed under hypobaric hypoxia, there was a reduction in T lymphocytes and an increase in nonactivated B lymphocytes, accompanied by a reduction in O2 (-) levels in the mitochondria. These outcomes reveal that in women, low- to moderate-intensity aerobic trekking induces CD69 T cell activation and promotes anti-stress effects on the high-altitude-induced impairment of the immune responses and the oxidative balance.
Collapse
Affiliation(s)
- C Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - P Lanuti
- Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G A Caprara
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - S Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - V Verratti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G Ricci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - A Catizone
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic and Orthopaedic Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M Marchisio
- Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G Fanò-Illic
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - M A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.
| |
Collapse
|
11
|
Flouris AD, Piantoni C. Links between thermoregulation and aging in endotherms and ectotherms. Temperature (Austin) 2014; 2:73-85. [PMID: 27226994 PMCID: PMC4843886 DOI: 10.4161/23328940.2014.989793] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/21/2014] [Accepted: 11/13/2014] [Indexed: 01/22/2023] Open
Abstract
While the link between thermoregulation and aging is generally accepted, much further research, reflection, and debate is required to elucidate the physiological and molecular pathways that generate the observed thermal-induced changes in lifespan. Our aim in this review is to present, discuss, and scrutinize the thermoregulatory mechanisms that are implicated in the aging process in endotherms and ectotherms. Our analysis demonstrates that low body temperature benefits lifespan in both endothermic and ectothermic organisms. Research in endotherms has delved deeper into the physiological and molecular mechanisms linking body temperature and longevity. While research in ectotherms has been steadily increasing during the past decades, further mechanistic work is required in order to fully elucidate the underlying phenomena. What is abundantly clear is that both endotherms and ectotherms have a specific temperature zone at which they function optimally. This zone is defended through both physiological and behavioral means and plays a major role on organismal senescence. That low body temperature may be beneficial for lifespan is contrary to conventional medical theory where reduced body temperature is usually considered as a sign of underlying pathology. Regardless, this phenomenon has been targeted by scientists with the expectation that advancements may compress morbidity, as well as lower disease and mortality risk. The available evidence suggests that lowered body temperature may prolong life span, yet finding the key to temperature regulation remains the problem. While we are still far from a complete understanding of the mechanisms linking body temperature and longevity, we are getting closer.
Collapse
Affiliation(s)
- Andreas D Flouris
- FAME Laboratory; Department of Exercise Science; University of Thessaly ; Trikala, Greece
| | - Carla Piantoni
- University of Sao Paulo; Department of Physiology ; Sao Paulo, Brazil
| |
Collapse
|