1
|
Hawker B, Dhakal M, Connor B, McCaughey-Chapman A. Modeling demyelination and endogenous remyelination in spinal cord ex vivo rat organotypic slice cultures. Front Cell Neurosci 2024; 18:1345042. [PMID: 38988661 PMCID: PMC11233765 DOI: 10.3389/fncel.2024.1345042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Demyelination of the spinal cord is a prominent feature of multiple sclerosis (MS) and spinal cord injuries (SCI), where impaired neuronal communication between the brain and periphery has devastating consequences on neurological function. Demyelination precedes remyelination, an endogenous process in which oligodendrocyte precursor cells (OPCs) differentiate into mature, myelinating oligodendrocytes with the ability to restore the myelin sheath and reinstate functional nerve signaling. However, in MS or SCI, demyelination is more severe, persistent, and inhibitory to OPC-mediated remyelination, leading to a permanent loss of neuronal function. Currently, there are no effective treatments for demyelination, and existing pre-clinical models typically focus on brain tissue with little characterization of demyelination within the spinal cord. Organotypic slice cultures are a useful tool to study neurological disease, providing a more complex 3-dimensional system than standard 2-dimensional in vitro cell cultures. Methods Building on our previously developed rat brain slice culture protocol, we have extended our findings to develop a rat longitudinal spinal cord ex vivo model of demyelination. Results We generated rat longitudinal spinal cord slice cultures that remain viable for up to 6 weeks in culture and retain key anatomical features of the spinal cord's cytoarchitecture. We show that treating longitudinal spinal cord slices with lysolecithin (LPC) induced robust demyelination with some endogenous remyelination, which was not seen following exposure to lipopolysaccharide (LPS). Discussion Our ex vivo organotypic spinal cord slice culture system provides a platform to model demyelination and endogenous remyelination long-term, mimicking that observed in LPC-induced rodent models of demyelination. This platform is suitable for the development and testing of novel therapeutic strategies with ease of manipulation prior to in vivo experimentation.
Collapse
Affiliation(s)
| | | | | | - Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Darvishi M, Hamidabadi HG, Bojnordi MN, Saeednia S, Zahiri M, Niapour A, Alizadeh R. Differentiation of human dental pulp stem cells into functional motor neuron: In vitro and ex vivo study. Tissue Cell 2021; 72:101542. [PMID: 33964606 DOI: 10.1016/j.tice.2021.101542] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
There are several therapeutic options for spinal cord injury (SCI), among these strategies stem cell therapy is a potential treatment. The stem cells based therapies have been investigating in acute phase of clinical trials for promoting spinal repair in humans through replacement of functional neuronal and glial cells. The aim of this study was to evaluate the differentiation of Human Dental Pulp Stem Cells (hDPSCs) into functional motor neuron like cells (MNLCs) and promote neuroregeneration by stimulating local neurogenesis in the adult spinal cord slice culture. The immunocytochemistry analysis demonstrated that hDPSCs were positive for mesenchymal stem cell markers (CD73, CD90 and CD105) and negative for the hematopoietic markers (CD34 and CD45). hDPSCs were induced to neurospheres (via implementing B27, EGF, and bFGF) and then neural stem cells (NSC). The NSC differentiated into MNLCs in two steps: first by Shh and RA and ; then with GDNF and BDNF administration. The NS and the NSC were assessed for Oct4, nestin, Nanog, Sox2 expression while the MNLCs were evaluated by ISLET1, Olig2, and HB9 genes. Our results showed that hDPSC can be differentiated into motor neuron phenotype with expression of the motor neuron genes. The functionality of MNLCs was demonstrated by FM1-43, intracellular calcium ion shift and co- culture with C2C12. We co-cultivated hDPSCs with adult rat spinal slices in vitro. Immunostaining and hoechst assay showed that hDPSCs were able to migrate, proliferate and integrate in both the anterolateral zone and the edges of the spinal slices.
Collapse
Affiliation(s)
- Marzieh Darvishi
- Department of Anatomy, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sara Saeednia
- Department of Basic Sciences, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Maria Zahiri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wood CR, Juárez EH, Ferrini F, Myint P, Innes J, Lossi L, Merighi A, Johnson WEB. Mesenchymal stem cell conditioned medium increases glial reactivity and decreases neuronal survival in spinal cord slice cultures. Biochem Biophys Rep 2021; 26:100976. [PMID: 33718633 PMCID: PMC7933697 DOI: 10.1016/j.bbrep.2021.100976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Ex vivo spinal cord slice cultures (SCSC) allow study of spinal cord circuitry, maintaining stimuli responses comparable to live animals. Previously, we have shown that mesenchymal stem/stromal cell (MSC) transplantation in vivo reduced inflammation and increased nerve regeneration but MSC survival was short-lived, highlighting that beneficial action may derive from the secretome. Previous in vitro studies of MSC conditioned medium (CM) have also shown increased neuronal growth. In this study, murine SCSC were cultured in canine MSC CM (harvested from the adipose tissue of excised inguinal fat) and cell phenotypes analysed via immunohistochemistry and confocal microscopy. SCSC in MSC CM displayed enhanced viability after propidium iodide staining. GFAP immunoreactivity was significantly increased in SCSC in MSC CM compared to controls, but with no change in proteoglycan (NG2) immunoreactivity. In contrast, culture in MSC CM significantly decreased the prevalence of βIII-tubulin immunoreactive neurites, whilst Ca2+ transients per cell were significantly increased. These ex vivo results contradict previous in vitro and in vivo reports of how MSC and their secretome may affect the microenvironment of the spinal cord after injury and highlight the importance of a careful comparison of the different experimental conditions used to assess the potential of cell therapies for the treatment of spinal cord injury. Treatment of spinal slices with conditioned medium caused cell phenotypic changes. Resident astrocytes become hypertrophic, yet neuronal axonal outgrowth reduced. Signalling cells reduced in number but increased their signalling activity. Highlights importance of simulation systems and systemic factors in CNS models.
Collapse
Affiliation(s)
- Chelsea R Wood
- Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| | - Esri H Juárez
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy.,Université Laval, Department of Psychiatry and Neuroscience, G1K 7P4, Québec, Canada
| | - Peter Myint
- Veterinary Tissue Bank Ltd., No.1 The Long Barn, Brynkinalt Business Centre, Chirk, Wrexham, LL14 5NS, UK
| | - John Innes
- Veterinary Tissue Bank Ltd., No.1 The Long Barn, Brynkinalt Business Centre, Chirk, Wrexham, LL14 5NS, UK
| | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - William E B Johnson
- Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| |
Collapse
|
4
|
Lin C, Calzarossa C, Fernandez-Zafra T, Liu J, Li X, Ekblad-Nordberg Å, Vazquez-Juarez E, Codeluppi S, Holmberg L, Lindskog M, Uhlén P, Åkesson E. Human ex vivo spinal cord slice culture as a useful model of neural development, lesion, and allogeneic neural cell therapy. Stem Cell Res Ther 2020; 11:320. [PMID: 32727554 PMCID: PMC7390865 DOI: 10.1186/s13287-020-01771-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Background There are multiple promising treatment strategies for central nervous system trauma and disease. However, to develop clinically potent and safe treatments, models of human-specific conditions are needed to complement in vitro and in vivo animal model-based studies. Methods We established human brain stem and spinal cord (cross- and longitudinal sections) organotypic cultures (hOCs) from first trimester tissues after informed consent by donor and ethical approval by the Regional Human Ethics Committee, Stockholm (lately referred to as Swedish Ethical Review Authority), and The National Board of Health and Welfare, Sweden. We evaluated the stability of hOCs with a semi-quantitative hOC score, immunohistochemistry, flow cytometry, Ca2+ signaling, and electrophysiological analysis. We also applied experimental allogeneic human neural cell therapy after injury in the ex vivo spinal cord slices. Results The spinal cord hOCs presented relatively stable features during 7–21 days in vitro (DIV) (except a slightly increased cell proliferation and activated glial response). After contusion injury performed at 7 DIV, a significant reduction of the hOC score, increase of the activated caspase-3+ cell population, and activated microglial populations at 14 days postinjury compared to sham controls were observed. Such elevation in the activated caspase-3+ population and activated microglial population was not observed after allogeneic human neural cell therapy. Conclusions We conclude that human spinal cord slice cultures have potential for future structural and functional studies of human spinal cord development, injury, and treatment strategies.
Collapse
Affiliation(s)
- Chenhong Lin
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Calzarossa
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology and Laboratory of Neuroscience, Università degli Studi diMilan, Milan, Italy
| | - Teresa Fernandez-Zafra
- Division of Molecular Neurobiology, Departmentof Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jia Liu
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Ekblad-Nordberg
- Department of Clinical Science, Intervention and Technology, Div. of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Erika Vazquez-Juarez
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Simone Codeluppi
- Division of Molecular Neurobiology, Departmentof Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lena Holmberg
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Lindskog
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Per Uhlén
- Division of Molecular Neurobiology, Departmentof Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Åkesson
- Department of Neurobiology, Care Sciences and Society, Div. of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden. .,The R&D Unit, Stockholms Sjukhem, Stockholm, Sweden.
| |
Collapse
|
5
|
Gulino M, Kim D, Pané S, Santos SD, Pêgo AP. Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes. Front Neurosci 2019; 13:689. [PMID: 31333407 PMCID: PMC6624471 DOI: 10.3389/fnins.2019.00689] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
The development of implantable neuroelectrodes is advancing rapidly as these tools are becoming increasingly ubiquitous in clinical practice, especially for the treatment of traumatic and neurodegenerative disorders. Electrodes have been exploited in a wide number of neural interface devices, such as deep brain stimulation, which is one of the most successful therapies with proven efficacy in the treatment of diseases like Parkinson or epilepsy. However, one of the main caveats related to the clinical application of electrodes is the nervous tissue response at the injury site, characterized by a cascade of inflammatory events, which culminate in chronic inflammation, and, in turn, result in the failure of the implant over extended periods of time. To overcome current limitations of the most widespread macroelectrode based systems, new design strategies and the development of innovative materials with superior biocompatibility characteristics are currently being investigated. This review describes the current state of the art of in vitro, ex vivo, and in vivo models available for the study of neural tissue response to implantable microelectrodes. We particularly highlight new models with increased complexity that closely mimic in vivo scenarios and that can serve as promising alternatives to animal studies for investigation of microelectrodes in neural tissues. Additionally, we also express our view on the impact of the progress in the field of neural tissue engineering on neural implant research.
Collapse
Affiliation(s)
- Maurizio Gulino
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Donghoon Kim
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Sofia Duque Santos
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Ana Paula Pêgo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP – Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Pan S, Qi Z, Li Q, Ma Y, Fu C, Zheng S, Kong W, Liu Q, Yang X. Graphene oxide-PLGA hybrid nanofibres for the local delivery of IGF-1 and BDNF in spinal cord repair. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:651-664. [PMID: 30829545 DOI: 10.1080/21691401.2019.1575843] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Qiuju Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Yue Ma
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun TX, PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Shuang Zheng
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Qinyi Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| |
Collapse
|
7
|
Pandamooz S, Salehi MS, Zibaii MI, Safari A, Nabiuni M, Ahmadiani A, Dargahi L. Modeling traumatic injury in organotypic spinal cord slice culture obtained from adult rat. Tissue Cell 2019; 56:90-97. [DOI: 10.1016/j.tice.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/04/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022]
|
8
|
Patar A, Dockery P, Howard L, McMahon SS. Cell viability in three ex vivo rat models of spinal cord injury. J Anat 2018; 234:244-251. [PMID: 30417349 DOI: 10.1111/joa.12909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disorder that has a poor prognosis of recovery. Animal models of SCI are useful to understand the pathophysiology of SCI and the potential use of therapeutic strategies for human SCI. Ex vivo models of central nervous system (CNS) trauma, particularly mechanical trauma, have become important tools to complement in vivo models of injury in order to reproduce the sequelae of human CNS injury. Ex vivo organotypic slice cultures (OSCs) provide a reliable model platform for the study of cell dynamics and therapeutic intervention following SCI. In addition, these ex vivo models support the 3R concept of animal use in SCI research - replacement, reduction and refinement. Ex vivo models cannot be used to monitor functional recovery, nor do they have the intact blood supply of the in vivo model systems. However, the ex vivo models appear to reproduce many of the post traumatic events including acute and secondary injury mechanisms. Several well-established OSC models have been developed over the past few years for experimental spinal injuries ex vivo in order to understand the biological response to injury. In this study, we investigated cell viability in three ex vivo OSC models of SCI: stab injury, transection injury and contusion injury. Injury was inflicted in postnatal day 4 rat spinal cord slices. Stab injury was performed using a needle on transverse slices of spinal cord. Transection injury was performed on longitudinal slices of spinal cord using a double blade technique. Contusion injury was performed on longitudinal slices of spinal cord using an Infinite Horizon impactor device. At days 3 and 10 post-injury, viability was measured using dual staining for propidium iodide and fluorescein diacetate. In all ex vivo SCI models, the slices showed more live cells than dead cells over 10 days in culture, with higher cell viability in control slices compared with injured slices. Although no change in cell viability was observed between time-points in stab- and contusion-injured OSCs, a reduction in cell viability was observed over time in transection-injured OSCs. Taken together, ex vivo SCI models are a useful and reliable research tool that reduces the cost and time involved in carrying out animal studies. The use of OSC models provides a simple way to study the cellular consequences following SCI, and they can also be used to investigate potential therapeutics regimes for the treatment of SCI.
Collapse
Affiliation(s)
- Azim Patar
- Discipline of Anatomy and NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Peter Dockery
- Discipline of Anatomy, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute (REMEDI), College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Siobhan S McMahon
- Discipline of Anatomy and NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
9
|
Abstract
This study was undertaken to establish a method for the culture of organotypic spinal cord slices. A long-term organotypic spinal cord slice culture was conducted from postnatal rats. Lumbar spinal cord was isolated, and meninges were removed from the spinal cord. The spinal cord was embedded in 4% agarose, and was sectioned by vibratome into slices. Then the slices were cultured on the surface of the membrane inserts, which were placed in six-well plates containing 1 ml of growth medium at 37°C in an incubator with 5% humidified carbon dioxide. The cultured organotypic spinal cord slices were examined by light microscopy and immunocytochemistry. The organotypic spinal cord slices were fully attached to the membrane inserts after 10 days in vitro. The general change in color and transparency from whitish to transparent gray appeared at the seventh and eighth day. Under the light microscope, the outgrowth of cells from the edge of the living slices arose from the second day of the culture, and arose to peak at the sixth and seventh day. The organotypic spinal cord slices were characterized as clear, semitransparent structures with bright and good refraction until the 14th day of culture. The viability of the slices was excellent as assessed by the trypan blue exclusion method at the 28th day, and they were positive for NeuN and GFAP. This culture technique, which does not require complex operation skills, might be a simple and efficient method for obtaining organotypic spinal cord slices in sufficient number, high viability, and contamination-free from postnatal rats.
Collapse
|
10
|
Pandamooz S, Salehi MS, Zibaii MI, Ahmadiani A, Nabiuni M, Dargahi L. Epidermal neural crest stem cell-derived glia enhance neurotrophic elements in an ex vivo model of spinal cord injury. J Cell Biochem 2018; 119:3486-3496. [PMID: 29143997 DOI: 10.1002/jcb.26520] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023]
Abstract
Growing evidence that cell-based therapies can improve recovery outcome in spinal cord injury (SCI) models substantiates their application for treatment of human with SCI. To address the effectiveness of these stem cells, potential candidates should be evaluated in proper SCI platform that allows direct real-time monitoring. In this study, the role of epidermal neural crest stem cells (EPI-NCSCs) was elucidated in an ex vivo model of SCI, and valproic acid (VPA) was administered to ameliorate the inhospitable context of injury for grafted EPI-NCSCs. Here the contusion was induced in organotypic spinal cord slice culture at day seven in vitro using a weight drop device and one hour post injury the GFP- expressing EPI-NCSCs were grafted followed by VPA administration. The evaluation of treated slices seven days after injury revealed that grafted stem cells survived on the injured slices and expressed GFAP, whereas they did not express any detectable levels of the neural progenitor marker doublecortin (DCX), which was expressed prior to transplantation. Immunoblotting data demonstrated that the expression of GFAP, BDNF, neurotrophin-3 (NT3), and Bcl2 increased significantly in stem cell treated slices. This study illustrated that the fate of transplanted stem cells has been directed to the glial lineage in the ex vivo context of injury and EPI-NCSCs may ameliorate the SCI condition through releasing neurotrophic factors directly and/or via inducing resident spinal cord cells.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad S Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad I Zibaii
- Laser and Plasma Research institute, Shahid Beheshti University, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Liu JJ, Ding XY, Xiang L, Zhao F, Huang SL. A novel method for oxygen glucose deprivation model in organotypic spinal cord slices. Brain Res Bull 2017; 135:163-169. [DOI: 10.1016/j.brainresbull.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
|
12
|
Structural/Functional Characteristics of Organotypic Spinal Cord Slices under Conditions of Long-Lasting Culturing. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Pandamooz S, Salehi MS, Nabiuni M, Dargahi L, Pourghasem M. Evaluation of Epidermal Neural Crest Stem Cells in Organotypic Spinal Cord Slice Culture Platform. Folia Biol (Praha) 2016; 62:263-267. [PMID: 28189150 DOI: 10.14712/fb2016062060263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Among various strategies employed for spinal cord injury, stem cell therapy is a potential treatment. So far, a variety of stem cells have been evaluated in animal models and humans with spinal cord injury, and epidermal neural crest stem cells represent one of the attractive types in this area. Although these multipotent stem cells have been assessed in several spinal cord injury models by independent laboratories, extensive work remains to be done to ascertain whether these cells can safely improve the outcome following human spinal cord injury. Among the models that closely mimic human spinal cord injury, the in vitro model of injury in organotypic spinal cord slice culture has been identified as one of the faithful platforms for injury-related investigations. In this study, green fluorescent protein-expressing stem cells were grafted into injured organotypic spinal cord slice culture and their survival was examined by confocal microscope seven days after transplantation. Data obtained from this preliminary study showed that these stem cells can survive on top of the surface of injured slices, as observed on day seven following their transplantation. This result revealed that this in vitro model of injury can be considered as a suitable context for further evaluation of epidermal neural crest stem cells before their application in large animals.
Collapse
Affiliation(s)
- S Pandamooz
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - M S Salehi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - L Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Pourghasem
- Department of Anatomy and Embryology, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
14
|
Pandamooz S, Nabiuni M, Miyan J, Ahmadiani A, Dargahi L. Organotypic Spinal Cord Culture: a Proper Platform for the Functional Screening. Mol Neurobiol 2015; 53:4659-74. [PMID: 26310972 DOI: 10.1007/s12035-015-9403-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
Recent improvements in organotypic slice culturing and its accompanying technological innovations have made this biological preparation increasingly useful ex vivo experimental model. Among organotypic slice cultures obtained from various central nervous regions, spinal cord slice culture is an absorbing model that represents several unique advantages over other current in vitro and in vivo models. The culture of developing spinal cord slices, as allows real-time observation of embryonic cells behaviors, is an instrumental platform for developmental investigation. Importantly, due to the ability of ex vivo models to recapitulate different aspects of corresponding in vivo conditions, these models have been subject of various manipulations to derive disease-relevant slice models. Moreover spinal cord slice cultures represent a potential platform for screening of different pharmacological agents and evaluation of cell transplantation and neuroregenerative materials. In this review, we will focus on studies carried out using the ex vivo model of spinal cord slice cultures and main advantages linked to practicality of these slices in both normal and neuropathological diseases and summarize them in different categories based on application.
Collapse
Affiliation(s)
- Sareh Pandamooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Nabiuni
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jaleel Miyan
- Neurobiology Research Group, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Glazova MV, Pak ES, Murashov AK. Neurogenic potential of spinal cord organotypic culture. Neurosci Lett 2015; 594:60-5. [PMID: 25805458 DOI: 10.1016/j.neulet.2015.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/25/2022]
Abstract
There are several neurogenic niches in the adult mammalian central nervous system. In the central nervous system, neural stem cells (NSC) localize not only to the periventricular area, but are also diffusely distributed in the parenchyma. Here, we assessed neurogenic potential of organotypic cultures prepared from adult mouse spinal cord. Slices were placed on Millipore inserts for organotypic culture and incubated in neurobasal media supplemented with B27 and N2 for up to 9 weeks. After 3-4 weeks, the cell's aggregates formed in the slices. The aggregate's cells were BrdU-uptake, nestin and alkaline phosphatase positive. At the later stage of incubation, we observed Oct3/4 in the inner mass of the neurospheres as well as expression of Dppa1, which is an Oct-4 downstream target gene and a marker for pluripotency. To check differentiation, the formed neurospheres were isolated and cultured for several days in differentiation media. The obtained data demonstrated the cells from isolated neurospheres differentiate into astrocytes and MAP2-positive neurons. Immunostaining for HB9 and Lim2 revealed subsequent differentiation of MAP2-positive cells into motor neurons and interneurons, respectively. We hypothesized neuronal loss and/or long-term culturing of spinal cord slices may trigger a reset of the internal cell program and promote proliferation and further differentiation of NSC.
Collapse
Affiliation(s)
- Margarita V Glazova
- Departments of Physiology, The Brody School of Medicine, East Carolina University School of Medicine, Brody Building, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Elena S Pak
- Departments of Physiology, The Brody School of Medicine, East Carolina University School of Medicine, Brody Building, 600 Moye Boulevard, Greenville, NC 27834, USA
| | - Alexander K Murashov
- Departments of Physiology, The Brody School of Medicine, East Carolina University School of Medicine, Brody Building, 600 Moye Boulevard, Greenville, NC 27834, USA
| |
Collapse
|
16
|
O'Carroll SJ, Becker DL, Davidson JO, Gunn AJ, Nicholson LFB, Green CR. The use of connexin-based therapeutic approaches to target inflammatory diseases. Methods Mol Biol 2014; 1037:519-46. [PMID: 24029957 DOI: 10.1007/978-1-62703-505-7_31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alterations in Connexin43 (Cx43) expression levels have been shown to play a role in inflammatory processes including skin wounding and neuroinflammation. Cx43 protein levels increase following a skin wound and can inhibit wound healing. Increased Cx43 has been observed following stroke, epilepsy, ischemia, optic nerve damage, and spinal cord injury with gap junctional communication and hemichannel opening leading to increased secondary damage via the inflammatory response. Connexin43 modulation has been identified as a potential target for protection and repair in neuroinflammation and skin wound repair. This review describes the use of a Cx43 specific antisense oligonucleotide (Cx43 AsODN) and peptide mimetics of the connexin extracellular loop domain to modulate Cx43 expression and/or function in inflammatory disorders of the skin and central nervous system. An overview of the role of connexin43 in inflammatory conditions, how antisense and peptide have allowed us to elucidate the role of Cx43 in these diseases, create models of diseases to test interventions and their potential for use clinically or in current clinical trials is presented. Antisense oligonucleotides are applied topically and have been used to improve wound healing following skin injury. They have also been used to develop ex vivo models of neuroinflammatory diseases that will allow testing of intervention strategies. The connexin mimetic peptides have shown potential in a number of neuroinflammatory disorders in ex vivo models as well as in vivo when delivered directly to the injury site or when delivered systemically.
Collapse
Affiliation(s)
- Simon J O'Carroll
- Department of Anatomy with Radiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
17
|
Novozhilova E, Olivius P, Siratirakun P, Lundberg C, Englund-Johansson U. Neuronal differentiation and extensive migration of human neural precursor cells following co-culture with rat auditory brainstem slices. PLoS One 2013; 8:e57301. [PMID: 23505423 PMCID: PMC3591396 DOI: 10.1371/journal.pone.0057301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN) in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN), forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN) in the brainstem (BS). Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC) is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres) were deposited adjacent to or on top of the BS slices or as a monoculture (control). The results demonstrate that co-cultured HNPCs compared to monocultures (1) survive better, (2) distribute over a larger area, (3) to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry.
Collapse
Affiliation(s)
- Ekaterina Novozhilova
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Petri Olivius
- Department of ENT—Head and Neck Surgery, UHL, County Council of Östergötland, Linköping, Sweden
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Piyaporn Siratirakun
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulrica Englund-Johansson
- Department of Ophthalmology, Institution of Clinical Sciences in Lund, Lund University, Lund, Sweden
| |
Collapse
|