1
|
Begh MZA, Amin MA, Shatu MM, Sweilam SH, Puri S, Ramesh RB, Arjun UVNV, Shanmugarajan TS, Pommala N, Durairaj A, Ethiraj S, Shenbakadurai N, Ahmad I, Emran TB. Unraveling Berberine's Molecular Mechanisms in Neuroprotection Against Neurodegeneration. Chem Biodivers 2025:e202500170. [PMID: 40128128 DOI: 10.1002/cbdv.202500170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Neurodegenerative diseases (NDs) exhibit significant global public health challenges due to the lack of effective treatments. Berberine (BBR), a natural alkaloid compound in various plants, has been recognized for its potential neuroprotective properties. This review explores the current understanding of BBR's mechanisms of action and its therapeutic potential in preventing and treating NDs such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. BBR's neuroprotective properties are attributed to its multifaceted actions, including anti-inflammatory, antioxidant, antiapoptotic, and neurotrophic effects. In addition, BBR can influence many signaling pathways involved in neurodegeneration, including AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2, and brain-derived neurotrophic factor pathways. Furthermore, BBR targets vital signaling pathways, including AMPK, PI3K/Akt, and MAPK, which are essential for developing NDs. In addition, BBR's efficacy in reducing neurodegenerative pathology and improving cognitive function has been demonstrated through preclinical studies using cellular and animal models. Clinical trials demonstrating BBR's therapeutic potential in NDs have yielded promising results, but further research is needed to confirm its safety and efficacy in humans.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Sachin Puri
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Hyderabad, India
| | - Rathod Bhagyashri Ramesh
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Hyderabad, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Nagaveni Pommala
- S. V. U. College of Pharmaceutical Sciences, Sri Venkateswara University, Tirupati, India
| | - Akiladevi Durairaj
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Susithra Ethiraj
- S. V. U. College of Pharmaceutical Sciences, Sri Venkateswara University, Tirupati, India
| | - Nagarajan Shenbakadurai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
3
|
WEN J, ZHANG YQ, LIU DQ, YAO XT, JIANG H, ZHANG YB. Demethylenetetrahydroberberine protects dopaminergic neurons in a mouse model of Parkinson's disease. Chin J Nat Med 2022; 20:111-119. [DOI: 10.1016/s1875-5364(22)60145-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/16/2022]
|
4
|
Shaikh A, Tekale S, Wagh S, Padul M. Metabolite profiling of arginase inhibitor activity guided fraction of Ficus religiosa leaves by LC-HRMS. Biomed Chromatogr 2020; 34:e4966. [PMID: 32794216 DOI: 10.1002/bmc.4966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 11/06/2022]
Abstract
Cardiovascular disease is one of the major causes of deaths worldwide. Increased arginase activity is associated with cardiovascular disease. The literature shows that plants are a good source of arginase inhibitors. Hence in the present work arginase inhibitor activity is studied from Ficus religiosa leaves. A fine powder of F. religiosa leaves was serially extracted in various solvents, viz. hexane, chloroform, ethyl acetate and methanol. Out of those four solvent extracts, the one showing highest arginase inhibitor activity was loaded onto the column for further fractionation. Among the collected fractions, the one showing the highest activity was subjected to identification of metabolites by using LC-HRMS. Total compounds including acipimox, edoxudine, levulinic acid, hydroxyhydroquinone, ramiprilglucuronide, berberine, antimycin A, swietenine and some short peptides were identified from the fraction showing the highest arginase inhibitory activity. Identification of these metabolites from F. religiosa and their biological importance may help to promote its use as medicinal plant. Further purification and characterization of therapeutically novel molecules will be the subject of future work.
Collapse
Affiliation(s)
- Ayesha Shaikh
- Department of Biochemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Satishkumar Tekale
- Department of Biochemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Sandip Wagh
- Department of Biochemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Manohar Padul
- Department of Biochemistry, Dr Babasaheb Ambedkar Marathwada University, Aurangabad, India.,Department of Biochemistry, The Institute of Science, Dr Homi Bhabha State University, Mumbai, India
| |
Collapse
|
5
|
Ghotbi Ravandi S, Shabani M, Bashiri H, Saeedi Goraghani M, Khodamoradi M, Nozari M. Ameliorating effects of berberine on MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia. Neurosci Lett 2019; 706:151-157. [DOI: 10.1016/j.neulet.2019.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/21/2022]
|
6
|
Fan D, Liu L, Wu Z, Cao M. Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential. Curr Neuropharmacol 2019; 17:563-579. [PMID: 29676231 PMCID: PMC6712296 DOI: 10.2174/1570159x16666180419141613] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases are among the most serious health problems affecting millions of people worldwide. Such diseases are characterized by a progressive degeneration and / or death of neurons in the central nervous system. Currently, there are no therapeutic approaches to cure or even halt the progression of neurodegenerative diseases. During the last two decades, much attention has been paid to the neuroprotective and anti-neurodegenerative activities of compounds isolated from natural products with high efficacy and low toxicity. Accumulating evidence indicates that berberine, an isoquinoline alkaloid isolated from traditional Chinese medicinal herbs, may act as a promising anti-neurodegenerative agent by inhibiting the activity of the most important pathogenic enzymes, ameliorating intracellular oxidative stress, attenuating neuroinflammation, triggering autophagy and protecting neurons against apoptotic cell death. This review attempts to summarize the current state of knowledge regarding the therapeutic potential of berberine against neurodegenerative diseases, with a focus on the molecular mechanisms that underlie its effects on Alzheimer's, Parkinson's and Huntington's diseases.
Collapse
Affiliation(s)
| | | | - Zhengzhi Wu
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| | - Meiqun Cao
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| |
Collapse
|
7
|
Lin X, Zhang N. Berberine: Pathways to protect neurons. Phytother Res 2018; 32:1501-1510. [DOI: 10.1002/ptr.6107] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/03/2018] [Accepted: 04/05/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaorui Lin
- Second Department of Clinical Medicine; China Medical University; No. 77 Puhe Road Shenyang 110122 PR China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy; China Medical University; No. 77 Puhe Road Shenyang 110122 PR China
| |
Collapse
|
8
|
Mohammadzadeh N, Mehri S, Hosseinzadeh H. Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:538-551. [PMID: 28656089 PMCID: PMC5478782 DOI: 10.22038/ijbms.2017.8678] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/13/2017] [Indexed: 12/17/2022]
Abstract
Berberis vulgaris L (B. vulgaris) and its main constituent berberine have been used in traditional medicine for a long time. This medicinal plant and berberine have many properties that have attracted the attention of researchers over the time. According to several studies, B. vulgaris and berberine exhibited anti-inflammatory, antioxidant, anticonvulsant, antidepressant, anti-Alzheimer, anti-cancer, anti-arrhythmic, antiviral, antibacterial and anti-diabetic effects in both in vitro and invivo experiments. In regard to many reports on protective effects of B. vulgaris and berberine on natural and chemical toxins, in the current review article, the inhibitory effects of these compounds against natural, industrial, environmental and chemical toxicities with focus on cellular mechanism have been categorized. It has been mentioned that berberine could ameliorate toxicity of chemical toxins in brain, heart, kidney, liver and lung in part through antioxidant, anti-inflammatory, anti-apoptotic, modulation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways.
Collapse
Affiliation(s)
| | - Soghra Mehri
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Metabolic Factors and Adult Neurogenesis: Impacts of Chinese Herbal Medicine on Brain Repair in Neurological Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:117-147. [PMID: 28807156 DOI: 10.1016/bs.irn.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adult neurogenesis plays the important roles in animal cognitive and emotional behaviors. Abnormal proliferation and differentiation of neural stem cells (NSCs) usually associate with the neural dysfunctions induced by different brain disorders. Therefore, targeting neurogenic factors could be a promoting strategy for neural regeneration and brain repair. Importantly, epidemiological studies suggest metabolism disorders like diabetes and obesity significantly increase the risk of neurological and psychiatric diseases. A large number of studies indicate that metabolic factors could serve as the modulators to adult neurogenesis, providing the potentials of metabolic factors to regulate NSCs growth and neural regeneration therapy. This chapter reviews the current studies on the roles of metabolic factors in modulating adult neurogenesis and evaluates the potentials of Chinese Herbal Medicine (CHM) for the treatment of neurological or psychiatric disorders by targeting the metabolic factors. Traditional Chinese Medicine (TCM) including CHM and acupuncture is now widely applied for the treatment of metabolic diseases, and neurological diseases in Asia, because its' therapeutic principles meet the multiple targets and complexity characteristics of most neurological disorders. Different studies indicate that there are many active compounds perform the regulations to metabolic factors and promoting neurogenesis. This chapter systematically summarizes the current progress and understanding of the active compounds and their underlying mechanisms of CHM formulas for promoting neurogenesis. Many CHM formulas and their active ingredients that originally used for metabolic disorders show the promising effects on mediating neurogenesis and brain repair for the treatments of neurodegenerative diseases. Therefore, further investigations about the relationship between neurogenesis and metabolic regulations of CHM will bring new insights into understanding the mechanisms of adult neurogenesis and provide great opportunities to develop new therapeutic strategies for neurological diseases. Those studies will provide scientific guidance to develop the drugs from TCM resource.
Collapse
|
10
|
de Candia M, Zaetta G, Denora N, Tricarico D, Majellaro M, Cellamare S, Altomare CD. New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity. Eur J Med Chem 2017; 125:288-298. [DOI: 10.1016/j.ejmech.2016.09.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/15/2022]
|
11
|
Imenshahidi M, Hosseinzadeh H. Berberis Vulgaris and Berberine: An Update Review. Phytother Res 2016; 30:1745-1764. [PMID: 27528198 DOI: 10.1002/ptr.5693] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 01/30/2023]
Abstract
Berberine is an isoquinoline alkaloid present in several plants, including Coptis sp. and Berberis sp. Berberine is a customary component in Chinese medicine, and is characterized by a diversity of pharmacological effects. An extensive search in electronic databases (PubMed, Scopus, Ovid, Wiley, ProQuest, ISI, and Science Direct) were used to identify the pharmacological and clinical studies on Berberis vulgaris and berberine, during 2008 to 2015, using 'berberine' and 'Berberis vulgaris' as search words. We found more than 1200 new article studying the properties and clinical uses of berberine and B. vulgaris, for treating tumor, diabetes, cardiovascular disease, hyperlipidemia, inflammation, bacterial and viral infections, cerebral ischemia trauma, mental disease, Alzheimer disease, osteoporosis, and so on. In this article, we have updated the pharmacological effects of B. vulgaris and its active constituent, berberine. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Berberine and neurodegeneration: A review of literature. Pharmacol Rep 2015; 67:970-9. [DOI: 10.1016/j.pharep.2015.03.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 01/09/2023]
|
13
|
Therapeutic potential of berberine against neurodegenerative diseases. SCIENCE CHINA-LIFE SCIENCES 2015; 58:564-9. [PMID: 25749423 PMCID: PMC5823536 DOI: 10.1007/s11427-015-4829-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022]
Abstract
Berberine (BBR) is an organic small molecule isolated from various plants that have been used in traditional Chinese medicine. Isolation of this compound was its induction into modern medicine, and its usefulness became quickly apparent as seen in its ability to combat bacterial diarrhea, type 2 diabetes, hypercholesterolemia, inflammation, heart diseases, and more. However, BBR’s effects on neurodegenerative diseases remained relatively unexplored until its ability to stunt Alzheimer’s disease (AD) progression was characterized. In this review, we will delve into the multi-faceted defensive capabilities and bio-molecular pathways of BBR against AD, Parkinson’s disease (PD), and trauma-induced neurodegeneration. The multiple effects of BBR, some of which enhance neuro-protective factors/pathways and others counteract targets that induce neurodegeneration, suggest that there are many more branches to the diverse capabilities of BBR that have yet to be uncovered. The promising results seen provide a convincing and substantial basis to support further scientific exploration and development of the therapeutic potential of BBR against neurodegenerative diseases.
Collapse
|
14
|
Kysenius K, Brunello CA, Huttunen HJ. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury. PLoS One 2014; 9:e107129. [PMID: 25192195 PMCID: PMC4156429 DOI: 10.1371/journal.pone.0107129] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022] Open
Abstract
The global incidence of metabolic and age-related diseases, including type 2 diabetes and Alzheimer's disease, is on the rise. In addition to traditional pharmacotherapy, drug candidates from complementary and alternative medicine are actively being pursued for further drug development. Berberine, a nutraceutical traditionally used as an antibiotic, has recently been proposed to act as a multi-target protective agent against type 2 diabetes, dyslipidemias, ischemic brain injury and neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. However, the safety profile of berberine remains controversial, as isolated reports suggest risks with acute toxicity, bradycardia and exacerbation of neurodegeneration. We report that low micromolar berberine causes rapid mitochondria-dependent toxicity in primary neurons characterized by mitochondrial swelling, increased oxidative stress, decreased mitochondrial membrane potential and depletion of ATP content. Berberine does not induce caspase-3 activation and the resulting neurotoxicity remains unaffected by pan-caspase inhibitor treatment. Interestingly, inhibition of NMDA receptors by memantine and MK-801 completely blocked berberine-induced neurotoxicity. Additionally, subtoxic nanomolar concentrations of berberine were sufficient to sensitize neurons to glutamate excitotoxicity and rotenone injury. Our study highlights the need for further safety assessment of berberine, especially due to its tendency to accumulate in the CNS and the risk of potential neurotoxicity as a consequence of increasing bioavailability of berberine.
Collapse
Affiliation(s)
- Kai Kysenius
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | - Henri J. Huttunen
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
15
|
Comparison of Two Old Phytochemicals versus Two Newly Researched Plant-Derived Compounds: Potential for Brain and Other Relevant Ailments. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:682717. [PMID: 24949079 PMCID: PMC4034649 DOI: 10.1155/2014/682717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/31/2014] [Accepted: 04/15/2014] [Indexed: 11/28/2022]
Abstract
Among hundreds of formulae of Chinese herbal prescriptions and recently extracted active components from the herbs, some of which had demonstrated their functions on nervous system. For the last decade or more, Gingko biloba and Polygala tenuifolia were widely studied for their beneficial effects against damage to the brain. Two compounds extracted from Apium graveolens and Rhizoma coptidis, butylphthalide and berberine, respectively, received much attention recently as potential neuroprotective agents. In this review, the two traditionally used herbs and the two relatively new compounds will be discussed with regard to their potential advantages in alleviating brain and other relevant ailments.
Collapse
|
16
|
Zhao H, Zhang T, Xia C, Shi L, Wang S, Zheng X, Hu T, Zhang B. Berberine ameliorates cartilage degeneration in interleukin-1β-stimulated rat chondrocytes and in a rat model of osteoarthritis via Akt signalling. J Cell Mol Med 2013; 18:283-92. [PMID: 24286347 PMCID: PMC3930415 DOI: 10.1111/jcmm.12186] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022] Open
Abstract
Berberine, a plant alkaloid used in Chinese medicine, has broad cell-protective functions in a variety of cell lines. Chondrocyte apoptosis contributes to the pathogenesis of cartilage degeneration in osteoarthritis (OA). However, little is known about the effect and underlying mechanism of berberine on OA chondrocytes. Here, we assessed the effects of berberine on cartilage degeneration in interleukin-1β (IL-1β)-stimulated rat chondrocytes and in a rat model of OA. The results of an MTT assay and western blotting analysis showed that berberine attenuated the inhibitory effect of IL-1β on the cell viability and proliferating cell nuclear antigen expression in rat chondrocytes. Furthermore, berberine activated Akt, which triggered p70S6K/S6 pathway and up-regulated the levels of aggrecan and Col II expression in IL-1β-stimulated rat chondrocytes. In addition, berberine increased the level of proteoglycans in cartilage matrix and the thickness of articular cartilage, with the elevated levels of Col II, p-Akt and p-S6 expression in a rat OA model, as demonstrated by histopathological and immunohistochemistry techniques. The data thus strongly suggest that berberine may ameliorate cartilage degeneration from OA by promoting cell survival and matrix production of chondrocytes, which was partly attributed to the activation of Akt in IL-1β-stimulated articular chondrocytes and in a rat OA model. The resultant chondroprotective effects indicate that berberine merits consideration as a therapeutic agent in OA.
Collapse
Affiliation(s)
- Honghai Zhao
- Zhongshan Hospital, University of Xiamen, Xiamen, Fujian, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Moghaddam HK, Baluchnejadmojarad T, Roghani M, Goshadrou F, Ronaghi A. Berberine chloride improved synaptic plasticity in STZ induced diabetic rats. Metab Brain Dis 2013; 28:421-8. [PMID: 23640014 DOI: 10.1007/s11011-013-9411-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 03/10/2013] [Indexed: 12/14/2022]
Abstract
Previous studies indicated that diabetes affects synaptic transmission in the hippocampus, leading to impairments of synaptic plasticity and defects in learning and memory. Although berberine treatment ameliorates memory impairment and improves synaptic plasticity in streptozotocin (STZ) induced diabetic rats, it is not clear if the effects are pre- or post-synaptic or both. The aim of this study was to evaluate the effects of berberine chloride on short-term plasticity in inhibitory interneurons in the dentate gyrus of STZ-induced diabetic rats. Experimental groups included: The control, control berberine treated (100 mg/kg), diabetic and diabetic berberine treated (50,100 mg/kg/day for 12 weeks) groups. The paired pulse paradigm was used to stimulate the perforant pathway and field excitatory post-synaptic potentials (fEPSP) were recorded in dentate gyrus (DG). In comparison with control, paired pulse facilitation in the diabetic group was significantly increased (P < 0.01) and this effect prevented by chronic berberine treatment (50,100 mg/kg). However, there were no differences between responses of the control berberine 100 mg/kg treated and diabetes berberine treated (50 and 100 mg/kg) groups as compared to the control group. The present results suggest that the pre-synaptic component of synaptic plasticity in the dentate gyrus is affected under diabetic conditions and that berberine prevents this effect.
Collapse
Affiliation(s)
- Hamid Kalalian Moghaddam
- Department of Physiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | | | | | | |
Collapse
|
18
|
Han AM, Heo H, Kwon YK. Berberine promotes axonal regeneration in injured nerves of the peripheral nervous system. J Med Food 2012; 15:413-7. [PMID: 22316297 DOI: 10.1089/jmf.2011.2029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Berberine, an isoquinoline alkaloid component of Coptidis Rhizoma (goldenthread) extract, has been reported to have therapeutic potential for central nervous system disorders such as Alzheimer's disease, cerebral ischemia, and schizophrenia. We have previously shown that berberine promotes the survival and differentiation of hippocampal precursor cells. In a memory-impaired rat model induced by ibotenic acid injection, the survival of pyramidal and granular cells was greatly increased in the hippocampus by berberine administration. In the present study, we investigated the effects of berberine on neurite outgrowth in the SH-SY5Y neuronal cell line and axonal regeneration in the rat peripheral nervous system (PNS). Berberine enhanced neurite extension in differentiating SH-SY5Y cells at concentrations of 0.25-3 μg/mL. In an injury model of the rat sciatic nerve, we examined the neuroregenerative effects of berberine on axonal remyelination by using immunohistochemical analysis. Four weeks after berberine administration (20 mg/kg i.p. once per day for 1 week), the thickness of remyelinated axons improved approximately 1.4-fold in the distal stump of the injury site. Taken together, these results indicate that berberine promotes neurite extension and axonal regeneration in injured nerves of the PNS.
Collapse
Affiliation(s)
- Ah Mi Han
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|