1
|
Si J, Yu K, Hao J, Wang J, Zhang L. The therapeutic effects and mechanisms of glucagon-like peptide-1 receptor agonists in neurocognitive disorders. Ther Adv Neurol Disord 2025; 18:17562864251332035. [PMID: 40291753 PMCID: PMC12033604 DOI: 10.1177/17562864251332035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Chronic cerebral hypoperfusion (CCH) represents a key pathogenic contributor to neurocognitive disorders. It can lead to multifaceted pathological alterations including neuroinflammation, neuronal apoptosis, blood-brain barrier disruption, synaptic plasticity deficits, and mitochondrial dysfunction. The glucagon-like peptide-1 receptor (GLP-1R), ubiquitously expressed across multiple organ systems, exerts neuroprotective effects by maintaining intracellular homeostasis and mitigating neuronal damage triggered by oxidative stress, inflammatory cascades, apoptotic signaling, and ischemic insults. Furthermore, GLP-1R activity is modulated by gut microbiota composition and short-chain fatty acid abundance, implicating the gut-brain axis in its regulatory influence on neurological function. This review systematically examines the pathophysiological mechanisms underlying CCH and highlights the therapeutic potential of GLP-1R activation. Specifically, GLP-1R-targeted interventions attenuate hypoperfusion-induced damage through pleiotropic pathways and gut-brain crosstalk, thereby offering novel perspectives for advancing both fundamental research and clinical management of neurocognitive disorders.
Collapse
Affiliation(s)
- Junchen Si
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Kai Yu
- Department of Burn and Plastic Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, No. 45 Huashan Road, Liaocheng, Shandong 252000, China
| |
Collapse
|
2
|
Gera A, Latif F, Borra V, Naz S, Mittal V, Ayoobkhan FS, Kumar T, Wajid Z, Deb N, Prasad T, Mattumpuram J, Jaiswal V. Efficacy of glucagon-like peptide-1 receptor agonists for prevention of stroke among patients with and without diabetes: A meta-analysis with the SELECT and FLOW trails. IJC HEART & VASCULATURE 2025; 57:101638. [PMID: 40165866 PMCID: PMC11957674 DOI: 10.1016/j.ijcha.2025.101638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Background Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have shown a reduction in major adverse cardiovascular events (MACE) among patients with type 2 diabetes mellitus (T2DM). However, its efficacy on cerebrovascular events is yet to be well established among diabetic and non diabetic patients. Objective We sought to evaluate the efficacy of GLP-1 RAs on stroke risk among its different types in patients with and without Diabetes. Methods We performed a systematic literature search on PubMed, EMBASE, and ClinicalTrials.gov for relevant randomized controlled trials (RCTs) from inspection until 15th July 2024, without any language restrictions. Odds ratios (OR) and 95 % confidence intervals (CI) were pooled using a random-effect model, and a p-value of < 0.05 was considered statistically significant. Results A total of 11 RCTs with 85,373 patients were included (43,339 in GLP-1 RA and 42,034 in the placebo group) in the analysis. The mean age of the patients in GLP-1 RAs and the placebo groups was 63.5 and 63.1 years, respectively. Pooled analysis of primary and secondary endpoints showed that GLP-1 RAs significantly reduced the risk of incidence of stroke by 15 % (OR, 0.85(95 %CI: 0.77-0.93), P < 0.001) and nonfatal stroke by 13 % (OR, 0.87(95 %CI: 0.79-0.95), P < 0.001) compared with placebo. However, the risk of fatal stroke (OR, 0.94(95 %CI: 0.75-1.17), P = 0.56) was comparable between both groups of patients. Similarly, the risk of serious adverse events such as cerebrovascular accident (OR, 0.75(95 %CI: 0.57-1.00), P = 0.05), hemorrhagic stroke (OR, 0.82(95 %CI: 0.42-1.60), P = 0.57, and ischemic stroke (OR, 0.85(95 %CI: 0.64-1.13), P = 0.26) was comparable between GLP-1RAs and placebo. Conclusion Treatment with GLP-1 receptor agonists has beneficial effects in reducing the risk of stroke, and nonfatal stroke in patients with and without diabetes. However, no such effect was observed for fatal stroke.
Collapse
Affiliation(s)
- Asmita Gera
- Department of Internal Medicine, Tianjin Medical University, Wuqing District, Tianjin 301700, China
| | - Fakhar Latif
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Vamsikalyan Borra
- Department of Internal Medicine, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Sidra Naz
- The University of Texas, MD Anderson Cancer Center, Texas, USA
| | - Vivek Mittal
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, MI, USA
| | | | - Tushar Kumar
- Department of Cardiothoracic and Abdominal Radiology, University of Washington, Seattle, Washington, USA
| | - Zarghoona Wajid
- Hennepin Healthcare/University of Minnesota, S8, Minneapolis, MN 55415, USA
| | - Novonil Deb
- Department of Medicine, North Bengal Medical College, West Bengal, India
| | - Tanisha Prasad
- Department of Medicine, Royal College of Surgeons, Dublin, Ireland
| | - Jishanth Mattumpuram
- Division of Cardiology, University of Louisville School of Medicine, KY 40202, United States
| | - Vikash Jaiswal
- Department of Cardiovascular Research, Larkin Community Hospital, South Miami, FL, USA
| |
Collapse
|
3
|
Krammer T, Baier MJ, Hegner P, Zschiedrich T, Lukas D, Wolf M, Le Phu C, Lutz V, Evert K, Kozakov K, Li J, Holzamer A, Maier LS, Provaznik Z, Bers DM, Wagner S, Mustroph J. Cardioprotective effects of semaglutide on isolated human ventricular myocardium. Eur J Heart Fail 2025. [PMID: 40107718 DOI: 10.1002/ejhf.3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
AIMS Semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, has shown promising effects in reducing cardiovascular events in patients with obesity and heart failure (HF) with preserved ejection fraction (HFpEF) irrespective of concomitant diabetes. However, the exact mechanisms underlying its cardioprotective actions remain unclear. Our study investigates the direct effects of semaglutide on human cardiomyocytes, focusing on calcium (Ca) and sodium (Na) handling and its potential to improve myocardial contractility. METHODS AND RESULTS Human left ventricular cardiomyocytes were isolated from non-failing (NF) hearts, patients with aortic stenosis and a HFpEF-like phenotype (AS), and those with end-stage HF with reduced ejection fraction (HFrEF). Late Na current (INa), sarcoplasmic reticulum (SR) Ca leak, and contractility were assessed in isolated cardiomyocytes treated with semaglutide. CaMKII inhibitor autocamtide-2-related inhibitory peptide and GLP-1 receptor antagonist exendin 9-39 (Ex-9-39) were used to elucidate signalling pathways. Semaglutide reduced late INa in AS and HFrEF cardiomyocytes to levels comparable to NF. Additionally, semaglutide decreased diastolic SR Ca leak and improved systolic Ca transients and contractility in AS and HFrEF tissue. These effects were mediated through GLP-1 receptor agonism and were comparable to CaMKII inhibition. In multicellular preparations, semaglutide differentially improved myocardial contractility in AS and HFrEF in a dose-dependent manner. CONCLUSION Semaglutide directly modulates ion homeostasis in human cardiomyocytes, reducing proarrhythmic diastolic SR Ca leak and enhancing systolic function, which may explain its observed clinical benefits. These findings provide mechanistic insights into the cardioprotective effects of semaglutide and suggest its potential therapeutic use in HF.
Collapse
Affiliation(s)
- Thomas Krammer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Maria J Baier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Hegner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Tilman Zschiedrich
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - David Lukas
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Wolf
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Christian Le Phu
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Vanessa Lutz
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute for Pathology, University of Regensburg, Regensburg, Germany
| | - Kostiantyn Kozakov
- Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Jing Li
- Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Holzamer
- Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Zdenek Provaznik
- Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Julian Mustroph
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Zhong J, Yu X, Lin Z. Phosphodiesterase 4 inhibition as a novel treatment for stroke. PeerJ 2025; 13:e18905. [PMID: 39897494 PMCID: PMC11786714 DOI: 10.7717/peerj.18905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
The incidence of stroke ranks third among the leading causes of mortality worldwide. It has the characteristics of high morbidity, high disability rate and high recurrence rate. The current risk associated with stroke surgery is exceedingly high. It may potentially outweigh the benefits and fail to ameliorate the cerebral tissue damage following ischemia. Therefore, pharmacological intervention assumes paramount importance. The use of thrombolytic drugs is most common in the treatment of stroke; however, its efficacy is limited due to its time-sensitive nature and propensity for increased bleeding. Over the past few years, the treatment of stroke has witnessed a surge in interest towards neuroprotective drugs that possess the potential to enhance neurological function. The PDE4D gene has been demonstrated to have a positive correlation with the risk of ischemic stroke. Additionally, the utilization of phosphodiesterase 4 inhibitors can enhance synaptic plasticity within the neural circuitry, regulate cellular metabolism, and prevent secondary brain injury caused by impaired blood flow. These mechanisms collectively facilitate the recovery of functional neurons, thereby serving as potential therapeutic interventions. Therefore, the comprehensive investigation of phosphodiesterase 4 as an innovative pharmacological target for stroke injury provides valuable insights into the development of therapeutic interventions in stroke treatment. This review is intended for, but not limited to, pharmacological researchers, drug target researchers, neurologists, neuromedical researchers, and behavioral scientists.
Collapse
Affiliation(s)
- Jiahong Zhong
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Xihui Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhuomiao Lin
- Department of Clinical Pharmacy, Meizhou People’s Hospital, Meizhou, Guangdong, China
| |
Collapse
|
5
|
Lu C, Xu C, Yang J. The Beneficial Effects of GLP-1 Receptor Agonists Other than Their Anti-Diabetic and Anti-Obesity Properties. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:17. [PMID: 39858999 PMCID: PMC11767243 DOI: 10.3390/medicina61010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
As an incretin hormone, Glucagon-like peptide-1 (GLP-1) has obvious effects on blood glucose regulation and weight loss. GLP-1 receptor (GLP-1R) agonists are synthetic products that have similar effects to GLP-1 but are less prone to degradation, and they are widely used in the treatment of type 2 diabetes and obesity. In recent years, different beneficial effects of GLP-1R agonists were discovered, such as reducing ischemia-reperfusion injury, improving the function of various organs, alleviating substance use disorder, affecting tumorigenesis, regulating bone metabolism, changing gut microbiota composition, and prolonging graft survival. Therefore, GLP-1R agonists have great potential for clinical application in various diseases. Here, we briefly summarized the beneficial effects of GLP-1R agonists other than the anti-diabetic and anti-obesity effects.
Collapse
Affiliation(s)
- Chenqi Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| | - Cong Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Jun Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China;
| |
Collapse
|
6
|
Chen B, Yu X, Horvath-Diano C, Ortuño MJ, Tschöp MH, Jastreboff AM, Schneeberger M. GLP-1 programs the neurovascular landscape. Cell Metab 2024; 36:2173-2189. [PMID: 39357509 DOI: 10.1016/j.cmet.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Readily available nutrient-rich foods exploit our inherent drive to overconsume, creating an environment of overnutrition. This transformative setting has led to persistent health issues, such as obesity and metabolic syndrome. The development of glucagon-like peptide-1 receptor (GLP-1R) agonists reveals our ability to pharmacologically manage weight and address metabolic conditions. Obesity is directly linked to chronic low-grade inflammation, connecting our metabolic environment to neurodegenerative diseases. GLP-1R agonism in curbing obesity, achieved by impacting appetite and addressing associated metabolic defects, is revealing additional benefits extending beyond weight loss. Whether GLP-1R agonism directly impacts brain health or does so indirectly through improved metabolic health remains to be elucidated. In exploring the intricate connection between obesity and neurological conditions, recent literature suggests that GLP-1R agonism may have the capacity to shape the neurovascular landscape. Thus, GLP-1R agonism emerges as a promising strategy for addressing the complex interplay between metabolic health and cognitive well-being.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Claudia Horvath-Diano
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - María José Ortuño
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Matthias H Tschöp
- Helmholtz Zentrum München, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, München, Germany
| | - Ania M Jastreboff
- Departments of Medicine (Endocrinology & Metabolism) and Pediatrics (Pediatric Endocrinology), Yale University School of Medicine, New Haven, CT, USA
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Shankar A, Sharma A, Buch C, Chilton RJ. The evolving role of GLP-1 agonists in ischemic stroke prevention in diabetic patients. Cardiovasc Endocrinol Metab 2024; 13:e00308. [PMID: 39148946 PMCID: PMC11326472 DOI: 10.1097/xce.0000000000000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Affiliation(s)
- Aditi Shankar
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Aditi Sharma
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Chirag Buch
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Robert J Chilton
- Division of Cardiology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
9
|
Halabitska I, Babinets L, Oksenych V, Kamyshnyi O. Diabetes and Osteoarthritis: Exploring the Interactions and Therapeutic Implications of Insulin, Metformin, and GLP-1-Based Interventions. Biomedicines 2024; 12:1630. [PMID: 39200096 PMCID: PMC11351146 DOI: 10.3390/biomedicines12081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Diabetes mellitus (DM) and osteoarthritis (OA) are prevalent chronic conditions with shared pathophysiological links, including inflammation and metabolic dysregulation. This study investigates the potential impact of insulin, metformin, and GLP-1-based therapies on OA progression. Methods involved a literature review of clinical trials and mechanistic studies exploring the effects of these medications on OA outcomes. Results indicate that insulin, beyond its role in glycemic control, may modulate inflammatory pathways relevant to OA, potentially influencing joint health. Metformin, recognized for its anti-inflammatory properties via AMPK activation, shows promise in mitigating OA progression by preserving cartilage integrity and reducing inflammatory markers. GLP-1-based therapies, known for enhancing insulin secretion and improving metabolic profiles in DM, also exhibit anti-inflammatory effects that may benefit OA by suppressing cytokine-mediated joint inflammation and supporting cartilage repair mechanisms. Conclusions suggest that these medications, while primarily indicated for diabetes management, hold therapeutic potential in OA by targeting common underlying mechanisms. Further clinical trials are warranted to validate these findings and explore optimal therapeutic strategies for managing both DM and OA comorbidities effectively.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Liliia Babinets
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
10
|
Huang J, Wang XS, Gao T, Wang X, Yu MY, Song HX, Wang BY, Li LM, Zeng Q, Zhang HN. Astrocyte KDM4A mediates chemokines and drives neutrophil infiltration to aggravate cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab 2024; 44:491-507. [PMID: 38008899 PMCID: PMC10981400 DOI: 10.1177/0271678x231216158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Neutrophils plays a crucial role in acute ischemic brain injury and have emerged as potential treatment targets to mitigate such injuries. Lysine-specific demethylase 4 A (KDM4A), a member of the histone lysine demethylase family of enzymes involved in transcriptional regulation of gene expression, is upregulated during hypoxic events. However, the exact role of KDM4A in the pathological process of ischemic stroke remains largely unexplored. Our findings reveal that there was an upregulation of KDM4A levels in reactive astrocytes within both stroke mouse models and in vitro oxygen-glucose deprivation/regeneration (OGD/R) models. Using a conditional knockout mouse, we observed that astrocytic Kdm4a knockout regulates neutrophil infiltration and alleviates brain injury following middle cerebral artery occlusion reperfusion. Furthermore, Kdm4a deficiency astrocytes displayed lower chemokine C-X-C motif ligand 1 (CXCL1) level upon OGD/R and decreased neutrophil infiltration in a transwell system. Mechanistically, KDM4A, in cooperation with nuclear factor-kappa B (NF-κB), activates Cxcl1 gene expression by demethylating histone H3 lysine 9 trimethylation at Cxcl1 gene promoters in astrocytes upon OGD/R injury. Our findings suggest that astrocyte KDM4A-mediated Cxcl1 activation contributes to neutrophil infiltration via cooperation with NF-κB, and KDM4A in astrocytes may serve as a potential therapeutic target to modulate neutrophil infiltration after stroke.
Collapse
Affiliation(s)
- Jing Huang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
- Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tian Gao
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Xing Wang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Man-Yang Yu
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Hao-Xin Song
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Bi-Yan Wang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Ling-Mei Li
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| | - Qiang Zeng
- Health Management Institute, Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hui-Nan Zhang
- Department of Health Management, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
- Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
11
|
Terenzi DC, Bakbak E, Teoh H, Krishnaraj A, Puar P, Rotstein OD, Cosentino F, Goldenberg RM, Verma S, Hess DA. Restoration of blood vessel regeneration in the era of combination SGLT2i and GLP-1RA therapy for diabetes and obesity. Cardiovasc Res 2024; 119:2858-2874. [PMID: 38367275 DOI: 10.1093/cvr/cvae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2024] Open
Abstract
Ischaemic cardiovascular diseases, including peripheral and coronary artery disease, myocardial infarction, and stroke, remain major comorbidities for individuals with type 2 diabetes (T2D) and obesity. During cardiometabolic chronic disease (CMCD), hyperglycaemia and excess adiposity elevate oxidative stress and promote endothelial damage, alongside an imbalance in circulating pro-vascular progenitor cells that mediate vascular repair. Individuals with CMCD demonstrate pro-vascular 'regenerative cell exhaustion' (RCE) characterized by excess pro-inflammatory granulocyte precursor mobilization into the circulation, monocyte polarization towards pro-inflammatory vs. anti-inflammatory phenotype, and decreased pro-vascular progenitor cell content, impairing the capacity for vessel repair. Remarkably, targeted treatment with the sodium-glucose cotransporter-2 inhibitor (SGLT2i) empagliflozin in subjects with T2D and coronary artery disease, and gastric bypass surgery in subjects with severe obesity, has been shown to partially reverse these RCE phenotypes. SGLT2is and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have reshaped the management of individuals with T2D and comorbid obesity. In addition to glucose-lowering action, both drug classes have been shown to induce weight loss and reduce mortality and adverse cardiovascular outcomes in landmark clinical trials. Furthermore, both drug families also act to reduce systemic oxidative stress through altered activity of overlapping oxidase and antioxidant pathways, providing a putative mechanism to augment circulating pro-vascular progenitor cell content. As SGLT2i and GLP-1RA combination therapies are emerging as a novel therapeutic opportunity for individuals with poorly controlled hyperglycaemia, potential additive effects in the reduction of oxidative stress may also enhance vascular repair and further reduce the ischaemic cardiovascular comorbidities associated with T2D and obesity.
Collapse
Affiliation(s)
- Daniella C Terenzi
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ehab Bakbak
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Hwee Teoh
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Pankaj Puar
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ori D Rotstein
- Division of General Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Solnavagen 1, 171 77 Solna, Sweden
| | | | - Subodh Verma
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cells Biology, Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
| |
Collapse
|
12
|
Sohn M, Frias JP, Lim S. Cardiovascular efficacy and safety of antidiabetic agents: A network meta-analysis of randomized controlled trials. Diabetes Obes Metab 2023; 25:3560-3577. [PMID: 37649320 DOI: 10.1111/dom.15251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
AIM An important characteristic of glucose-lowering therapies (GLTs) is their ability to prevent cardiovascular complications. We aimed to investigate the cardiorenal efficacy and general safety of GLTs. MATERIALS AND METHODS Multicentre, randomized, clinical trials that included over 100 participants comparing antidiabetic agents with a placebo or a different antidiabetic agent and reporting major adverse cardiovascular events (MACEs), or primarily reporting heart failure, were searched in the PubMed, Embase and Cochrane databases. Data were extracted independently for random-effects network meta-analyses to calculate the hazard ratio estimates. RESULTS Forty-three trials that compared nine types of GLTs were included in the present analysis. The risk of three-point MACE was reduced in the presence of glucagon-like peptide-1 receptor agonists (GLP-1 RAs), sodium-glucose cotransporter-2 inhibitors (SGLT-2is) and thiazolidinedione therapy compared with the placebo, dipeptidyl peptidase-4 inhibitors, or insulin therapy. GLP-1 RAs were favourable for cardiovascular and renal outcomes. SGLT-2is reduced renal outcomes by ~40%, which was superior to other GLTs. Thiazolidinedione therapy increased the risks of hospitalization for heart failure and had no benefits on mortality. Adverse events leading to drug discontinuation were higher with GLP-1 RAs and thiazolidinediones than placebo. CONCLUSIONS GLP-1 RAs, SGLT-2is and thiazolidinediones reduced three-point MACE compared with other GLTs. Each drug class had unique advantages and disadvantages.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Juan P Frias
- National Research Institute, Metro Medical Mall, Los Angeles, California, USA
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
13
|
Jujic A, Vieira JPP, Matuskova H, Nilsson PM, Lindblad U, Olsen MH, Duarte JMN, Meissner A, Magnusson M. Plasma Galectin-4 Levels Are Increased after Stroke in Mice and Humans. Int J Mol Sci 2023; 24:10064. [PMID: 37373212 DOI: 10.3390/ijms241210064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Epidemiological studies have associated plasma galectin-4 (Gal-4) levels with prevalent and incident diabetes, and with an increased risk of coronary artery disease. To date, data regarding possible associations between plasma Gal-4 and stroke are lacking. Using linear and logistic regression analyses, we tested Gal-4 association with prevalent stroke in a population-based cohort. Additionally, in mice fed a high-fat diet (HFD), we investigated whether plasma Gal-4 increases in response to ischemic stroke. Plasma Gal-4 was higher in subjects with prevalent ischemic stroke, and was associated with prevalent ischemic stroke (odds ratio 1.52; 95% confidence interval 1.01-2.30; p = 0.048) adjusted for age, sex, and covariates of cardiometabolic health. Plasma Gal-4 increased after experimental stroke in both controls and HFD-fed mice. HFD exposure was devoid of impact on Gal-4 levels. This study demonstrates higher plasma Gal-4 levels in both experimental stroke and in humans that experienced ischemic stroke.
Collapse
Affiliation(s)
- Amra Jujic
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, 21428 Malmö, Sweden
| | - João P P Vieira
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden
| | - Hana Matuskova
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden
| | - Ulf Lindblad
- General Practice-Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Michael H Olsen
- Department of Internal Medicine 1, Holbaek Hospital, 4300 Holbaek, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - João M N Duarte
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden
| | - Anja Meissner
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
- Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Martin Magnusson
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, 21428 Malmö, Sweden
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
14
|
Tu XK, Chen PP, Chen JY, Ding YH, Chen Q, Shi SS. GLP-1R knockdown abrogates the protective effects of liraglutide on ischaemic stroke via inhibition of M2 polarisation and activation of NLRP3 inflammasome by reducing Nrf2 activation. Neuropharmacology 2023:109603. [PMID: 37236529 DOI: 10.1016/j.neuropharm.2023.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Liraglutide has been recently discovered to penetrate the blood-brain barrier to exert neuroprotective effects. However, relevant mechanisms of the protective effects of liraglutide on ischaemic stroke remain to be elucidated. This study examined the mechanism of GLP-1R in regulating the protective effect of liraglutide against ischaemic stroke. Middle cerebral artery occlusion (MCAO) male Sprague-Dawley rat model with/without GLP-1R or Nrf2 knockdown was established and subjected to liraglutide treatment. Then neurological deficit and brain oedema of rats was evaluated and brain tissues were subjected to TTC, Nissl, TUNEL and immunofluorescence staining. Rat primary microglial cells firstly underwent lipopolysaccharide (LPS) treatment, then GLP-1R or Nrf2 knockdown treatment, and finally Liraglutide treatment to research the NLRP3 activation. As a result, Liraglutide protected rats' brain tissues after MCAO, which attenuated brain oedema, infarct volume, neurological deficit score, neuronal apoptosis and Iba1 expression but enhanced live neurons. However, GLP-1R knockdown abrogated these protective effects of liraglutide on MCAO rats. According to in vitro experiments, Liraglutide promoted M2 polarisation, activated Nrf2 and inhibited NLRP3 activation in LPS-induced microglial cells, but GLP-1R or Nrf2 knockdown reversed these effects of Liraglutide on LPS-induced microglial cells. Further, Nrf2 knockdown counteracted the protection of liraglutide on MCAO rats, whereas sulforaphane (agonist of Nrf2) counteracted the effect of Nrf2 knockdown on liraglutide-treated MCAO rats. Collectively, GLP-1R knockdown abrogated the protection of liraglutide on MCAO rats by activating NLRP3 via inactivating Nrf2.
Collapse
Affiliation(s)
- Xian-Kun Tu
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Ping-Ping Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Jing-Yi Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Yi-Hang Ding
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Quan Chen
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Song-Sheng Shi
- Department of Neurosurgery, Fujian Medical University Union Hospital, Neurosurgical Institute of Fujian Province, 29# Xinquan Road, Fuzhou, Fujian, 350001, China
| |
Collapse
|
15
|
Mehdi SF, Pusapati S, Anwar MS, Lohana D, Kumar P, Nandula SA, Nawaz FK, Tracey K, Yang H, LeRoith D, Brownstein MJ, Roth J. Glucagon-like peptide-1: a multi-faceted anti-inflammatory agent. Front Immunol 2023; 14:1148209. [PMID: 37266425 PMCID: PMC10230051 DOI: 10.3389/fimmu.2023.1148209] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Inflammation contributes to many chronic conditions. It is often associated with circulating pro-inflammatory cytokines and immune cells. GLP-1 levels correlate with disease severity. They are often elevated and can serve as markers of inflammation. Previous studies have shown that oxytocin, hCG, ghrelin, alpha-MSH and ACTH have receptor-mediated anti-inflammatory properties that can rescue cells from damage and death. These peptides have been studied well in the past century. In contrast, GLP-1 and its anti-inflammatory properties have been recognized only recently. GLP-1 has been proven to be a useful adjuvant therapy in type-2 diabetes mellitus, metabolic syndrome, and hyperglycemia. It also lowers HbA1C and protects cells of the cardiovascular and nervous systems by reducing inflammation and apoptosis. In this review we have explored the link between GLP-1, inflammation, and sepsis.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Suma Pusapati
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Muhammad Saad Anwar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Durga Lohana
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Parkash Kumar
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | | | - Fatima Kausar Nawaz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Huan Yang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, United States
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
16
|
Zhang L, Zhang W, Tian X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int J Neurosci 2023; 133:473-491. [PMID: 33941038 DOI: 10.1080/00207454.2021.1924707] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1(GLP-1) is a multifunctional polypeptide throughout the lifespan via activating Glucagon-like peptide-1 receptor (GLP-1R).GLP-1 can affect food ingestion, enhance the secretion of insulin from pancreatic islets induced by glucose and be utilized to treat type 2 diabetes mellitus(T2DM).But, accumulating evidences from the decades suggest that activation GLP-1R can not only regulate the blood glucose, but also sustain the homeostasis of intracellular environment and protect neuron from various damaged responses such as oxidative stress, inflammation, excitotoxicity, ischemia and so on. And more and more pre-clinical and clinical studies identified that GLP-1 and its analogues may play a significant role in improving multiple central nervous system (CNS) diseases including neurodegenerative diseases, epilepsy, mental disorders, ischemic stroke, hemorrhagic stroke, traumatic brain injury, spinal cord injury, chronic pain, addictive disorders, other diseases neurological complications and so on. In order to better reveal the relationship between GLP-1/GLP-1R axis and the growth, development and survival of neurons, herein, this review is aimed to summarize the multi-function of GLP-1/GLP-1R axis in CNS diseases.
Collapse
Affiliation(s)
- LongQing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - XueBi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Wei J, Yang B, Wang R, Ye H, Wang Y, Wang L, Zhang X. Risk of stroke and retinopathy during GLP-1 receptor agonist cardiovascular outcome trials: An eight RCTs meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1007980. [PMID: 36545339 PMCID: PMC9760859 DOI: 10.3389/fendo.2022.1007980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose To explore the risk of stroke (including ischemic and hemorrhagic stroke) in type 2 diabetes mellitus treated with glucagon-like peptide 1 receptor agonist (GLP-1RA) medication according to data from the Cardiovascular Outcome Trials(CVOT). Methods Randomized controlled trials (RCT) on GLP-1RA therapy and cardiovascular outcomes in type 2 diabetics published in full-text journal databases such as Medline (via PubMed), Embase, Clinical Trials.gov, and the Cochrane Library from establishment to May 1, 2022 were searched. We assess the quality of individual studies by using the Cochrane risk of bias algorithm. RevMan 5.4.1 software was use for calculating meta- analysis. Results A total of 60,081 randomized participants were included in the data of these 8 GLP-1RA cardiovascular outcomes trials. Pooled analysis reported statistically significant effect on total stroke risk[RR=0.83, 95%CI(0.73, 0.95), p=0.005], and its subtypes such as ischemic Stroke [RR=0.83, 95%CI(0.73, 0.95), p=0.008] from treatment with GLP-1RA versus placebo, and have no significant effect on the risk of hemorrhagic stroke[RR=0.83, 95%CI(0.57, 1.20), p=0.31] and retinopathy [RR=1.54, 95%CI(0.74, 3.23), p=0.25]. Conclusion GLP-1RA significantly reduces the risk of ischemic stroke in type 2 diabetics with cardiovascular risk factors.
Collapse
Affiliation(s)
- Jinjing Wei
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bing Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruxin Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lihong Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, China
- The Guangzhou Key Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaofang Zhang
- Department Clinical Experimental Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet 2022; 400:1803-1820. [PMID: 36332637 DOI: 10.1016/s0140-6736(22)01655-5] [Citation(s) in RCA: 460] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes accounts for nearly 90% of the approximately 537 million cases of diabetes worldwide. The number affected is increasing rapidly with alarming trends in children and young adults (up to age 40 years). Early detection and proactive management are crucial for prevention and mitigation of microvascular and macrovascular complications and mortality burden. Access to novel therapies improves person-centred outcomes beyond glycaemic control. Precision medicine, including multiomics and pharmacogenomics, hold promise to enhance understanding of disease heterogeneity, leading to targeted therapies. Technology might improve outcomes, but its potential is yet to be realised. Despite advances, substantial barriers to changing the course of the epidemic remain. This Seminar offers a clinically focused review of the recent developments in type 2 diabetes care including controversies and future directions.
Collapse
Affiliation(s)
- Ehtasham Ahmad
- Diabetes Research Centre, University of Leicester and the Leicester NIHR Biomedical Research Centre, Leicester General Hospital, Leicester, UK
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Roberta Lamptey
- Family Medicine Department, Korle Bu Teaching Hospital, Accra Ghana and Community Health Department, University of Ghana Medical School, Accra, Ghana
| | - David R Webb
- Diabetes Research Centre, University of Leicester and the Leicester NIHR Biomedical Research Centre, Leicester General Hospital, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, University of Leicester and the Leicester NIHR Biomedical Research Centre, Leicester General Hospital, Leicester, UK.
| |
Collapse
|
19
|
Vergès B, Aboyans V, Angoulvant D, Boutouyrie P, Cariou B, Hyafil F, Mohammedi K, Amarenco P. Protection against stroke with glucagon-like peptide-1 receptor agonists: a comprehensive review of potential mechanisms. Cardiovasc Diabetol 2022; 21:242. [PMID: 36380358 PMCID: PMC9667639 DOI: 10.1186/s12933-022-01686-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Several randomized controlled trials have demonstrated the benefits of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on ischemic stroke in patients with diabetes. In this review, we summarize and discuss the potential mechanisms of stroke protection by GLP-1RAs. GLP-1RAs exert multiple anti-atherosclerotic effects contributing to stroke prevention such as enhanced plaque stability, reduced vascular smooth muscle proliferation, increased nitric oxide, and improved endothelial function. GLP-1RAs also lower the risk of stroke by reducing traditional stroke risk factors including hyperglycemia, hypertension, and dyslipidemia. Independently of these peripheral actions, GLP-1RAs show direct cerebral effects in animal stroke models, such as reduction of infarct volume, apoptosis, oxidative stress, neuroinflammation, excitotoxicity, blood-brain barrier permeability, and increased neurogenesis, neuroplasticity, angiogenesis, and brain perfusion. Despite these encouraging findings, further research is still needed to understand more thoroughly the mechanisms by which GLP-1RAs may mediate stroke protection specifically in the human diabetic brain.
Collapse
Affiliation(s)
- Bruno Vergès
- grid.5613.10000 0001 2298 9313Department of Endocrinology, Diabetes and Metabolic Disorders, Dijon University Hospital, INSERM Unit, LNC-UMR 1231, University of Burgundy, Dijon, France
| | - Victor Aboyans
- Department of Cardiology, EpiMaCT - INSERM UMR, Dupuytren University Hospital, Limoges University, 1094 & IRD 270, Limoges, France
| | - Denis Angoulvant
- EA4245 Transplantation, Immunity & Inflammation, Department of Cardiology, University of Tours, Tours University Hospital, Tours, France
| | - Pierre Boutouyrie
- Paris Cardiovascular Research CenterUMR-970Department of Pharmacology, INSERM, Georges-Pompidou European Hospital, Paris City University, Paris, France
| | - Bertrand Cariou
- grid.462318.aUniversity of Nantes, Nantes University Hospital Centre, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Fabien Hyafil
- grid.414093.b0000 0001 2183 5849Department of Nuclear Medicine, DMU IMAGINA, Georges-Pompidou European Hospital, APHP, Paris City University, Paris, France
| | - Kamel Mohammedi
- grid.412041.20000 0001 2106 639XDepartment of Endocrinology, Diabetes, and Nutrition, University of Bordeaux, INSERM U1034, Pessac, France
| | - Pierre Amarenco
- Neurology and Stroke Center, SOS-TIA Clinic, Bichat Hospital, University of Paris, Paris, France
| |
Collapse
|
20
|
Targeting Persistent Neuroinflammation after Hypoxic-Ischemic Encephalopathy-Is Exendin-4 the Answer? Int J Mol Sci 2022; 23:ijms231710191. [PMID: 36077587 PMCID: PMC9456443 DOI: 10.3390/ijms231710191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy is brain injury resulting from the loss of oxygen and blood supply around the time of birth. It is associated with a high risk of death or disability. The only approved treatment is therapeutic hypothermia. Therapeutic hypothermia has consistently been shown to significantly reduce the risk of death and disability in infants with hypoxic-ischemic encephalopathy. However, approximately 29% of infants treated with therapeutic hypothermia still develop disability. Recent preclinical and clinical studies have shown that there is still persistent neuroinflammation even after treating with therapeutic hypothermia, which may contribute to the deficits seen in infants despite treatment. This suggests that potentially targeting this persistent neuroinflammation would have an additive benefit in addition to therapeutic hypothermia. A potential additive treatment is Exendin-4, which is a glucagon-like peptide 1 receptor agonist. Preclinical data from various in vitro and in vivo disease models have shown that Exendin-4 has anti-inflammatory, mitochondrial protective, anti-apoptotic, anti-oxidative and neurotrophic effects. Although preclinical studies of the effect of Exendin-4 in perinatal hypoxic-ischemic brain injury are limited, a seminal study in neonatal mice showed that Exendin-4 had promising neuroprotective effects. Further studies on Exendin-4 neuroprotection for perinatal hypoxic-ischemic brain injury, including in large animal translational models are warranted to better understand its safety, window of opportunity and effectiveness as an adjunct with therapeutic hypothermia.
Collapse
|
21
|
Yang X, Feng P, Ji R, Ren Y, Wei W, Hölscher C. Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson's disease. Expert Opin Ther Targets 2022; 26:445-460. [PMID: 35584372 DOI: 10.1080/14728222.2022.2079492] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes is a risk factor for Parkinson's disease (PD) and shares similar dysregulated insulin pathways. Glucagon-like peptide-1 (GLP-1) analogs originally designed to treat diabetes have shown potent neuroprotective activity in preclinical studies of PD. They are neuroprotective by inhibiting inflammation, improving neuronal survival, maintenance of synapses, and dopaminergic transmission in the brain. Building on this, three clinical studies have reported impressive effects in patients with PD, testing exendin-4 (Exenatide, Bydureon) or liraglutide (Victoza, Saxenda). Glucose-dependent insulinotropic peptide (GIP) is another peptide hormone that has shown good effects in animal models of PD. Novel dual GLP-1/GIP agonists have been developed that can penetrate the blood-brain barrier (BBB) and show superior effects in animal models compared to GLP-1 drugs. AREAS COVERED The review summarizes preclinical and clinical studies testing GLP-1R agonists and dual GLP-1/GIPR agonists in PD and discusses possible mechanisms of action. EXPERT OPINION Current strategies to treat PD by lowering the levels of alpha-synuclein have not shown effects in clinical trials. It is time to move on from the 'misfolding protein' hypothesis. Growth factors such as GLP-1 that can cross the BBB have already shown impressive effects in patients and are the future of drug discovery in PD.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China
| | - Rong Ji
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Yiqing Ren
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan' an Road, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, No. 382 Wuyi Road, Taiyuan, 030001, Shanxi Province, China.,Academy of Chinese Medical Science, Henan University of Traditional Chinese Medicine, No. 233 Zhongyuan Road, Zhengzhou, China
| |
Collapse
|
22
|
Chen Y, Xu YN, Ye CY, Feng WB, Zhou QT, Yang DH, Wang MW. GLP-1 mimetics as a potential therapy for nonalcoholic steatohepatitis. Acta Pharmacol Sin 2022; 43:1156-1166. [PMID: 34934197 PMCID: PMC9061743 DOI: 10.1038/s41401-021-00836-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
Nonalcoholic steatohepatitis (NASH), as a severe form of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis. The pathogenesis of NASH is complex and multifactorial, obesity and type 2 diabetes mellitus (T2DM) have been implicated as major risk factors. Glucagon-like peptide-1 receptor (GLP-1R) is one of the most successful drug targets of T2DM and obesity, and its peptidic ligands have been proposed as potential therapeutic agents for NASH. In this article we provide an overview of the pathophysiology and management of NASH, with a special focus on the pharmacological effects and possible mechanisms of GLP-1 mimetics in treating NAFLD/NASH, including dual and triple agonists at GLP-1R, glucose-dependent insulinotropic polypeptide receptor or glucagon receptor.
Collapse
Affiliation(s)
- Yan Chen
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying-Na Xu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Yu Ye
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Bo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - De-Hua Yang
- The CAS Key Laboratory of Receptor Research and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- The CAS Key Laboratory of Receptor Research and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
23
|
Yang X, Qiang Q, Li N, Feng P, Wei W, Hölscher C. Neuroprotective Mechanisms of Glucagon-Like Peptide-1-Based Therapies in Ischemic Stroke: An Update Based on Preclinical Research. Front Neurol 2022; 13:844697. [PMID: 35370875 PMCID: PMC8964641 DOI: 10.3389/fneur.2022.844697] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
The public and social health burdens of ischemic stroke have been increasing worldwide. Hyperglycemia leads to a greater risk of stroke. This increased risk is commonly seen among patients with diabetes and is in connection with worsened clinical conditions and higher mortality in patients with acute ischemic stroke (AIS). Therapy for stroke focuses mainly on restoring cerebral blood flow (CBF) and ameliorating neurological impairment caused by stroke. Although choices of stroke treatment remain limited, much advance have been achieved in assisting patients in recovering from ischemic stroke, along with progress of recanalization therapy through pharmacological and mechanical thrombolysis. However, it is still necessary to develop neuroprotective therapies for AIS to protect the brain against injury before and during reperfusion, prolong the time window for intervention, and consequently improve neurological prognosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are broadly regarded as effective drugs in the treatment of type 2 diabetes mellitus (T2DM). Preclinical data on GLP-1 and GLP-1 RAs have displayed an impressive neuroprotective efficacy in stroke, Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), and other neurodegenerative diseases. Based on the preclinical studies in the past decade, we review recent progress in the biological roles of GLP-1 and GLP-1 RAs in ischemic stroke. Emphasis will be placed on their neuroprotective effects in experimental models of cerebral ischemia stroke at cellular and molecular levels.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Qiang Qiang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Nan Li
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Peng Feng
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Christian Hölscher
- Department of Neurology, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China.,Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
24
|
Ridout KK, Syed SA, Kao HT, Porton B, Rozenboym AV, Tang J, Fulton S, Perera T, Jackowski AP, Kral JG, Tyrka AR, Coplan J. Relationships Between Telomere Length, Plasma Glucagon-like Peptide 1, and Insulin in Early-Life Stress–Exposed Nonhuman Primates. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:54-60. [DOI: 10.1016/j.bpsgos.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
|
25
|
Meurot C, Jacques C, Martin C, Sudre L, Breton J, Rattenbach R, Bismuth K, Berenbaum F. Targeting the GLP-1/GLP-1R axis to treat osteoarthritis: A new opportunity? J Orthop Translat 2022; 32:121-129. [PMID: 35280931 PMCID: PMC8888891 DOI: 10.1016/j.jot.2022.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease affecting millions of people worldwide. In OA, chondrocytes, synovial cells and other joint cells become activated when exposed to an abnormal environment, including mechanical stress, inflammatory cytokines or disorganization of matrix proteins. Several analogues of the hormones called incretins have been developed and are used notably for treating type 2 diabetes mellitus. Data has accumulated to suggest that incretinomimetics, which bind to the glucagon-like peptide-1 receptor (GLP-1R), have beneficial pleiotropic effects such as immunomodulation, anti-inflammation and neuronal protection. Thus, because of their anti-inflammatory properties, GLP-1-based therapies could benefit OA patients. This review focuses on the GLP-1R pathway, molecular mechanisms and phenotypes related to OA pathogenesis. The translational potential of this article The search for new therapeutic targets to treat people suffering from OA remains urgent as there is currently no disease-modifyingtherapy available for this disease. This review discusses how GLP-1 analogues could be potential DMOADs for treating OA thanks to their anti-inflammatory, immunoregulatory and differentiation properties.
Collapse
Affiliation(s)
| | - C. Jacques
- Sorbonne University, INSERM UMRS_938 and Labex Transimmunom, CDR St-Antoine Paris, Paris, France
| | | | | | | | - R. Rattenbach
- 4P-Pharma, Lille, France
- 4Moving Biotech, Lille, France
| | | | - F. Berenbaum
- 4Moving Biotech, Lille, France
- APHP, Sorbonne University, Rheumatology Department, INSERM UMRS_938, CDR St-Antoine Paris, Paris, France
| |
Collapse
|
26
|
Augestad IL, Dekens D, Karampatsi D, Elabi O, Zabala A, Pintana H, Larsson M, Nyström T, Paul G, Darsalia V, Patrone C. Normalisation of glucose metabolism by exendin-4 in the chronic phase after stroke promotes functional recovery in male diabetic mice. Br J Pharmacol 2021; 179:677-694. [PMID: 33973246 PMCID: PMC8820185 DOI: 10.1111/bph.15524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2021] [Accepted: 04/27/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide-1 (GLP-1) receptor activation decreases stroke risk in people with Type 2 diabetes (T2D), while animal studies have shown the efficacy of this strategy to counteract stroke-induced acute brain damage. However, whether GLP-1 receptor activation also improves recovery in the chronic phase after stroke is unknown. We investigated whether post-acute, chronic administration of the GLP-1 receptor agonist, exendin-4, improves post-stroke recovery and examined possible underlying mechanisms in T2D and non-T2D mice. EXPERIMENTAL APPROACH We induced stroke via transient middle cerebral artery occlusion (tMCAO) in T2D/obese mice (8 months of high-fat diet) and age-matched controls. Exendin-4 was administered for 8 weeks from Day 3 post-tMCAO. We assessed functional recovery by weekly upper-limb grip strength tests. Insulin sensitivity and glycaemia were evaluated at 4 and 8 weeks post-tMCAO. Neuronal survival, stroke-induced neurogenesis, neuroinflammation, atrophy of GABAergic parvalbumin+ interneurons, post-stroke vascular remodelling and fibrotic scar formation were investigated by immunohistochemistry. KEY RESULTS Exendin-4 normalised T2D-induced impairment of forepaw grip strength recovery in correlation with normalised glycaemia and insulin sensitivity. Moreover, exendin-4 counteracted T2D-induced atrophy of parvalbumin+ interneurons and decreased microglia activation. Finally, exendin-4 normalised density and pericyte coverage of micro-vessels and restored fibrotic scar formation in T2D mice. In non-T2D mice, the exendin-4-mediated recovery was minor. CONCLUSION AND IMPLICATIONS Chronic GLP-1 receptor activation mediates post-stroke functional recovery in T2D mice by normalising glucose metabolism and improving neuroplasticity and vascular remodelling in the recovery phase. The results warrant clinical trial of GLP-1 receptor agonists for rehabilitation after stroke in T2D.
Collapse
Affiliation(s)
- Ingrid Lovise Augestad
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Doortje Dekens
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Osama Elabi
- Translational Neurology Group, Department of Clinical Sciences, Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Alexander Zabala
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hiranya Pintana
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Larsson
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences, Wallenberg Neuroscience Center, Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
27
|
Maskery MP, Holscher C, Jones SP, Price CI, Strain WD, Watkins CL, Werring DJ, Emsley HCA. Glucagon-like peptide-1 receptor agonists as neuroprotective agents for ischemic stroke: a systematic scoping review. J Cereb Blood Flow Metab 2021; 41:14-30. [PMID: 32954901 PMCID: PMC7747170 DOI: 10.1177/0271678x20952011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
Abstract
Stroke mortality and morbidity is expected to rise. Despite considerable recent advances within acute ischemic stroke treatment, scope remains for development of widely applicable neuroprotective agents. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), originally licensed for the management of Type 2 Diabetes Mellitus, have demonstrated pre-clinical neuroprotective efficacy in a range of neurodegenerative conditions. This systematic scoping review reports the pre-clinical basis of GLP-1RAs as neuroprotective agents in acute ischemic stroke and their translation into clinical trials. We included 35 pre-clinical studies, 11 retrospective database studies, 7 cardiovascular outcome trials and 4 prospective clinical studies. Pre-clinical neuroprotection was demonstrated in normoglycemic models when administration was delayed by up to 24 h following stroke induction. Outcomes included reduced infarct volume, apoptosis, oxidative stress and inflammation alongside increased neurogenesis, angiogenesis and cerebral blood flow. Improved neurological function and a trend towards increased survival were also reported. Cardiovascular outcomes trials reported a significant reduction in stroke incidence with semaglutide and dulaglutide. Retrospective database studies show a trend towards neuroprotection. Prospective interventional clinical trials are on-going, but initial indicators of safety and tolerability are favourable. Ultimately, we propose that repurposing GLP-1RAs is potentially advantageous but appropriately designed trials are needed to determine clinical efficacy and cost-effectiveness.
Collapse
Affiliation(s)
- Mark P Maskery
- Lancaster Medical School, Lancaster University, Lancaster, UK
- Department of Neurology, Royal Preston Hospital, Preston, UK
| | - Christian Holscher
- Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Stephanie P Jones
- Faculty of Health and Wellbeing, University of Central Lancashire, Preston, UK
| | - Christopher I Price
- Institute of Neuroscience, Stroke Research Group, Newcastle University, Newcastle, UK
| | - W David Strain
- NIHR Exeter Clinical Research Facility and Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| | - Caroline L Watkins
- Faculty of Health and Wellbeing, University of Central Lancashire, Preston, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Hedley CA Emsley
- Lancaster Medical School, Lancaster University, Lancaster, UK
- Department of Neurology, Royal Preston Hospital, Preston, UK
| |
Collapse
|
28
|
Apicella M, Campopiano MC, Mantuano M, Mazoni L, Del Prato S. Guida pratica alla prevenzione e gestione dell’infezione da COVID-19 nelle persone con diabete. L'ENDOCRINOLOGO 2020. [PMCID: PMC7582423 DOI: 10.1007/s40619-020-00767-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
La pandemia di COVID-19 rappresenta un’enorme sfida per il sistema sanitario nazionale. Sulla base dei dati ad oggi disponibili è emerso che le persone con diabete mellito presentano un maggior rischio di complicanze e morte per COVID-19. Pertanto, adottare misure preventive di igiene e di distanziamento sociale è cruciale, a maggior ragione in questa categoria di soggetti. A sostegno dei pazienti con diabete sono state intraprese molteplici iniziative al fine di garantire la continuità assistenziale, tra cui la proroga della validità dei piani terapeutici per i farmaci ipoglicemizzanti, le procedure per il rinnovo della patente di guida e l’attivazione di servizi di telemedicina. In caso di infezione da COVID-19 e sintomi lievi è possibile una gestione domiciliare della persona con diabete, raccomandando un attento monitoraggio glicemico. Il paziente diabetico che necessita di ospedalizzazione richiede una gestione multidisciplinare che includa il diabetologo, con l’obiettivo di mantenere un adeguato controllo glicemico in assenza di ipoglicemie. Le persone con diabete rappresentano un gruppo vulnerabile per il quale devono essere poste in atto strategie specifiche sia in termini di prevenzione che di trattamento.
Collapse
Affiliation(s)
- Matteo Apicella
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa e Azienda Ospedaliero Universitaria Pisana, Pisa, Italia
| | - Maria Cristina Campopiano
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa e Azienda Ospedaliero Universitaria Pisana, Pisa, Italia
| | - Michele Mantuano
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa e Azienda Ospedaliero Universitaria Pisana, Pisa, Italia
| | - Laura Mazoni
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa e Azienda Ospedaliero Universitaria Pisana, Pisa, Italia
| | - Stefano Del Prato
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa e Azienda Ospedaliero Universitaria Pisana, Pisa, Italia
| |
Collapse
|
29
|
Géa LP, da Rosa ED, Panizzutti BS, de Aguiar ÉZ, de Oliveira LF, Ferrari P, Piato A, Gomez R, Colombo R, Rosa AR. Reduction of hippocampal IL-6 levels in LPS-injected rats following acute exendin-4 treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1303-1311. [PMID: 32363414 DOI: 10.1007/s00210-020-01867-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Preclinical evidence on the role of glucagon-like peptide-1 receptor (GLP-1r) agonists in the brain led to an increased interest in repurposing these compounds as a therapy for central nervous system (CNS) disorders and associated comorbidities. We aimed to investigate the neuroprotective effects of acute treatment with exendin (EX)-4, a GLP-1r agonist, in an animal model of inflammation. We evaluated the effect of different doses of EX-4 on inflammatory, neurotrophic, and oxidative stress parameters in the hippocampus and serum of lipopolysaccharide (LPS)-injected animals. Male Wistar rats were injected with LPS (0.25 mg/kg i.p.) and treated with different doses of EX-4 (0.1, 0.3, or 0.5 μg/kg i.p.). Sickness behavior was assessed by locomotor activity and body weight, and depressive-like behavior was also evaluated using forced swim test (FST). Brain-derived neurotrophic factor (BDNF), thiobarbituric acid reactive species (TBARS), and interleukin (IL)-6 were quantified in the serum and hippocampus. Glycemia was also analyzed pre- and post-EX-4 treatment. LPS groups exhibited decreased frequency of crossing and reduced body weight (p < 0.001), while alterations on FST were not observed. The higher dose of EX-4 reduced IL-6 in the hippocampus of LPS-injected animals (p = 0.018), and EX-4 per se reduced TBARS serum levels with a modest antioxidant effect in the LPS groups (p ≤ 0.005). BDNF hippocampal levels seemed to be increased in the LPS+EX-4 0.5 group compared with LPS+Saline (p > 0.05). Our study provides evidence on acute anti-inflammatory effects of EX-4 in the hippocampus of rats injected with LPS, contributing to future studies on repurposing compounds with potential neuroprotective properties.
Collapse
Affiliation(s)
- Luiza P Géa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eduarda D da Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Programa de Pós-gradução em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, RS, Brazil
| | - Bruna S Panizzutti
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Érica Z de Aguiar
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| | - Larissa F de Oliveira
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| | - Pamela Ferrari
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| | - Angelo Piato
- Programa de Pós-graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rosane Gomez
- Programa de Pós-graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Colombo
- Laboratório de Farmacologia e Fisiologia, Universidade de Caxias do Sul (UCS), Caixas do Sul, RS, Brazil
| | - Adriane R Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil.
- Programa de Pós-graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
30
|
Nguyen TTN, Choi H, Jun HS. Preventive Effects of Dulaglutide on Disuse Muscle Atrophy Through Inhibition of Inflammation and Apoptosis by Induction of Hsp72 Expression. Front Pharmacol 2020; 11:90. [PMID: 32153405 PMCID: PMC7046759 DOI: 10.3389/fphar.2020.00090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/27/2020] [Indexed: 12/23/2022] Open
Abstract
Pathological conditions such as joint immobilization, long-time bed rest, or inactivity may result in disuse-induced muscle wasting and dysfunction. To investigate the effect of dulaglutide, a long-acting glucagon-like peptide-1 receptor agonist, on disuse muscle atrophy, disuse condition was induced by spiral wire immobilization in C57BL/6 mice and the mice were treated with dulaglutide. Dulaglutide treatment effectively improved muscle function and increased muscle mass compared with vehicle treatment. Dulaglutide inhibited the decrease of muscle fiber size and the expression of atrophic factors such as myostatin, atrogin-1/MAFbx, and muscle RING-finger protein-1 in immobilized mice. In addition, dulaglutide inhibited nuclear factor kappa B activation, leading to a decrease in the mRNA levels of proinflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in muscle of immobilized mice. Dulaglutide suppressed the expression of apoptotic markers such as caspase-3, cleaved poly-ADP ribose polymerase, and Bax under immobilization condition and increased the expression of heat shock protein 72 (Hsp72), which is related to the amelioration of inflammation and apoptosis during disuse time. Further study showed that dulaglutide could induce Hsp72 expression via the regulation of 5′-AMP-activated protein kinase signaling. Our data suggest that dulaglutide could exert beneficial effects against disuse-induced muscle atrophy.
Collapse
Affiliation(s)
- Tram Thi Ngoc Nguyen
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Hojung Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Hee-Sook Jun
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Gachon Medical Research Institute, Gil Hospital, Incheon, South Korea
| |
Collapse
|
31
|
Lim S, Oh TJ, Dawson J, Sattar N. Diabetes drugs and stroke risk: Intensive versus conventional glucose-lowering strategies, and implications of recent cardiovascular outcome trials. Diabetes Obes Metab 2020; 22:6-15. [PMID: 31379119 DOI: 10.1111/dom.13850] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
People with diabetes mellitus are at higher risk of ischaemic stroke and worse outcomes thereafter. However, whether it is better to prescribe intensive glucose-lowering treatment compared with conventional treatment in people with diabetes to prevent recurrent stroke is debated. It is also crucial to consider whether specific antidiabetic agents are more efficacious and safer than others for prevention of stroke. In this review, we provide an overview of the efficacy of intensive and conventional glucose-lowering treatment in post-stroke management. Our conclusion is that the overall evidence for a beneficial effect of intensive glycaemic control on risk of stroke is limited. We also discuss evidence from recent large clinical trials of thiazolidinediones and new antidiabetic medications, including dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs), and sodium-glucose co-transporter-2 inhibitors. On the basis of the findings of these trials, our conclusion is that pioglitazone and the GLP-1RA class (other than short-acting lixisenatide) are likely to lessen the occurrence of cerebrovascular disease (by mechanisms not dependent on glucose-lowering per se), whereas there is no consistent evidence for other drug classes.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Tae Jung Oh
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, Glasgow, UK
| |
Collapse
|
32
|
Cui SS, Feng XB, Zhang BH, Xia ZY, Zhan LY. Exendin-4 attenuates pain-induced cognitive impairment by alleviating hippocampal neuroinflammation in a rat model of spinal nerve ligation. Neural Regen Res 2020; 15:1333-1339. [PMID: 31960821 PMCID: PMC7047783 DOI: 10.4103/1673-5374.272620] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 receptor has anti-apoptotic, anti-inflammatory, and neuroprotective effects. It is now recognized that the occurrence and development of chronic pain are strongly associated with anti-inflammatory responses; however, it is not clear whether glucagon-like peptide-1 receptor regulates chronic pain via anti-inflammatory mechanisms. We explored the effects of glucagon-like peptide-1 receptor on nociception, cognition, and neuroinflammation in chronic pain. A rat model of chronic pain was established using left L5 spinal nerve ligation. The glucagon-like peptide-1 receptor agonist exendin-4 was intrathecally injected into rats from 10 to 21 days after spinal nerve ligation. Electrophysiological examinations showed that, after treatment with exendin-4, paw withdrawal frequency of the left limb was significantly reduced, and pain was relieved. In addition, in the Morris water maze test, escape latency increased and the time to reach the platform decreased following exendin-4 treatment. Immunohistochemical staining and western blot assays revealed an increase in the numbers of activated microglia and astrocytes in the dentate gyrus of rat hippocampus, as well as an increase in the expression of tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6. All of these effects could be reversed by exendin-4 treatment. These findings suggest that exendin-4 can alleviate pain-induced neuroinflammatory responses and promote the recovery of cognitive function via the glucagon-like peptide-1 receptor pathway. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Renmin Hospital of Wuhan University of China (approval No. WDRM 20171214) on September 22, 2017.
Collapse
Affiliation(s)
- Shan-Shan Cui
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Bo Feng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bing-Hong Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Li-Ying Zhan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
33
|
Yang X, Wang Y, Wu C, Ling EA. Animal Venom Peptides as a Treasure Trove for New Therapeutics Against Neurodegenerative Disorders. Curr Med Chem 2019; 26:4749-4774. [PMID: 30378475 DOI: 10.2174/0929867325666181031122438] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/08/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and cerebral ischemic stroke, impose enormous socio-economic burdens on both patients and health-care systems. However, drugs targeting these diseases remain unsatisfactory, and hence there is an urgent need for the development of novel and potent drug candidates. METHODS Animal toxins exhibit rich diversity in both proteins and peptides, which play vital roles in biomedical drug development. As a molecular tool, animal toxin peptides have not only helped clarify many critical physiological processes but also led to the discovery of novel drugs and clinical therapeutics. RESULTS Recently, toxin peptides identified from venomous animals, e.g. exenatide, ziconotide, Hi1a, and PcTx1 from spider venom, have been shown to block specific ion channels, alleviate inflammation, decrease protein aggregates, regulate glutamate and neurotransmitter levels, and increase neuroprotective factors. CONCLUSION Thus, components of venom hold considerable capacity as drug candidates for the alleviation or reduction of neurodegeneration. This review highlights studies evaluating different animal toxins, especially peptides, as promising therapeutic tools for the treatment of different neurodegenerative diseases and disorders.
Collapse
Affiliation(s)
- Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Chunyun Wu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
34
|
Ahn CH, Lim S. Effects of Thiazolidinedione and New Antidiabetic Agents on Stroke. J Stroke 2019; 21:139-150. [PMID: 31161759 PMCID: PMC6549069 DOI: 10.5853/jos.2019.00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with hyperglycemia are at a high risk of cardio- and cerebrovascular diseases. Diabetes patients also have poor outcomes after cerebrovascular disease development. Several classes of drugs are used for diabetes management in clinical practice. Thiazolidinedione (TZD) was introduced in the late 1990s, and new antidiabetic agents have been introduced since 2000. After issues with rosiglitazone in 2007, the U.S. Food and Drug Administration strongly recommended that trials investigating cardiovascular risk associated with new antidiabetic medications should be conducted before drug approval in the United States, to prove the safety of these new drugs and to determine their superiority to previous medications. Currently, results are available from two studies with TZD focusing on cardiovascular diseases, including stroke, and from 12 cardiovascular outcome trials focusing on major adverse cardiovascular events associated with new antidiabetic agents (four with dipeptidyl peptidase-4 inhibitors, three with sodium-glucose cotransporter-2 inhibitors, and five with glucagon-like peptide-1 analogues). These studies showed different results for primary cardiovascular outcomes and stroke prevention. It is important to determine whether prescription of TZD or new antidiabetic medications compared to conventional treatment, such as sulfonylurea or insulin, is better for stroke management. Furthermore, it is unclear whether drugs in the same class show greater safety and efficacy than other drugs for stroke management.
Collapse
Affiliation(s)
- Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
35
|
Xourgia E, Tzouganatou EM, Papazafiropoulou A, Melidonis A. Anti-inflammatory properties of antidiabetic agents. World J Meta-Anal 2019; 7:129-141. [DOI: 10.13105/wjma.v7.i4.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
|
36
|
Erbil D, Eren CY, Demirel C, Küçüker MU, Solaroğlu I, Eser HY. GLP-1's role in neuroprotection: a systematic review. Brain Inj 2019; 33:734-819. [PMID: 30938196 DOI: 10.1080/02699052.2019.1587000] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a target for treatment of diabetes; however, its function in the brain is not well studied. In this systematic review, we aimed to analyze the neuroprotective role of GLP-1 and its defined mechanisms. Methods: We searched 'Web of Science' and 'Pubmed' to identify relevant studies using GLP-1 as the keyword. Two hundred and eighty-nine clinical and preclinical studies have been included. Data have been presented by grouping neurodegenerative, neurovascular and specific cell culture models. Results: Recent literature shows that GLP-1 and its agonists, DPP-4 inhibitors and combined GLP-1/GIP molecules are effective in partially or fully reversing the effects of neurotoxic compounds, neurovascular complications of diabetes, neuropathological changes related with Alzheimer's disease, Parkinson's disease or vascular occlusion. Possible mechanisms that provide neuroprotection are enhancing the viability of the neurons and restoring neurite outgrowth by increased neurotrophic factors, increasing subventricular zone progenitor cells, decreasing apoptosis, decreasing the level of pro-inflammatory factors, and strengthening blood-brain barrier. Conclusion: Based on the preclinical studies, GLP-1 modifying agents are promising targets for neuroprotection. On the other hand, the number of clinical studies that investigate GLP-1 as a treatment is low and further clinical trials are needed for a benchside to bedside translation of recent findings.
Collapse
Affiliation(s)
- Damla Erbil
- a School of Medicine , Koç University , Istanbul , Turkey
| | - Candan Yasemin Eren
- b Research Center for Translational Medicine , Koç University , Istanbul , Turkey
| | - Cağrı Demirel
- a School of Medicine , Koç University , Istanbul , Turkey
| | | | - Ihsan Solaroğlu
- a School of Medicine , Koç University , Istanbul , Turkey.,b Research Center for Translational Medicine , Koç University , Istanbul , Turkey
| | - Hale Yapıcı Eser
- a School of Medicine , Koç University , Istanbul , Turkey.,b Research Center for Translational Medicine , Koç University , Istanbul , Turkey
| |
Collapse
|
37
|
Milonas D, Didangelos T, Hatzitolios AI, Tziomalos K. Incretin-Based Antihyperglycemic Agents for the Management of Acute Ischemic Stroke in Patients with Diabetes Mellitus: A Review. Diabetes Ther 2019; 10:429-435. [PMID: 30725400 PMCID: PMC6437305 DOI: 10.1007/s13300-019-0580-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus (DM) is a major risk factor for ischemic stroke. Moreover, patients with DM suffer more severe strokes and have worse functional outcome following an acute stroke than patients without DM. In this context, data from animal studies and emerging evidence from clinical studies suggest that incretin-based antihyperglycemic agents might exert beneficial effects in patients with DM who suffer ischemic stroke. It appears that these agents exert neuroprotective actions that might both reduce infarct size and promote recovery. The present review summarizes the evidence on the potential role of incretin-based antihyperglycemic agents in the management of acute ischemic stroke.
Collapse
Affiliation(s)
- Dimitrios Milonas
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
| | - Triantafyllos Didangelos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Apostolos I Hatzitolios
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| |
Collapse
|
38
|
Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. J Transl Med 2019; 99:577-587. [PMID: 30659271 DOI: 10.1038/s41374-018-0170-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1), which is well known for regulating glucose homeostasis, exhibits multiple actions in cardiovascular disorders and renal injury. However, little is known about the effect of GLP-1 receptor (GLP-1R) activation on acute lung injury (ALI). In this study, we investigated the effect of GLP-1R on ALI and the potential underlying mechanisms with the selective agonist liraglutide. Our results show that GLP-1 levels decreased in serum, though they increased in bronchoalveolar lavage fluid (BALF) and lung tissue in a mouse model of lipopolysaccharide (LPS)-induced ALI. Liraglutide prevented LPS-induced polymorphonuclear neutrophil (PMN) extravasation, lung injury, and alveolar-capillary barrier dysfunction. In cultured human pulmonary microvascular endothelial cells (HPMECs), liraglutide protected against LPS-induced endothelial barrier injury by restoring intercellular tight junctions and adherens junctions. Moreover, liraglutide prevented PMN-endothelial adhesion by inhibiting the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and thereafter suppressed PMN transendothelial migration. Furthermore, liraglutide suppressed LPS-induced activation of Rho/NF-κB signaling in HPMECs. In conclusion, our results show that GLP-1R activation protects mice from LPS-induced ALI by maintaining functional endothelial barrier and inhibiting PMN extravasation. These results also suggest that GLP-1R may be a potential therapeutic target for the treatment of ALI.
Collapse
|
39
|
Sun J, Liu S, Ling Z, Wang F, Ling Y, Gong T, Fang N, Ye S, Si J, Liu J. Fructooligosaccharides Ameliorating Cognitive Deficits and Neurodegeneration in APP/PS1 Transgenic Mice through Modulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3006-3017. [PMID: 30816709 DOI: 10.1021/acs.jafc.8b07313] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is closely related to gut microbial alteration. Prebiotic fructooligosaccharides (FOS) play major roles by regulating gut microbiota. The present study aimed to explore the effect and mechanism of FOS protection against AD via regulating gut microbiota. Male Apse/PSEN 1dE9 (APP/PS1) transgenic (Tg) mice were administrated with FOS for 6 weeks. Cognitive deficits and amyloid deposition were evaluated. The levels of synaptic plasticity markers including postsynaptic density protein 95 (PSD-95) and synapsin I, as well as phosphorylation of c-Jun N-terminal kinase (JNK), were determined. The intestinal microbial constituent was detected by 16S rRNA sequencing. Moreover, the levels of glucagon-like peptide-1 (GLP-1) in the gut and GLP-1 receptor (GLP-1R) in the brain were measured. The results indicated that FOS treatment ameliorated cognitive deficits and pathological changes in the Tg mice. FOS significantly upregulated the expression levels of synapsin I and PSD-95, as well as decreased phosphorylated level of JNK. The sequencing results showed that FOS reversed the altered microbial composition. Furthermore, FOS increased the level of GLP-1 and decreased the level of GLP-1R in the Tg mice. These findings indicated that FOS exerted beneficial effects against AD via regulating the gut microbiota-GLP-1/GLP-1R pathway.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Suzhi Liu
- Department of Neurology, The Affiliated Taizhou Hospital , Wenzhou Medical University , 150# Ximen Road , Linhai District, Taizhou 317000 , Zhejiang China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , Zhejiang 310003 , China
| | - Fangyan Wang
- Departments of Pathophysiology, School of Basic Medicine Science , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Yi Ling
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Tianyu Gong
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Na Fang
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Shiqing Ye
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jue Si
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jiaming Liu
- Department of Neurology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
40
|
Singh A, Zapata RC, Pezeshki A, Workentine ML, Chelikani PK. Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats. FASEB J 2019; 33:6748-6766. [PMID: 30821497 DOI: 10.1096/fj.201801627rrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome encompasses obesity, glucose intolerance, hypertension, and dyslipidemia; however, the interactions between diet and host physiology that predispose to metabolic syndrome are incompletely understood. Here, we explored the effects of a high-fat diet (HFD) on energy balance, gut microbiota, and risk factors of metabolic syndrome in spontaneously hypertensive stroke-prone (SHRSP) and Wistar-Kyoto (WKY) rats. We found that the SHRSP rats were hypertensive, hyperphagic, less sensitive to hypophagic effects of exendin-4, and expended more energy with diminished sensitivity to sympathetic blockade compared to WKY rats. Notably, key thermogenic markers in brown and retroperitoneal adipose tissues and skeletal muscle were up-regulated in SHRSP than WKY rats. Although HFD promoted weight gain, adiposity, glucose intolerance, hypertriglyceridemia, hepatic lipidosis, and hyperleptinemia in both SHRSP and WKY rats, the SHRSP rats weighed less but had comparable percent adiposity to WKY rats, which supports the use of HFD-fed SHRSP rats as a unique model for studying the metabolically obese normal weight (MONW) phenotype in humans. Despite distinct strain differences in gut microbiota composition, diet had a preponderant impact on gut flora with some of the taxa being strongly associated with key metabolic parameters. Together, we provide evidence that interactions between host genetics and diet modulate gut microbiota and predispose SHRSP rats to develop metabolic syndrome.-Singh, A., Zapata, R. C., Pezeshki, A., Workentine, M. L., Chelikani, P. K. Host genetics and diet composition interact to modulate gut microbiota and predisposition to metabolic syndrome in spontaneously hypertensive stroke-prone rats.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rizaldy C Zapata
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adel Pezeshki
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew L Workentine
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Prasanth K Chelikani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,Gastrointestinal Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
41
|
Bułdak Ł, Machnik G, Skudrzyk E, Bołdys A, Okopień B. The impact of exenatide (a GLP-1 agonist) on markers of inflammation and oxidative stress in normal human astrocytes subjected to various glycemic conditions. Exp Ther Med 2019; 17:2861-2869. [PMID: 30906473 DOI: 10.3892/etm.2019.7245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
GLP-1 agonists such as exenatide and liraglutide are novel drugs for the treatment of diabetes and obesity. While improvements in glycemic control can rely on an incretin effect, the mechanisms behind the loss of weight following therapy have yet to be completely elucidated, and seem to be associated with alterations in eating habits, resulting from changes in cytokines e.g. interleukin 1β (IL-1β) and oxidative signaling in the central nervous system (CNS). Increased levels of IL-1β and reactive oxygen species have been demonstrated to exert anorexigenic properties, and astrocytes appear to actively participate in maintaining the integrity of the CNS, which includes the paracrine secretion of inflammatory cytokines and involvement in the redox status. Therefore, the present study decided to explore the influence of exenatide [a glucagon-like peptide 1 (GLP-1 agonist)] on inflammatory and oxidative stress markers in cultured human astrocytes as a potential target for weight reduction therapies. In an experimental setting, normal human astrocytes were subjected to various glycemic conditions, including 40 mg/dl-hypoglycemic, 100 mg/dl-normoglycemic and 400 mg/dl-hyperglycemic, and exenatide, which is a GLP-1 agonist. The involvement of intracellular signaling by a protein kinase A (PKA) in the action of exenatide was estimated using a specific PKA inhibitor-PKI (14-22). The expression levels of IL-1β, nuclear factor kappa κB (NFκB), glial-fibrillary acidic protein (GFAP), p22 NADPH oxidase, glutathione peroxidase, catalase, superoxide dismutase 1, and reactive oxidative species were measured. The present study demonstrated that varying glucose concentrations in the culture media did not affect the protein expression or the level of reactive oxygen species. Conversely, exenatide led to an increase in IL-1β in normoglycemic culture conditions, which was accompanied by the increased expression of p22, glutathione peroxidase and the reduced expression of GFAP. Changes in the expression of IL-1β and p22 were dependent on the activation of PKA. The present study concluded that exenatide predominantly affected astrocytes in normoglycemic conditions, and hypothesize that this impact demonstrated one of novel mechanisms associated with astrocyte signaling that may contribute to weight loss.
Collapse
Affiliation(s)
- Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Estera Skudrzyk
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
42
|
Incontri Abraham D, Gonzales M, Ibarra A, Borlongan CV. Stand alone or join forces? Stem cell therapy for stroke. Expert Opin Biol Ther 2018; 19:25-33. [PMID: 30477353 DOI: 10.1080/14712598.2019.1551872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Stroke is a major cause of mortality and disability with a narrow therapeutic window. Stem cell therapy may enhance the stroke recovery. AREAS COVERE Regenerative medicine via stem cells stands as a novel therapy for stroke. In particular, bone marrow-derived mesenchymal stem cells (MSCs) have neuroprotective and anti-inflammatory properties that improve brain function after stroke. Here, we discuss the safety, efficacy, and mechanism of action underlying the therapeutic effects of bone marrow-derived MSCs. We also examine the discrepant transplant protocols between preclinical studies and clinical trials. Laboratory studies show the safety and efficacy of bone marrow-derived MSCs in stroke models. However, while safe, MSCs remain to be fully evaluated as effective in clinical trials. Furthermore, recognizing the multiple cell death processes associated with stroke, we next discuss the potential therapeutic benefits of a combination therapy. With preliminary results and on-going clinical trials, a careful assessment of dosing, timing, and delivery route regimens will further direct the future of stem cell therapy for neurological disorders, including stroke. EXPERT OPINION Bone marrow-derived MSCs appear to be the optimal stem cell source for stroke therapy. Optimizing dosing, timing, and delivery route should guide the clinical application of bone marrow-derived MSCs.
Collapse
Affiliation(s)
- Diego Incontri Abraham
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA.,b Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud , Universidad Anáhuac México Campus Norte , Huixquilucan, Edo. de Mexico , México
| | - Melissa Gonzales
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| | - Antonio Ibarra
- b Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud , Universidad Anáhuac México Campus Norte , Huixquilucan, Edo. de Mexico , México.,c Faculty of Health Sciences , Proyecto CAMINA A.C , Ciudad de México , México
| | - Cesar V Borlongan
- a Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair , University of South Florida Morsani College of Medicine , Tampa , FL , USA
| |
Collapse
|
43
|
Horváth E, Huțanu A, Chiriac L, Dobreanu M, Orădan A, Nagy EE. Ischemic damage and early inflammatory infiltration are different in the core and penumbra lesions of rat brain after transient focal cerebral ischemia. J Neuroimmunol 2018; 324:35-42. [DOI: 10.1016/j.jneuroim.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 01/16/2023]
|
44
|
Bifari F, Manfrini R, Dei Cas M, Berra C, Siano M, Zuin M, Paroni R, Folli F. Multiple target tissue effects of GLP-1 analogues on non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Pharmacol Res 2018; 137:219-229. [PMID: 30359962 DOI: 10.1016/j.phrs.2018.09.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Accumulating experimental and clinical evidences over the last decade indicate that GLP-1 analogues have a series of central nervous system and peripheral target tissues actions which are able to significantly influence the liver metabolism. GLP-1 analogues pleiotropic effects proved to be efficacious in T2DM subjects not only reducing liver steatosis and ameliorating NAFLD and NASH, but also in lowering plasma glucose and liver inflammation, improving cardiac function and protecting from kidney dysfunction. While the experimental and clinical data are robust, the precise mechanisms of action potentially involved in these protective multi-target effects need further investigation. Here we present a systematic review of the most recent literature data on the multi-target effects of GLP-1 analogues on the liver, on adipose and muscular tissue and on the nervous system, all capable of influencing significant aspects of the fatty liver disease physiopathology. From this analysis, we can conclude that the multi-target beneficial action of the GLP-1 analogues could explain the positive effects observed in animal and human models on progression of NAFLD to NASH.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Roberto Manfrini
- Department of Internal Medicine ASST Santi Paolo e Carlo, Milan, Italy
| | - Michele Dei Cas
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Science, University of Milan, Milan, Italy
| | - Cesare Berra
- Metabolic Disease and Diabetes, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Matteo Siano
- Department of Internal Medicine ASST Santi Paolo e Carlo, Milan, Italy
| | - Massimo Zuin
- Unit of Medicine, Gastroenterology and Hepatology, Milan, Italy
| | - Rita Paroni
- Laboratory of Clinical Biochemistry and Mass Spectrometry, Department of Health Science, University of Milan, Milan, Italy
| | - Franco Folli
- Unit of Endocrinology and Metabolism ASST Santi Paolo e Carlo, Department of Health Science, University of Milan, Milan, Italy.
| |
Collapse
|
45
|
Rocha-Ferreira E, Poupon L, Zelco A, Leverin AL, Nair S, Jonsdotter A, Carlsson Y, Thornton C, Hagberg H, Rahim AA. Neuroprotective exendin-4 enhances hypothermia therapy in a model of hypoxic-ischaemic encephalopathy. Brain 2018; 141:2925-2942. [PMID: 30165597 PMCID: PMC6158761 DOI: 10.1093/brain/awy220] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022] Open
Abstract
Hypoxic-ischaemic encephalopathy remains a global health burden. Despite medical advances and treatment with therapeutic hypothermia, over 50% of cooled infants are not protected and still develop lifelong neurodisabilities, including cerebral palsy. Furthermore, hypothermia is not used in preterm cases or low resource settings. Alternatives or adjunct therapies are urgently needed. Exendin-4 is a drug used to treat type 2 diabetes mellitus that has also demonstrated neuroprotective properties, and is currently being tested in clinical trials for Alzheimer's and Parkinson's diseases. Therefore, we hypothesized a neuroprotective effect for exendin-4 in neonatal neurodisorders, particularly in the treatment of neonatal hypoxic-ischaemic encephalopathy. Initially, we confirmed that the glucagon like peptide 1 receptor (GLP1R) was expressed in the human neonatal brain and in murine neurons at postnatal Day 7 (human equivalent late preterm) and postnatal Day 10 (term). Using a well characterized mouse model of neonatal hypoxic-ischaemic brain injury, we investigated the potential neuroprotective effect of exendin-4 in both postnatal Day 7 and 10 mice. An optimal exendin-4 treatment dosing regimen was identified, where four high doses (0.5 µg/g) starting at 0 h, then at 12 h, 24 h and 36 h after postnatal Day 7 hypoxic-ischaemic insult resulted in significant brain neuroprotection. Furthermore, neuroprotection was sustained even when treatment using exendin-4 was delayed by 2 h post hypoxic-ischaemic brain injury. This protective effect was observed in various histopathological markers: tissue infarction, cell death, astrogliosis, microglial and endothelial activation. Blood glucose levels were not altered by high dose exendin-4 administration when compared to controls. Exendin-4 administration did not result in adverse organ histopathology (haematoxylin and eosin) or inflammation (CD68). Despite initial reduced weight gain, animals restored weight gain following end of treatment. Overall high dose exendin-4 administration was well tolerated. To mimic the clinical scenario, postnatal Day 10 mice underwent exendin-4 and therapeutic hypothermia treatment, either alone or in combination, and brain tissue loss was assessed after 1 week. Exendin-4 treatment resulted in significant neuroprotection alone, and enhanced the cerebroprotective effect of therapeutic hypothermia. In summary, the safety and tolerance of high dose exendin-4 administrations, combined with its neuroprotective effect alone or in conjunction with clinically relevant hypothermia make the repurposing of exendin-4 for the treatment of neonatal hypoxic-ischaemic encephalopathy particularly promising.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
- EGA Institute for Women’s Health, University College London, UK
| | - Laura Poupon
- UCL School of Pharmacy, University College London, UK
| | - Aura Zelco
- UCL School of Pharmacy, University College London, UK
| | - Anna-Lena Leverin
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Andrea Jonsdotter
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ylva Carlsson
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claire Thornton
- Department of Women and Children’s Health, Centre for the Developing Brain, School of Life Course Sciences, King’s College London, UK
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King s College London, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, UK
| |
Collapse
|
46
|
Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN. c-Jun N-Terminal Kinases (JNKs) in Myocardial and Cerebral Ischemia/Reperfusion Injury. Front Pharmacol 2018; 9:715. [PMID: 30026697 PMCID: PMC6041399 DOI: 10.3389/fphar.2018.00715] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
In this article, we review the literature regarding the role of c-Jun N-terminal kinases (JNKs) in cerebral and myocardial ischemia/reperfusion injury. Numerous studies demonstrate that JNK-mediated signaling pathways play an essential role in cerebral and myocardial ischemia/reperfusion injury. JNK-associated mechanisms are involved in preconditioning and post-conditioning of the heart and the brain. The literature and our own studies suggest that JNK inhibitors may exert cardioprotective and neuroprotective properties. The effects of modulating the JNK-depending pathways in the brain and the heart are reviewed. Cardioprotective and neuroprotective mechanisms of JNK inhibitors are discussed in detail including synthetic small molecule inhibitors (AS601245, SP600125, IQ-1S, and SR-3306), ion channel inhibitor GsMTx4, JNK-interacting proteins, inhibitors of mixed-lineage kinase (MLK) and MLK-interacting proteins, inhibitors of glutamate receptors, nitric oxide (NO) donors, and anesthetics. The role of JNKs in ischemia/reperfusion injury of the heart in diabetes mellitus is discussed in the context of comorbidities. According to reviewed literature, JNKs represent promising therapeutic targets for protection of the brain and the heart against ischemic stroke and myocardial infarction, respectively. However, different members of the JNK family exert diverse physiological properties which may not allow for systemic administration of non-specific JNK inhibitors for therapeutic purposes. Currently available candidate JNK inhibitors with high therapeutic potential are identified. The further search for selective JNK3 inhibitors remains an important task.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yana Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
- RASA Center, Kazan Federal University, Kazan, Russia
| | - Igor A. Schepetkin
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|