1
|
Valeeva EV, Nikitin DO, Nikiforova LS, Semina II, Ahmetov II. Effects of Pharmacological Treatment on Telomere Length and the Expression of Telomerase/Shelterin-Related Genes in Rat Models of Autism. J Mol Neurosci 2025; 75:55. [PMID: 40272729 PMCID: PMC12021733 DOI: 10.1007/s12031-025-02353-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/16/2025] [Indexed: 04/27/2025]
Abstract
Telomeres are increasingly recognized for their potential role in the etiology of autism spectrum disorder (ASD) due to their involvement in cellular aging and telomerase-shelterin function. Although shorter telomeres have been observed in individuals with ASD, studies linking telomere dynamics in blood cells and brain regions remain limited. Using the valproic acid (VPA, 500 mg/kg) rodent model, this study aimed to assess the impact of three drugs commonly used in ASD treatment (amitriptyline, risperidone, and nooclerin) on telomere length and the expression of telomerase/shelterin-related genes (Dkc1, Gar1, Pot1a, Pot1b, Tep1, Terc, Terf2ip, Tert, Tinf2, Tnks, Tpp1, Trf1, and Trf2) in blood cells, the prefrontal cortex, and hippocampus of VPA-exposed Wistar rats. Telomere length and gene expression were measured using quantitative PCR. Risperidone treatment in VPA males resulted in telomere elongation and increased expression of Tnks in blood cell and Trf1, Trf2 genes in prefrontal cortex. Nooclerin treatment also showed beneficial effects on telomere length of blood cell in males, alongside increased Trf1 expression. Long telomeres in male blood cells were associated with reduced anxiety, while a positive correlation was found between Tpp1 expression and stereotypical behavior in both male and female VPA rats. These findings suggest that nooclerin and risperidone influence telomere length and gene expression related to the telomere-telomerase complex in a sex-dependent manner, offering insights into the neurobiological mechanisms underlying ASD.
Collapse
Affiliation(s)
- Elena V Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan, 420012, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, 420012, Russia
| | - Dmitry O Nikitin
- Pharmacology Department, Kazan State Medical University, Kazan, 420012, Russia
| | - Lubov S Nikiforova
- Central Research Laboratory, Kazan State Medical University, Kazan, 420012, Russia
| | - Irina I Semina
- Central Research Laboratory, Kazan State Medical University, Kazan, 420012, Russia
- Pharmacology Department, Kazan State Medical University, Kazan, 420012, Russia
| | - Ildus I Ahmetov
- Central Research Laboratory, Kazan State Medical University, Kazan, 420012, Russia.
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, 420012, Russia.
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
2
|
Sánchez-Badajos S, Ortega-Vázquez A, López-López M, Monroy-Jaramillo N. Valproic Acid and Lamotrigine Differentially Modulate the Telomere Length in Epilepsy Patients. J Clin Med 2025; 14:255. [PMID: 39797337 PMCID: PMC11720991 DOI: 10.3390/jcm14010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Antiseizure drugs (ASDs) are the primary therapy for epilepsy, and the choice varies according to seizure type. Epilepsy patients experience chronic mitochondrial oxidative stress and increased levels of pro-inflammatory mediators, recognizable hallmarks of biological aging; however, few studies have explored aging markers in epilepsy. Herein, we addressed for the first time the impact of ASDs on molecular aging by measuring the telomere length (TL) and mtDNA copy number (mtDNA-CN). Methods: We used real-time quantitative PCR (QPCR) in epilepsy patients compared to matched healthy controls (CTs) and assessed the association with plasma levels of ASDs and other clinical variables. The sample comprised 64 epilepsy patients and 64 CTs. Patients were grouped based on monotherapy with lamotrigine (LTG) or valproic acid (VPA), and those treated with a combination therapy (LTG + VPA). Multivariable logistic regression was applied to analyze the obtained data. Results: mtDNA-CN was similar between patients and controls, and none of the comparisons were significant for this marker. TL was shorter in not seizure-free patients than in CTs (1.50 ± 0.35 vs. 1.68 ± 0.34; p < 0.05), regardless of the ASD therapy. These patients exhibited the highest proportion of adverse drug reactions. TL was longer in patients on VPA monotherapy, followed by patients on LTG monotherapy and patients on an LTG + VPA combined scheme (1.77 ± 0.24; 1.50 ± 0.32; 1.36 ± 0.37, respectively; p < 0.05), suggesting that ASD treatment differentially modulates TL. Conclusions: Our findings suggest that clinicians could consider TL measurements to decide the best ASD treatment option (VPA and/or LTG) to help predict ASD responses in epilepsy patients.
Collapse
Affiliation(s)
- Salvador Sánchez-Badajos
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Alberto Ortega-Vázquez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Marisol López-López
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City 04960, Mexico; (A.O.-V.); (M.L.-L.)
| | - Nancy Monroy-Jaramillo
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| |
Collapse
|
3
|
Harley J, Santosa MM, Ng CY, Grinchuk OV, Hor JH, Liang Y, Lim VJ, Tee WW, Ong DST, Ng SY. Telomere shortening induces aging-associated phenotypes in hiPSC-derived neurons and astrocytes. Biogerontology 2024; 25:341-360. [PMID: 37987889 PMCID: PMC10998800 DOI: 10.1007/s10522-023-10076-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Telomere shortening is a well-established hallmark of cellular aging. Telomerase reverse transcriptase (TERT) plays a crucial role in maintaining the length of telomeres, which are specialised protective caps at the end of chromosomes. The lack of in vitro aging models, particularly for the central nervous system (CNS), has impeded progress in understanding aging and age-associated neurodegenerative diseases. In this study, we aimed to explore the possibility of inducing aging-associated features in cell types of the CNS using hiPSC (human induced pluripotent stem cell) technology. To achieve this, we utilised CRISPR/Cas9 to generate hiPSCs with a loss of telomerase function and shortened telomeres. Through directed differentiation, we generated motor neurons and astrocytes to investigate whether telomere shortening could lead to age-associated phenotypes. Our findings revealed that shortened telomeres induced age-associated characteristics in both motor neurons and astrocytes including increased cellular senescence, heightened inflammation, and elevated DNA damage. We also observed cell-type specific age-related morphology changes. Additionally, our study highlighted the fundamental role of TERT and telomere shortening in neural progenitor cell (NPC) proliferation and neuronal differentiation. This study serves as a proof of concept that telomere shortening can effectively induce aging-associated phenotypes, thereby providing a valuable tool to investigate age-related decline and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jasmine Harley
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Munirah Mohamad Santosa
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Chong Yi Ng
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Oleg V Grinchuk
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Jin-Hui Hor
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Yajing Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Valerie Jingwen Lim
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Wee Wei Tee
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Shi-Yan Ng
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
4
|
Zarate-Lopez D, Torres-Chávez AL, Gálvez-Contreras AY, Gonzalez-Perez O. Three Decades of Valproate: A Current Model for Studying Autism Spectrum Disorder. Curr Neuropharmacol 2024; 22:260-289. [PMID: 37873949 PMCID: PMC10788883 DOI: 10.2174/1570159x22666231003121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased prevalence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a strong genetic component and environmental factors that, in turn, induce epigenetic changes during embryonic and postnatal brain development. In recent decades, clinical studies have shown that inutero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has been established as a reliable translational model to study the pathophysiology of ASD, which has helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This review summarizes and describes the current features reported with this animal model of autism and the main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, we discuss the general framework of the VPA model in comparison to other environmental and genetic ASD models.
Collapse
Affiliation(s)
- David Zarate-Lopez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Ana Laura Torres-Chávez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
- Physiological Science Ph.D. Program, School of Medicine, University of Colima, Colima 28040, Mexico
| | - Alma Yadira Gálvez-Contreras
- Department of Neuroscience, Centro Universitario de Ciencias de la Salud, University of Guadalajara, Guadalajara 44340, México
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima 28040, México
| |
Collapse
|
5
|
Niño SA, Chi-Ahumada E, Carrizales L, Estrada-Sánchez AM, Gonzalez-Billault C, Zarazúa S, Concha L, Jiménez-Capdeville ME. Life-long arsenic exposure damages the microstructure of the rat hippocampus. Brain Res 2022; 1775:147742. [PMID: 34848172 DOI: 10.1016/j.brainres.2021.147742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
Epidemiological studies demonstrate that arsenic exposure is associated with cognitive dysfunction. Experimental arsenic exposure models showed learning and memory deficits and molecular changes resembling the functional and pathologic neurodegeneration features. The present work focuses on hippocampal pathological changes in Wistar rats induced by continuous arsenic exposure from in utero up to 12 months of age, evaluated by magnetic resonance imaging along with immunohistochemistry. Diffusion-weighted images revealed age-related lower fractional anisotropy and higher radial-axial and mean diffusivity at 6 and 12 months, indicating that arsenic exposure leads to hippocampal demyelination. These structural alterations were paralleled by immunohistochemical changes that showed a significant loss of myelin basic protein in CA1 and CA3 regions accompanied by increased glial fibrillary acidic protein expression at all time-points studied. Concomitantly, arsenic exposure induced an altered morphology of astrocytes at all studied ages, whereas increased synaptogenesis was only observed at two months of age. These results suggest that environmental arsenic exposure is linked to impaired hippocampal connectivity and perhaps early glial senescence, which together might resemble a premature aging phenomenon leading to cognitive deficits.
Collapse
Affiliation(s)
- Sandra A Niño
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, Mexico; Geroscience Center for Brain Health and Metabolism (GERO), Santiago de Chile, Chile
| | - Erika Chi-Ahumada
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, Mexico
| | - Leticia Carrizales
- Coordination for Innovation and Application of Science and Technology (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, Mexico
| | - Ana María Estrada-Sánchez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, San Luis Potosi, Mexico
| | - Christian Gonzalez-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago de Chile, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago de Chile, Chile
| | - Sergio Zarazúa
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, Mexico
| | - Luis Concha
- Instituto de Neurobiología, UNAM Campus Juriquilla, Querétaro, Querétaro, Mexico
| | - María E Jiménez-Capdeville
- Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
6
|
Traetta ME, Uccelli NA, Zárate SC, Gómez Cuautle D, Ramos AJ, Reinés A. Long-Lasting Changes in Glial Cells Isolated From Rats Subjected to the Valproic Acid Model of Autism Spectrum Disorder. Front Pharmacol 2021; 12:707859. [PMID: 34421599 PMCID: PMC8374432 DOI: 10.3389/fphar.2021.707859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Synaptic alterations concomitant with neuroinflammation have been described in patients and experimental models of autism spectrum disorder (ASD). However, the role of microglia and astroglia in relation to synaptic changes is poorly understood. Male Wistar rats prenatally exposed to valproic acid (VPA, 450 mg/kg, i.p.) or saline (control) at embryonic day 10.5 were used to study synapses, microglia, and astroglia in the prefrontal cortex (PFC) at postnatal days 3 and 35 (PND3 and PND35). Primary cultures of cortical neurons, microglia, and astroglia isolated from control and VPA animals were used to study each cell type individually, neuron-microglia and microglia-astroglia crosstalk. In the PFC of VPA rats, synaptic changes characterized by an increase in the number of excitatory synapses were evidenced at PND3 and persisted until PND35. At PND3, microglia and astroglia from VPA animals were morphologically similar to those of age-matched controls, whereas at PND35, reactive microgliosis and astrogliosis were observed in the PFC of VPA animals. Cortical neurons isolated from VPA rats mimicked in vitro the synaptic pattern seen in vivo. Cortical microglia and astroglia isolated from VPA animals exhibited reactive morphology, increased pro-inflammatory cytokines, and a compromised miRNA processing machinery. Microglia from VPA animals also showed resistance to a phagocytic challenge. In the presence of neurons from VPA animals, microglia isolated from VPA rats revealed a non-reactive morphology and promoted neurite outgrowth, while microglia from control animals displayed a reactive profile and promoted dendritic retraction. In microglia-astroglia co-cultures, microglia from VPA animals displayed a reactive profile and exacerbated astrocyte reactivity. Our study indicates that cortical microglia from VPA animals are insensitive or adapted to neuronal cues expressed by neurons from VPA animals. Further, long-term in vivo microgliosis could be the result of altered microglia-astroglia crosstalk in VPA animals. Thus, our study highlights cortical microglia-astroglia communication as a new mechanism implicated in neuroinflammation in ASD; consequently, we propose that this crosstalk is a potential target for interventions in this disorder.
Collapse
Affiliation(s)
- Marianela Evelyn Traetta
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nonthué Alejandra Uccelli
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Cristina Zárate
- Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante Gómez Cuautle
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Reinés
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Emerging mechanisms of valproic acid-induced neurotoxic events in autism and its implications for pharmacological treatment. Biomed Pharmacother 2021; 137:111322. [PMID: 33761592 DOI: 10.1016/j.biopha.2021.111322] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a sort of mental disorder marked by deficits in cognitive and communication abilities. To date no effective cure for this pernicious disease has been available. Valproic acid (VPA) is a broad-spectrum, antiepileptic drug, and it is also a potent teratogen. Epidemiological studies have shown that children exposed to VPA are at higher risk for ASD during the first trimester of their gestational development. Several animal and human studies have demonstrated important behavioral impairments and morphological changes in the brain following VPA treatment. However, the mechanism of VPA exposure-induced ASD remains unclear. Several factors are involved in the pathological phase of ASD, including aberrant excitation/inhibition of synaptic transmission, neuroinflammation, diminished neurogenesis, oxidative stress, etc. In this review, we aim to outline the current knowledge of the critical pathophysiological mechanisms underlying VPA exposure-induced ASD. This review will give insight toward understanding the complex nature of VPA-induced neuronal toxicity and exploring a new path toward the development of novel pharmacological treatment against ASD.
Collapse
|
8
|
Lenart J, Augustyniak J, Lazarewicz JW, Zieminska E. Altered expression of glutamatergic and GABAergic genes in the valproic acid-induced rat model of autism: A screening test. Toxicology 2020; 440:152500. [DOI: 10.1016/j.tox.2020.152500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
|
9
|
Pistollato F, de Gyves EM, Carpi D, Bopp SK, Nunes C, Worth A, Bal-Price A. Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Environ Health 2020; 19:23. [PMID: 32093744 PMCID: PMC7038628 DOI: 10.1186/s12940-020-00578-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND In light of the vulnerability of the developing brain, mixture risk assessment (MRA) for the evaluation of developmental neurotoxicity (DNT) should be implemented, since infants and children are co-exposed to more than one chemical at a time. One possible approach to tackle MRA could be to cluster DNT chemicals in a mixture on the basis of their mode of action (MoA) into 'similar' and 'dissimilar', but still contributing to the same adverse outcome, and anchor DNT assays to common key events (CKEs) identified in DNT-specific adverse outcome pathways (AOPs). Moreover, the use of human in vitro models, such as induced pluripotent stem cell (hiPSC)-derived neuronal and glial cultures would enable mechanistic understanding of chemically-induced adverse effects, avoiding species extrapolation. METHODS HiPSC-derived neural progenitors differentiated into mixed cultures of neurons and astrocytes were used to assess the effects of acute (3 days) and repeated dose (14 days) treatments with single chemicals and in mixtures belonging to different classes (i.e., lead(II) chloride and methylmercury chloride (heavy metals), chlorpyrifos (pesticide), bisphenol A (organic compound and endocrine disrupter), valproic acid (drug), and PCB138 (persistent organic pollutant and endocrine disrupter), which are associated with cognitive deficits, including learning and memory impairment in children. Selected chemicals were grouped based on their mode of action (MoA) into 'similar' and 'dissimilar' MoA compounds and their effects on synaptogenesis, neurite outgrowth, and brain derived neurotrophic factor (BDNF) protein levels, identified as CKEs in currently available AOPs relevant to DNT, were evaluated by immunocytochemistry and high content imaging analysis. RESULTS Chemicals working through similar MoA (i.e., alterations of BDNF levels), at non-cytotoxic (IC20/100), very low toxic (IC5), or moderately toxic (IC20) concentrations, induce DNT effects in mixtures, as shown by increased number of neurons, impairment of neurite outgrowth and synaptogenesis (the most sensitive endpoint as confirmed by mathematical modelling) and increase of BDNF levels, to a certain extent reproducing autism-like cellular changes observed in the brain of autistic children. CONCLUSIONS Our findings suggest that the use of human iPSC-derived mixed neuronal/glial cultures applied to a battery of assays anchored to key events of an AOP network represents a valuable approach to identify mixtures of chemicals with potential to cause learning and memory impairment in children.
Collapse
Affiliation(s)
| | | | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Carolina Nunes
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
10
|
Castagna C, Merighi A, Lossi L. Decreased Expression of Synaptophysin 1 (SYP1 Major Synaptic Vesicle Protein p38) and Contactin 6 (CNTN6/NB3) in the Cerebellar Vermis of reln Haplodeficient Mice. Cell Mol Neurobiol 2019; 39:833-856. [PMID: 31098770 PMCID: PMC11462894 DOI: 10.1007/s10571-019-00683-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/02/2019] [Indexed: 01/17/2023]
Abstract
Reeler heterozygous mice (reln+/-) are seemingly normal but haplodeficient in reln, a gene implicated in autism. Structural/neurochemical alterations in the reln+/- brain are subtle and difficult to demonstrate. Therefore, the usefulness of these mice in translational research is still debated. As evidence implicated several synapse-related genes in autism and the cerebellar vermis is structurally altered in the condition, we have investigated the expression of synaptophysin 1 (SYP1) and contactin 6 (CNTN6) within the vermis of reln+/- mice. Semi-thin plastic sections of the vermis from adult mice of both sexes and different genotypes (reln+/- and reln+/+) were processed with an indirect immunofluorescence protocol. Immunofluorescence was quantified on binary images and statistically analyzed. Reln+/- males displayed a statistically significant reduction of 11.89% in the expression of SYP1 compared to sex-matched wild-type animals, whereas no differences were observed between reln+/+ and reln+/- females. In reln+/- male mice, reductions were particularly evident in the molecular layer: 10.23% less SYP1 than reln+/+ males and 5.84% < reln+/+ females. In reln+/- females, decrease was 9.84% versus reln+/+ males and 5.43% versus reln+/+ females. Both reln+/- males and females showed a stronger decrease in CNTN6 expression throughout all the three cortical layers of the vermis: 17-23% in the granular layer, 24-26% in the Purkinje cell layer, and 9-14% in the molecular layer. Altogether, decrease of vermian SYP1 and CNTN6 in reln+/- mice displayed patterns compatible with the structural modifications of the autistic cerebellum. Therefore, these mice may be a good model in translational studies.
Collapse
Affiliation(s)
- Claudia Castagna
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Turin, Grugliasco (TO), Italy.
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Turin, Grugliasco (TO), Italy
| | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Turin, Grugliasco (TO), Italy
| |
Collapse
|