1
|
Flannagan K, Stopperan JA, Hauger BM, Troutwine BR, Lysaker CR, Strope TA, Csikos Drummond V, Gilmore CA, Swerdlow NA, Draper JM, Gouvion CM, Vivian JL, Haeri M, Swerdlow RH, Wilkins HM. Cell type and sex specific mitochondrial phenotypes in iPSC derived models of Alzheimer's disease. Front Mol Neurosci 2023; 16:1201015. [PMID: 37614699 PMCID: PMC10442646 DOI: 10.3389/fnmol.2023.1201015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Mitochondrial dysfunction is observed in Alzheimer's disease (AD). Altered mitochondrial respiration, cytochrome oxidase (COX) Vmax, and mitophagy are observed in human subjects and animal models of AD. Models derived from induced pluripotent stem cells (iPSCs) may not recapitulate these phenotypes after reprogramming from differentiated adult cells. Methods We examined mitochondrial function across iPSC derived models including cerebral organoids, forebrain neurons, and astrocytes. iPSCs were reprogrammed from fibroblasts either from the University of Kansas Alzheimer's Disease Research Center (KU ADRC) cohort or purchased from WiCell. A total of four non-demented and four sporadic AD iPSC lines were examined. Models were subjected to mitochondrial respiration analysis using Seahorse XF technology, spectrophotometric cytochrome oxidase (COX) Vmax assays, fluorescent assays to determine mitochondrial mass, mitochondrial membrane potential, calcium, mitochondrial dynamics, and mitophagy levels. AD pathological hallmarks were also measured. Results iPSC derived neurons and cerebral organoids showed reduced COX Vmax in AD subjects with more profound defects in the female cohort. These results were not observed in astrocytes. iPSC derived neurons and astrocytes from AD subjects had reduced mitochondrial respiration parameters with increased glycolytic flux. iPSC derived neurons and astrocytes from AD subjects showed sex dependent effects on mitochondrial membrane potential, mitochondrial superoxide production, and mitochondrial calcium. iPSC derived neurons from AD subjects had reduced mitochondrial localization in lysosomes with sex dependent effects on mitochondrial mass, while iPSC derived astrocytes from female AD subjects had increased mitochondrial localization to lysosomes. Both iPSC derived neurons and astrocytes from AD subjects showed altered mitochondrial dynamics. iPSC derived neurons had increased secreted Aβ, and sex dependent effects on total APP protein expression. iPSC derived astrocytes showed sex dependent changes in GFAP expression in AD derived cells. Conclusion Overall, iPSC derived models from AD subjects show mitochondrial phenotypes and AD pathological hallmarks in a cell type and sex dependent manner. These results highlight the importance of sex as a biological variable in cell culture studies.
Collapse
Affiliation(s)
- Kaitlin Flannagan
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julia A. Stopperan
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M. Hauger
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Benjamin R. Troutwine
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Colton R. Lysaker
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Taylor A. Strope
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Vivien Csikos Drummond
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Caleb A. Gilmore
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Natalie A. Swerdlow
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julia M. Draper
- Transgenic and Gene Targeting Facility, University of Kansas Medical Center, Kansas City, KS, United States
| | - Cynthia M. Gouvion
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jay L. Vivian
- Transgenic and Gene Targeting Facility, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Kansas Missouri-Kansas City School of Medicine, Kansas City, KS, United States
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mohammad Haeri
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Russell H. Swerdlow
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Heather M. Wilkins
- University of Kansas Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
2
|
Analyzing Olfactory Neuron Precursors Non-Invasively Isolated through NADH FLIM as a Potential Tool to Study Oxidative Stress in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22126311. [PMID: 34204595 PMCID: PMC8231156 DOI: 10.3390/ijms22126311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Among all the proposed pathogenic mechanisms to understand the etiology of Alzheimer’s disease (AD), increased oxidative stress seems to be a robust and early disease feature where many of those hypotheses converge. However, despite the significant lines of evidence accumulated, an effective diagnosis and treatment of AD are not yet available. This limitation might be partially explained by the use of cellular and animal models that recapitulate partial aspects of the disease and do not account for the particular biology of patients. As such, cultures of patient-derived cells of peripheral origin may provide a convenient solution for this problem. Peripheral cells of neuronal lineage such as olfactory neuronal precursors (ONPs) can be easily cultured through non-invasive isolation, reproducing AD-related oxidative stress. Interestingly, the autofluorescence of key metabolic cofactors such as reduced nicotinamide adenine dinucleotide (NADH) can be highly correlated with the oxidative state and antioxidant capacity of cells in a non-destructive and label-free manner. In particular, imaging NADH through fluorescence lifetime imaging microscopy (FLIM) has greatly improved the sensitivity in detecting oxidative shifts with minimal intervention to cell physiology. Here, we discuss the translational potential of analyzing patient-derived ONPs non-invasively isolated through NADH FLIM to reveal AD-related oxidative stress. We believe this approach may potentially accelerate the discovery of effective antioxidant therapies and contribute to early diagnosis and personalized monitoring of this devastating disease.
Collapse
|
3
|
Amponsah AE, Guo R, Kong D, Feng B, He J, Zhang W, Liu X, Du X, Ma Z, Liu B, Ma J, Cui H. Patient-derived iPSCs, a reliable in vitro model for the investigation of Alzheimer's disease. Rev Neurosci 2021; 32:379-402. [PMID: 33550785 DOI: 10.1515/revneuro-2020-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and a common cause of dementia among elderly individuals. The disease is characterized by progressive cognitive decline, accumulation of senile amyloid plaques and neurofibrillary tangles, oxidative stress, and inflammation. Human-derived cell models of AD are scarce, and over the years, non-human-derived models have been developed to recapitulate clinical AD, investigate the disease's pathogenesis and develop therapies for the disease. Several pharmacological compounds have been developed for AD based on findings from non-human-derived cell models; however, these pharmacological compounds have failed at different phases of clinical trials. This necessitates the application of human-derived cell models, such as induced pluripotent stem cells (iPSCs) in their optimized form in AD mechanistic studies and preclinical drug testing. This review provides an overview of AD and iPSCs. The AD-relevant phenotypes of iPSC-derived AD brain cells and the usefulness of iPSCs in AD are highlighted. Finally, the various recommendations that have been made to enhance iPSC/AD modelling are discussed.
Collapse
Affiliation(s)
- Asiamah Ernest Amponsah
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Ruiyun Guo
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Desheng Kong
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Baofeng Feng
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jingjing He
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Wei Zhang
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Xiaofeng Du
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Zhenhuan Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Boxin Liu
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| | - Huixian Cui
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei Province050017, China.,Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei Province050017, China.,Human Anatomy Department, Hebei Medical University, Shijiazhuang, Hebei Province050017, China
| |
Collapse
|
4
|
Habaike A, Yakufu M, Cong Y, Gahafu Y, Li Z, Abulizi P. Neuroprotective effects of Fomes officinalis Ames polysaccharides on Aβ 25-35-induced cytotoxicity in PC12 cells through suppression of mitochondria-mediated apoptotic pathway. Cytotechnology 2020; 72:539-549. [PMID: 32430659 DOI: 10.1007/s10616-020-00400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/09/2020] [Indexed: 12/30/2022] Open
Abstract
Aggregation of Aβ is a pathological hallmark of Alzheimer's disease (AD). The purpose of this study was to identify the protective roles of different polysaccharide components in Fomes officinalis Ames polysaccharides (FOAPs) against Aβ25-35-induced neurotoxicity in PC12 cells. Different doses of FOAPs components (i.e. FOAPs-a and FOAPs-b) were added to PC12 cells about 2 h before β-amyloid protein fragment 25-35 (Aβ25-35) exposure. The AD cellular model of PC12 cells was established using Aβ25-35. Then the PC12 cells were divided into 9 groups including: control group, Donepezil hydrochloride (DHCL) group, model group treated using 40 μM Aβ25-35, followed by FOAPs-a and FOAPs-b interference (50, 100 and 200 μg/mL). The mitochondrial reactive oxygen species (ROS), ATP, superoxide dismutase (SOD), malondialdehyde (MDA), lactate dehydrogenase (LDH) and mitochondrial membrane potential (MMP) were determined by commercial kits. The Cytochrome C, Bcl-2 and Bax expressions in the mitochondria and cytosol was determined by using Western blot analysis. FOAPs-a and FOAPs-b could significantly inhibit the LDH release, MDA level and the over accumulation of ROS induced by Aβ25-35 in PC12 cells in a dose-dependent manner. They could also effectively prevent Aβ25-35-stimulated cytotoxicity, which involved in attenuating cell apoptosis, increasing the ratio of Bcl-2/Bax and inhibiting Cytochrome C release from mitochondria to cytosol in PC12 cells. Moreover, FOAPs-a and FOAPs-b significantly alleviated mitochondrial dysfunction by regulating the MMP, as well as promoting the mitochondrial ATP synthesis. FOAPs-a and FOAPs-b played neuroprotective roles against Aβ25-35-induced cytotoxicity in PC12 cells through suppressing the mitochondria-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Ayijiang Habaike
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Mirensha Yakufu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yuanyuan Cong
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yimin Gahafu
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Zhen Li
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Palida Abulizi
- Department of Natural Medicine, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
5
|
Li L, Kim HJ, Roh JH, Kim M, Koh W, Kim Y, Heo H, Chung J, Nakanishi M, Yoon T, Hong CP, Seo SW, Na DL, Song J. Pathological manifestation of the induced pluripotent stem cell-derived cortical neurons from an early-onset Alzheimer's disease patient carrying a presenilin-1 mutation (S170F). Cell Prolif 2020; 53:e12798. [PMID: 32216003 PMCID: PMC7162796 DOI: 10.1111/cpr.12798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Alzheimer's disease (AD) is the most common neurodegenerative disease which is characterized by the formation of amyloid beta (Aβ) plaques and neurofibrillary tangles. These abnormal proteins induce disturbance in mitochondrial dynamics and defect in autophagy system. Since presenilin‐1 (PS1) is a core component in γ‐secretase complex, the mutations of PS1 gene cause the interference of γ‐secretase activity and lead to the increased Aβ42 secretion. We aimed to characterize the patient‐specific induced pluripotent stem cell (iPSC) line carrying PS1‐S170F mutation. Furthermore, we tested whether disease‐modifying drug can reduce AD pathology in the AD iPSC‐derived neurons. Materials and methods Mononuclear cells (MNCs) were isolated freshly from the peripheral blood of an autosomal dominant AD (ADAD) patient carrying presenilin‐1 (PS1) mutation (Ser170Phe; PS1‐S170F) and a cognitively normal control. We generated induced pluripotent stem cell (iPSC) lines, which were differentiated into functional cortical neurons. Then, we measured the markers indicative of AD pathogenesis using immunocytochemistry and Western blot. We also investigated the mitochondrial dynamics in the AD iPSC‐derived neurons using Mito‐tracker. Results We observed that both extracellular and intracellular Aβ levels were dramatically increased in the PS1‐S170F iPSC‐derived neurons, compared with the control iPSC‐derived neurons. Furthermore, PS1‐S170F iPSC‐derived neurons showed high expression levels of p‐Tau, which were detected both in the soma and neurites. The mitochondrial velocity in the PS1‐S170F iPSC‐derived neurons was much reduced, compared with that of the control. We also found a significant decrease of fusion‐related protein Mfn1 (membrane proteins mitofusin 1) and an increase of fission‐related protein DRP1 (dynamin‐related protein 1) in the PS1‐S170F iPSC‐derived neurons. We further observed the defects of autophagy‐related clearance in the PS1‐S170F iPSC‐derived neurons. Finally, we demonstrated the levels of Aβ and p‐Tau can be dramatically reduced by the treatment of LY‐2886721, a BACE1 inhibitor. Conclusions Taken together, we have established and characterized the pathological features of an AD patient carrying PS1‐S170F mutation using iPSC technology, which will be the first case on this mutation and this iPSC line will serve as a useful resource for studying AD pathogenesis and drug screening in the future.
Collapse
Affiliation(s)
- Ling Li
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Hee Jin Kim
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
| | - Jee Hoon Roh
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea.,Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minchul Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Wonyoung Koh
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Younghoon Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Hyohoon Heo
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Jaehoon Chung
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, Korea
| | | | - Taeyoung Yoon
- Dong-A Socio R&D Center, Dong-A ST, Yongin-si, Korea
| | | | - Sang Won Seo
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Center for Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Duk L Na
- Neuroscience Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea.,iPS Bio, Inc., Seongnam-si, Korea
| |
Collapse
|