1
|
Choi S, Kim EH, Kim D, Park HJ, Gil J, Bian Y, Bae ON. Polyhexamethylene guanidine-phosphate enhances pro-coagulant activity of human erythrocytes and venous thrombosis in rats through phosphatidylserine externalization. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138303. [PMID: 40250271 DOI: 10.1016/j.jhazmat.2025.138303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Polyhexamethylene guanidine-phosphate (PHMG-p) is a main compound used as a humidifier disinfectant, but the systemic health effects of PHMG-p still need to be explored. The circulatory and blood system is the organ that comes into contact with compounds absorbed into the body after inhalation exposure, resulting in various health problems, including cardiovascular diseases. This study examined the impact of PHMG-p on erythrocytes (red blood cells; RBCs), which are essential for sustaining circulatory health and are directly associated with thrombotic risks. We demonstrated that PHMG-p could enhance the thrombotic risk by promoting pro-coagulant activity and reducing erythrocyte deformability. In PHMG-p-exposed erythrocytes, phosphatidylserine externalization in the outer membrane and microvesicle generation were significantly increased under sub-hemolytic conditions, along with the morphological alterations in the erythrocytes. Exposure to PHMG-p induced erythrocyte phosphatidylserine externalization, leading to enhanced pro-coagulant activity, which was characterized by increased adhesion to vascular endothelial cells, elevated thrombin generation, and decreased deformability. Notably, calcium chelation effectively inhibited PS externalization and thrombin generation, highlighting the pivotal role of calcium influx in PHMG-p-induced thrombogenic alterations. Moreover, intratracheal instillation of PHMG-p promoted phosphatidylserine externalization and thrombin generation in rat erythrocytes, leading to a significant increase in thrombus formation, thereby corroborating the link between in vitro findings and the increased thrombotic risk observed in vivo. These findings suggest that PHMG-p may increase pro-thrombotic risk by promoting RBC pro-coagulant activity through calcium influx-driven PS externalization.
Collapse
Affiliation(s)
- Sungbin Choi
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea; College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Junkyung Gil
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
2
|
Park CM, Jeon S, Yang MJ, Kim MS. Differences in impact on disease or lung injury depending on the physicochemical characteristics of harmful chemicals in the PAH model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116838. [PMID: 39128447 DOI: 10.1016/j.ecoenv.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
The number of individuals with underlying medical conditions has been increasing steadily. These individuals are relatively vulnerable to harmful external factors. But it has not been proven that the effects of hazardous chemicals may differ depending on their physicochemical properties. This study determines the toxic effects of two chemicals with high indoor exposure risk and different physicochemical properties on an underlying disease model. A pulmonary arterial hypertension (PAH) model was constructed by a single subcutaneous injection of monocrotaline (MCT; 60 mg/kg) into Sprague-Dawley rats. After three weeks, formaldehyde (FA; 2.5 mg/kg) and polyhexamethylene guanidine (PHMG; 0.05 mg/kg) were administered once via intratracheal instillation, and rats were necropsied one week later. Exposure to FA and PHMG affected organ weight and the Fulton and toxicity indices in rats induced with PAH. FA promoted bronchial injury and aggravated PAH, while PHMG only induced alveolar injury. Additionally, the differentially expressed genes were altered following exposure to FA and PHMG, as were the associated diseases (cardiovascular disease and pulmonary fibrosis, respectively). In conclusion, inhaled chemicals with different physicochemical properties can cause damage to organs, such as the lungs and heart, and can aggravate underlying diseases. This study elucidates indoor inhaled exposure-induced toxicities and alerts patients with pre-existing diseases to the harmful chemicals.
Collapse
Affiliation(s)
- Chul-Min Park
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea; Division of Practical Research, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do 58762, South Korea
| | - Seulgi Jeon
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Mi-Jin Yang
- Pathology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea
| | - Min-Seok Kim
- Inhalation Toxicology Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212, South Korea.
| |
Collapse
|
3
|
Assessment of agonistic and antagonistic properties of humidifier disinfectants to the estrogenic and androgenic receptors by transactivation assay. Toxicol Res 2021; 38:99-109. [PMID: 35070945 PMCID: PMC8748560 DOI: 10.1007/s43188-021-00111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Before being recalled and banned from the Korean market, humidifier disinfectants (HDs) were added to the humidifier water tank to prevent microbial growth. The known HDs active ingredients included the are oligo(2-(2-ethoxy)ethoxyethyl guanidine (PGH), polyhexamethylene guanidine (PHMG), a mixture of methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT), didecyldimethyl ammonium chloride (DDAC), Sodium dichloroisocyanurate (NaDCC), and alkyldimethylbenzyl ammonium chloride (BAC). Previous epidemiological studies have suggested that PHMG induces fatal lung disease in pregnant, post-partum women, and young children. In an animal study, a mixture of DDAC and BAC exhibited decreased fertility and fecundity; increased time to first litter, longer pregnancy intervals, fewer pups per litter, and fewer pregnancies. In this study, endocrine-disrupting effects of HDs were investigated using estrogen receptor (ER) and androgen receptor (AR) transactivation assay based on OECD Test guidelines. Unexpectedly, unlike the previously reported reproductive toxicity data, in the present study, HDs did not show ER and AR transcriptional activation agonist and/or antagonist effects. However, it is difficult to conclude that HDs has no endocrine disruption effects, and further research on the effects of HDs mixtures, and in vivo tests including Uterotrophic bioassay and Hershberger bioassay would be necessary.
Collapse
|
4
|
Ryu H, Choi YH, Kim E, Park J, Lee S, Yoon J, Jo EK, Choe Y, Heo J, Yang W. Misclassification and characterization of exposure to humidifier disinfectants using a questionnaire. BMC Public Health 2021; 21:1458. [PMID: 34315451 PMCID: PMC8317285 DOI: 10.1186/s12889-021-11459-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background Lung disease caused by exposure to chemical substances such as polyhexamethylene guanidine (PHMG) used in humidifier disinfectants (HDs) has been identified in Korea. Several researchers reported that exposure classification using a questionnaire might not correlate with the clinical severity classes determined through clinical diagnosis. It was asserted that the lack of correlation was due to misclassification in the exposure assessment due to recall bias. We identified the cause of uncertainty to recognize the limitations of differences between exposure assessment and clinical outcomes assumed to be true value. Therefore, it was intended to check the availability of survey using questionnaires and required to reduce misclassification error/bias in exposure assessment. Methods HDs exposure assessment was conducted as a face-to-face interview, using a questionnaire. A total of 5245 applicants participated in the exposure assessment survey. The questionnaire included information on sociodemographic and exposure characteristics such as the period, frequency, and daily usage amount of HDs. Based on clinical diagnosis, a 4 × 4 cross-tabulation of exposure and clinical classification was constructed. When the values of the exposure rating minus the clinical class were ≥ 2 and ≤ − 2, we assigned the cases to the overestimation and underestimation groups, respectively. Results The sex ratio was similar in the overestimation and underestimation groups. In terms of age, in the overestimation group, 90 subjects (24.7%) were under the age of 10, followed by 52 subjects (14.2%) in their 50s. In the underestimation group, 195 subjects (56.7%) were under the age of 10, followed by 80 subjects (23.3%) in their 30s. The overestimation group may have already recovered and responded excessively due to psychological anxiety or to receive compensation. However, relatively high mortality rates and surrogate responses observed among those under 10 years of age may have resulted in inaccurate exposure in the underestimation group. Conclusions HDs exposure assessment using a questionnaire might not correlate with adverse health effects due to recall bias and various other causes such as recovery of injury and psychological anxiety. This study revealed exposure misclassification and characteristics affected by HDs and proposed a questionnaire-based exposure assessment methodology to overcome the limitations of past exposure assessment. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-11459-4.
Collapse
Affiliation(s)
- Hyeonsu Ryu
- Department of Occupational Health, Daegu Catholic University, Hayang-eup, Gyeongsan-si, Gyeongbuk, 38430, South Korea
| | - Yoon-Hyeong Choi
- Department of Preventive Medicine, Gachon University College of Medicine, Yeonsu-gu, Incheon, 21936, South Korea
| | - Eunchae Kim
- Department of Occupational Health, Daegu Catholic University, Hayang-eup, Gyeongsan-si, Gyeongbuk, 38430, South Korea
| | - Jinhyeon Park
- Department of Occupational Health, Daegu Catholic University, Hayang-eup, Gyeongsan-si, Gyeongbuk, 38430, South Korea
| | - Seula Lee
- Department of Preventive Medicine, Gachon University College of Medicine, Yeonsu-gu, Incheon, 21936, South Korea
| | - Jeonggyo Yoon
- Department of Preventive Medicine, Gachon University College of Medicine, Yeonsu-gu, Incheon, 21936, South Korea
| | - Eun-Kyung Jo
- Department of Preventive Medicine, Gachon University College of Medicine, Yeonsu-gu, Incheon, 21936, South Korea
| | - Youngtae Choe
- Department of Occupational Health, Daegu Catholic University, Hayang-eup, Gyeongsan-si, Gyeongbuk, 38430, South Korea
| | - Jung Heo
- Department of Occupational Health, Daegu Catholic University, Hayang-eup, Gyeongsan-si, Gyeongbuk, 38430, South Korea
| | - Wonho Yang
- Department of Occupational Health, Daegu Catholic University, Hayang-eup, Gyeongsan-si, Gyeongbuk, 38430, South Korea.
| |
Collapse
|
5
|
Lee H, Park J, Park K. Fibrosis as a result of polyhexamethylene guanide exposure in cultured Statens Seruminstitut Rabbit Cornea (SIRC) cells. Environ Anal Health Toxicol 2021; 36:e2021009-0. [PMID: 34130374 PMCID: PMC8421752 DOI: 10.5620/eaht.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Previous research studies on the toxicity of polyhexamethylene guanidine (PHMG) as a humidifier disinfectant majorly focused on lung fibrosis. Considering that disinfectants in humidifiers are released in aerosol form, the eyes are directly exposed and highly vulnerable to the detrimental effects of the PHMG. Therefore, in the present study we investigated the adverse effects of PHMG on the eyes; considering fibrosis as a manifestation of PHMG toxicity in the eye, we evaluated fibrosis-related biomarkers in cultured Statens Seruminstitut Rabbit Cornea (SIRC) cells. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, fibrosis-related biomarkers were evaluated through polymerase chain reaction (PCR) and immunoblotting, and oxidative stress was evaluated using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Polyhexamethylene guanidine showed cytotoxicity in a time and concentration-dependent manner. Fibrosis related biomarkers including transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinase (TIMP) and hemeoxygenase-1 (HO-1) increased in both gene and protein levels. Oxidative stress also increased in the PHMG-treated cultured cells. The findings of the present study suggest that PHMG could cause toxicity in the eye as manifested by fibrosis.
Collapse
Affiliation(s)
- Handule Lee
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Juyoung Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| | - Kwangsik Park
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Korea
| |
Collapse
|
6
|
Johnson W, Boyer I, Zhu J, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Heldreth B. Safety Assessment of Polyaminopropyl Biguanide (Polyhexamethylene Biguanide Hydrochloride) as Used in Cosmetics. Int J Toxicol 2020; 39:26S-73S. [PMID: 33203268 DOI: 10.1177/1091581820958683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of Polyaminopropyl Biguanide (polyhexamethylene biguanide hydrochloride), which functions as a preservative in cosmetic products. The Panel reviewed relevant data relating to the safety of this ingredient and concluded that Polyaminopropyl Biguanide is safe in cosmetics in the present practices of use and concentration described in the safety assessment, when formulated to be nonirritating and nonsensitizing, which may be based on a quantitative risk assessment or other accepted methodologies. The Panel also concluded that the data are insufficient to determine the safety of Polyaminopropyl Biguanide in products that may be incidentally inhaled.
Collapse
Affiliation(s)
- Wilbur Johnson
- * 44002Cosmetic Ingredient Review Senior Scientific Analyst/Writer
| | - Ivan Boyer
- ** Former 44002Cosmetic Ingredient Review Toxicologist
| | - Jinqiu Zhu
- *** 44002Cosmetic Ingredient Review Toxicologist
| | | | | | - Ronald A Hill
- **** Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | - James G Marks
- **** Expert Panel for Cosmetic Ingredient Safety Member
| | | | | | - Paul W Snyder
- **** Expert Panel for Cosmetic Ingredient Safety Member
| | - Bart Heldreth
- † 44002Cosmetic Ingredient Review Executive Director
| |
Collapse
|
7
|
Collares FM, Garcia IM, Bohns FR, Motta A, Melo MA, Leitune VCB. Guanidine hydrochloride polymer additive to undertake ultraconservative resin infiltrant against Streptococcus mutans. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Go HN, Lee SH, Cho HJ, Ahn JR, Kang MJ, Lee SY, Hong SJ. Effects of chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) on Th2/Th17-related immune modulation in an atopic dermatitis mouse model. Sci Rep 2020; 10:4099. [PMID: 32139713 PMCID: PMC7058054 DOI: 10.1038/s41598-020-60966-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure to chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) has been associated with allergic contact dermatitis and occupational asthma. Despite this association however, no study has investigated the effects of CMIT/MIT exposure on the development of atopic dermatitis (AD). This study was conducted to investigate the influence of epicutaneous exposure to CMIT/MIT on AD in a mouse model and the underlying biological mechanisms. BALB/C mice were exposed to CMIT/MIT for 3 weeks and AD was developed using ovalbumin (OVA) epidermal sensitization. CMIT/MIT epicutaneous exposure in normal mice significantly enhanced AD-like phenotypes (e.g., transepidermal water loss, clinical score, total serum immunoglobulin E level and infiltration of inflammatory cells). In addition, CMIT/MIT exposure significantly augmented the mRNA expression level of T helper (Th) 2-related cytokines (thymic stromal lymphopoietin, interleukin (IL)-6 and IL-13), Th2 chemokine (chemokine (C-C motif) ligand 17) and the population of CD4+IL-4+ cells in the skin. Moreover, mice exposed to CMIT/MIT in the OVA challenge had greater AD-like phenotypes, higher IL-4 and IL-17A skin mRNA expression levels, and a larger population of CD4+IL-4+- and IL-17A+-producing cells in the skin-draining lymph nodes. Our current findings in a mouse model thus suggest that CMIT/MIT exposure may cause AD symptoms through the dysregulation of Th2/Th17-related immune responses.
Collapse
Affiliation(s)
- Han-Na Go
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun-Ju Cho
- Department of Pediatrics, International St. Mary's hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Jae-Rin Ahn
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi-Jin Kang
- Department of Pediatrics, Environmental Health Center, Asan Medical Center, Seoul, Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Garcia IM, Rodrigues SB, Rodrigues Gama ME, Branco Leitune VC, Melo MA, Collares FM. Guanidine derivative inhibits C. albicans biofilm growth on denture liner without promote loss of materials' resistance. Bioact Mater 2020; 5:228-232. [PMID: 32123776 PMCID: PMC7036732 DOI: 10.1016/j.bioactmat.2020.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/11/2019] [Accepted: 02/06/2020] [Indexed: 01/31/2023] Open
Abstract
To reduce the burden of denture stomatitis and oral candidiasis, an aqueous solution containing polyhexamethylene guanidine hydrochloride (PHMGH) was investigated as an antifungal disinfectant against the leading cause of these oral conditions, Candida albicans. The solutions formulated with concentrations ranging from 0.125 to 0.50 wt% enabled increasing disinfection at the initial 5min-contact with 72h-mature candida biofilms formed on denture liner specimens. After 10 min-contact, the solution at lower concentration has reached total fungal elimination. The results also indicated that the denture liners preserved their mechanical property after the maximum contact time with the solution at the highest tested concentration. The PHMGH aqueous solutions at 0.125 wt% could be applied to promote interim denture liner disinfection without promoting the loss of materials' mechanical property.
Collapse
Affiliation(s)
- Isadora Martini Garcia
- Dental Materials Laboratory, Postgraduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil
| | - Stéfani Becker Rodrigues
- Dental Materials Laboratory, Postgraduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil
| | - Maria Eduarda Rodrigues Gama
- Dental Materials Laboratory, Postgraduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil
| | - Vicente Castelo Branco Leitune
- Dental Materials Laboratory, Postgraduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil
| | - Mary Anne Melo
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Operative Dentistry Division, General Dentistry Department University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory, Postgraduate Program in Dentistry, School of Dentistry, Federal University of Rio Grande Do Sul, Rua Ramiro Barcelos, 2492, Rio Branco, 90035-003, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Kanno S, Hirano S, Kato H, Fukuta M, Mukai T, Aoki Y. Benzalkonium chloride and cetylpyridinium chloride induce apoptosis in human lung epithelial cells and alter surface activity of pulmonary surfactant monolayers. Chem Biol Interact 2020; 317:108962. [DOI: 10.1016/j.cbi.2020.108962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/27/2019] [Accepted: 01/19/2020] [Indexed: 12/24/2022]
|
11
|
Seo C, Kim SH, Lee HS, Ji M, Min J, Son YJ, Kim IH, Lee K, Paik MJ. Metabolomic study on bleomycin and polyhexamethylene guanidine phosphate-induced pulmonary fibrosis mice models. Metabolomics 2019; 15:111. [PMID: 31422500 DOI: 10.1007/s11306-019-1574-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Polyhexamethylene guanidine phosphate (PHMG) has been used as a disinfectant and biocide, and was known to be harmless and non-toxic. However, in 2011, PHMG used as a humidifier disinfectant was reported to be associated with lung diseases, such as, fibrosis in the toxicant studies on pulmonary fibrosis by PHMG. However, no metabolomics study has been performed in PHMG-induced mouse models of pulmonary fibrosis. OBJECTIVES We performed a metabolomic study to understand the biochemical events that occur in bleomycin (BLM)- and PHMG-induced mouse models of pulmonary fibrosis using gas chromatography-mass spectrometry (GC-MS), LC-tandem MS, and GC-tandem MS. RESULTS The levels of 61 metabolites of 30 amino acids, 13 organic acids, 12 fatty acids, 5 polyamines, and oxidized glutathione were determined in the pulmonary tissues of mice with BLM- and PHMG-induced pulmonary fibrosis and in normal controls. Principal component analysis and partial least squares discriminant analysis used to compare level of these 61 metabolites in pulmonary tissues. Levels of metabolites were significantly different in the BLM and PHMG groups as compared with the control group. In particular, the BLM- and PHMG-induced pulmonary fibrosis models showed elevated collagen synthesis and oxidative stress and metabolic disturbance of TCA related organic acids including fumaric acid by NADPH oxidase. In addition, polyamine metabolism showed severe alteration in the PHMG group than that of the BLM group. CONCLUSION This result suggests PHMG will be able to induce pulmonary fibrosis by arginine metabolism and NADPH oxidase signaling.
Collapse
Affiliation(s)
- Chan Seo
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Sung-Hwan Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Institute of Toxicology, Jeongeup-si, 56212, Republic of Korea
| | - Hyeon-Seong Lee
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Moongi Ji
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Jeuk Min
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Young-Jin Son
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - In-Hyeon Kim
- National Center for Efficacy Evaluation of Respiratory Disease Product, Institute of Toxicology, Jeongeup-si, 56212, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Product, Institute of Toxicology, Jeongeup-si, 56212, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea.
| |
Collapse
|
12
|
Park YJ, Jeong MH, Bang IJ, Kim HR, Chung KH. Guanidine-based disinfectants, polyhexamethylene guanidine-phosphate (PHMG-P), polyhexamethylene biguanide (PHMB), and oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride (PGH) induced epithelial-mesenchymal transition in A549 alveolar epithelial cells. Inhal Toxicol 2019; 31:161-166. [PMID: 31179775 DOI: 10.1080/08958378.2019.1624896] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abstracts Objective: The major active ingredient of humidifier disinfectant, polyhexamethylene guanidine-phosphate (PHMG-P), caused hundreds of deaths with pulmonary fibrosis. However, structurally similar guanidine-based disinfectants are still in use in various fields. Moreover, as they are precursors of excellent antimicrobial compounds, new chemicals with guanidine-based structures have been synthesized and introduced. In this study, we evaluated pulmonary fibrotic responses induced by PHMG-P, polyhexamethylene biguanide (PHMB), and oligo(2-(2-ethoxy)ethoxyethyl guanidinium chloride (PGH) and their toxicity mechanisms in type II alveolar epithelial A549 cells. Materials and methods: Cellular damage was compared by using the cytotoxicity test (WST-1 assay) and plasma membrane toxicity tests (Lactate dehydrogenase leakage detection assay and plasma membrane staining). As a measure of fibrotic response, induction of the epithelial-mesenchymal transition (EMT) was evaluated by measuring E-cadherin and α-smooth muscle actin (α-SMA) protein expression (epithelial and mesenchymal marker, respectively). Results: All tested compounds showed membrane damage; PHMG-P and PGH induced the highest and lowest damage, respectively. Moreover, they induced EMT when the test chemicals were treated with similar cytotoxic concentrations. Conclusions: Our study indicates that three guanidine-based disinfectants are potential fibrosis-inducing chemicals that induce EMT through cellular damage. Therefore, use of guanidine-based polymers should be strictly regulated by considering their potential adverse effects on the lungs.
Collapse
Affiliation(s)
- Yong Joo Park
- a School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Mi Ho Jeong
- a School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - In Jae Bang
- a School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Ha Ryong Kim
- b College of Pharmacy , Daegu Catholic University , Gyeongsan , Republic of Korea
| | - Kyu Hyuck Chung
- a School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| |
Collapse
|
13
|
Garcia IM, Rodrigues SB, Leitune VCB, Collares FM. Antibacterial, chemical and physical properties of sealants with polyhexamethylene guanidine hydrochloride. Braz Oral Res 2019; 33:e019. [PMID: 30892413 DOI: 10.1590/1807-3107bor-2019.vol33.0019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/28/2019] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to evaluate the influence of polyhexamethylene guanidine hydrochloride (PHMGH) in the physico-chemical properties and antibacterial activity of an experimental resin sealant. An experimental resin sealant was formulated with 60 wt.% of bisphenol A glycol dimethacrylate and 40 wt.% of triethylene glycol dimethacrylate with a photoinitiator/co-initiator system. PHMGH was added at 0.5 (G0.5%), 1 (G1%), and 2 (G2%) wt.% and one group remained without PHMGH, used as control (GCTRL). The resin sealants were analyzed for degree of conversion (DC), Knoop hardness (KHN), and softening in solvent (ΔKHN), ultimate tensile strength (UTS), contact angle (θ) with water or α-bromonaphthalene, surface free energy (SFE), and antibacterial activity against Streptococcus mutans for biofilm formation and planktonic bacteria. There was no significant difference for DC (p > 0.05). The initial Knoop hardness ranged from 17.30 (±0.50) to 19.50 (± 0.45), with lower value for GCTRL (p < 0.05). All groups presented lower KHN after immersion in solvent (p < 0.05). The ΔKHN ranged from 47.22 (± 4.30) to 57.22 (± 5.42)%, without significant difference (p > 0.05). The UTS ranged from 54.72 (± 11.05) MPa to 60.46 (± 6.50) MPa, with lower value for G2% (p < 0.05). PHMGH groups presented no significant difference compared to GCTRL in θ (p > 0.05). G2% showed no difference in SFE compared to GCTRL (p > 0.05). The groups with PHMGH presented antibacterial activity against biofilm and planktonic bacteria, with higher antibacterial activity for higher PHMGH incorporation (p < 0.05). PHMGH provided antibacterial activity for all resin sealant groups and the addition up to 1 wt.% showed reliable physico-chemical properties, maintaining the caries-protective effect of the resin sealant over time.
Collapse
Affiliation(s)
- Isadora Martini Garcia
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Dental Materials Laboratory, Porto Alegre, RS, Brazil
| | - Stéfani Becker Rodrigues
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Dental Materials Laboratory, Porto Alegre, RS, Brazil
| | - Vicente Castelo Branco Leitune
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Dental Materials Laboratory, Porto Alegre, RS, Brazil
| | - Fabrício Mezzomo Collares
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Dental Materials Laboratory, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Shim HE, Lee JY, Lee CH, Mushtaq S, Song HY, Song L, Choi SJ, Lee K, Jeon J. Quantification of inhaled aerosol particles composed of toxic household disinfectant using radioanalytical method. CHEMOSPHERE 2018; 207:649-654. [PMID: 29852464 DOI: 10.1016/j.chemosphere.2018.05.132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
To assess the risk posed by a toxic chemical to human health, it is essential to quantify its uptake in a living subject. This study aims to investigate the biological distribution of inhaled polyhexamethylene guanidine (PHMG) aerosol particle, which is known to cause severe pulmonary damage. By labeling with indium-111 (111In), we quantified the uptake of PHMG for up to 7 days after inhalation exposure in rats. The data demonstrate that PHMG is only slowly cleared, with approximately 74% of inhaled particles persisting in the lungs after 168 h. Approximately 5.3% of inhaled particles were also translocated to the liver after 168 h, although the level of redistribution to other tissues, including the kidneys and spleen, was minimal. These observations suggest that large uptake and slow clearance may underlie the fatal inhalation toxicity of PHMG in humans.
Collapse
Affiliation(s)
- Ha Eun Shim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jae Young Lee
- Institute of Health and Environment and Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea.
| | - Chang Heon Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Sajid Mushtaq
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Ha Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| | - Lee Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| | - Seong-Jin Choi
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea.
| | - Kyuhong Lee
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Jongho Jeon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
15
|
Kim MS, Kim SH, Jeon D, Kim HY, Lee K. Changes in expression of cytokines in polyhexamethylene guanidine-induced lung fibrosis in mice: Comparison of bleomycin-induced lung fibrosis. Toxicology 2018; 393:185-192. [DOI: 10.1016/j.tox.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023]
|
16
|
Kim MS, Jeong SW, Choi SJ, Han JY, Kim SH, Yoon S, Oh JH, Lee K. Analysis of genomic responses in a rat lung model treated with a humidifier sterilizer containing polyhexamethyleneguanidine phosphate. Toxicol Lett 2016; 268:36-43. [PMID: 27989595 DOI: 10.1016/j.toxlet.2016.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/24/2022]
Abstract
The antimicrobial biocide polyhexamethyleneguanidine (PHMG) phosphate is the main ingredient in the commercially available humidifier disinfectant. PHMG phosphate-based humidifier disinfectants can cause pulmonary fibrosis and induce inflammatory and fibrotic responses both in vivo and in vitro. However, toxicological mechanisms including genomic alterations induced by inhalation exposure to PHMG phosphate have not been elucidated. Therefore, this study evaluated the toxicological effects of the PHMG phosphate-containing humidifier disinfectant. We used DNA microarray to identify global gene expression changes in rats treated with PHMG phosphate-containing humidifier disinfectant for 4 weeks and 10 weeks. Functional significance of differentially expressed genes (DEGs) was estimated by gene ontology (GO) analysis. Four weeks post-exposure, 320 and 392 DEGs were identified in female and male rats, respectively (>2-fold, p<0.05). Ten weeks post-exposure, 1290 and 995 DEGs were identified in females and males, respectively. Of these, 119 and 556 genes overlapped between females and males at 4 weeks and 10 weeks, respectively, post-PHMG phosphate exposure. In addition, 21 genes were upregulated and 4 genes were downregulated in response to PHMG phosphate in a time-dependent manner. Thus, we predict that changes in genomic responses could be a significant molecular mechanism underlying PHMG phosphate toxicity. Further studies are required to determine the detailed mechanism of PHMG phosphate-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Min-Seok Kim
- Department of Inhalation Toxicology Research, Korea Institute of Toxicology, Jeonbuk 56212, Republic of Korea
| | - Seok Won Jeong
- Department of Research and Development, Genoplan Inc., Seoul 06221, Republic of Korea
| | - Seong-Jin Choi
- Department of Inhalation Toxicology Research, Korea Institute of Toxicology, Jeonbuk 56212, Republic of Korea
| | - Jin-Young Han
- Department of Inhalation Toxicology Research, Korea Institute of Toxicology, Jeonbuk 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Sung-Hwan Kim
- Department of Inhalation Toxicology Research, Korea Institute of Toxicology, Jeonbuk 56212, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Kyuhong Lee
- Department of Inhalation Toxicology Research, Korea Institute of Toxicology, Jeonbuk 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
17
|
Park K. An analysis of a humidifier disinfectant case from a toxicological perspective. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2016; 31:e2016013. [PMID: 27384221 PMCID: PMC4977967 DOI: 10.5620/eht.e2016013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/03/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
An analysis of patients and fatalities due to exposure to polyhexamethylene guanidine (PHMG) shows that PHMG causes mainly lung diseases such as pulmonary fibrosis. However, no research on the other organs has been conducted on this matter yet. So, an in-depth discussion on toxicological techniques is needed to determine whether or not PHMG is toxic to organs other than just the lungs. For the test of target organ toxicity by PHMG exposure, a toxicokinetic study must first be conducted. However, measurement method for PHMG injected into the body has not yet been established because it is not easy to analyze polymer PHMG, so related base studies on analytical technique for PHMG including radio-labeling chemistry must come first. Moreover, research on exposure-biomarker and effect-biomarker must also be conducted, primarily related to clinical application. Several limitations seem to be expected to apply the biomarker study to the patient because much time has passed after exposure to the humidifier disinfectant. It is why a more comprehensive toxicological researches must be introduced to the causality for the victims.
Collapse
Affiliation(s)
- Kwangsik Park
- Correspondence: Kwangsik Park 60 Hwarang-ro 13-gil, Seongbuk-gu, Seoul 02748, Korea Tel: +82-2-940-4522 Fax: +82-2-940-4195 E-mail:
| |
Collapse
|