1
|
Luetragoon T, Thongsri Y, Daotak K, Potup P, Usuwanthim K. Anti-proliferative and immunomodulatory properties of kaffir lime leaves and bioactive compounds on macrophages co-cultured with squamous cell carcinoma. PLoS One 2023; 18:e0281378. [PMID: 36802384 PMCID: PMC9943011 DOI: 10.1371/journal.pone.0281378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 01/22/2023] [Indexed: 02/23/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide. Late-stage patients have a significant chance of local recurrence and distant metastasis, as well as poor prognosis. Therapeutic goals for patients must be improved and personalized to reduce adverse effects. This study explored the anti-proliferative activity and immunomodulation potential of the constituents of crude kaffir lime leaf extract (lupeol, citronellal and citronellol) under co-culture. Results showed high cytotoxicity to human SCC15 cell line but not to human monocyte-derived macrophages. Treatment with crude extract and the contained compounds also suppressed cell migration and colony formation of SCC15 compared to the untreated control group, while high levels of intracellular ROS production were detected in the treatment group of SCC15. The MuseTM cell analyzer revealed cell cycle arrest at G2/M phase and apoptosis induction. Inhibition of Bcl-2 and activation of Bax, leading to induction of the downstream caspase-dependent death pathway were confirmed by Western blot analysis. Co-culture with activated macrophages, kaffir lime extract and its constituents enhanced the development of pro-inflammatory (M1) macrophages and boosted TNF-α production, resulting in SCC15 apoptosis. Findings revealed novel potential activities of kaffir lime leaf extracts and their constituents in inducing M1 polarization against SCC15, as well as direct anti-proliferative activity.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Faculty of Allied Health Sciences, Department of Medical Technology, Nakhonratchasima College, Nakhonratchasima, Thailand
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
| | - Yordhathai Thongsri
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
| | - Krai Daotak
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
| | - Pachuen Potup
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
| | - Kanchana Usuwanthim
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
- * E-mail:
| |
Collapse
|
2
|
Huang Z, Jin G. Licochalcone B induced apoptosis and autophagy in osteosarcoma tumor cells via the inactivation of PI3K/AKT/mTOR pathway. Biol Pharm Bull 2022; 45:730-737. [DOI: 10.1248/bpb.b21-00991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhihui Huang
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force
| | - Genyang Jin
- Department of Orthopaedics, The 904th Hospital of Joint Logistic Support Force
| |
Collapse
|
3
|
Jargalsaikhan G, Wu JY, Chen YC, Yang LL, Wu MS. Comparison of the Phytochemical Properties, Antioxidant Activity and Cytotoxic Effect on HepG2 Cells in Mongolian and Taiwanese Rhubarb Species. Molecules 2021; 26:1217. [PMID: 33668690 PMCID: PMC7956657 DOI: 10.3390/molecules26051217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
The Mongolian rhubarb-Rheum undulatum L. (RU)-and Rumex crispus L. (RC)-a Taiwanese local rhubarb belonging to the family of Polygonaceae-are principal therapeutic materials in integrative medicine due to their rich quantities of bioactive compounds; however, their phytochemical and antioxidant properties, and anti-cancer activity is poorly investigated. Furthermore, the phytochemical characteristics of both species may be affected by their different geographical distribution and climatic variance. The current study aimed to compare RU with RC extracts in different polarity solvents (n-hexane, ethyl acetate, acetone, ethanol, and water) for their phytochemical contents including the total phenolic content (TPC), total anthraquinone content (TAC), total flavonoid content (TFC), antioxidant and free radical scavenging capacities, and anticancer ability on the HepG2 cell. Except for the n-hexane extract, all of the RU extracts had considerably higher TPCs than RC extracts, ranging from 8.39 to 11.16 mg gallic acid equivalent (GAE) per gram of dry weight, and the TPCs of each extract were also significantly correlated with their antioxidant capacities by ABTS, DPPH, and FRAP assays (p < 0.05). Moreover, there was no remarkable association between the antioxidant capacities and either TACs or TFCs in both the RU and RC extracts. Besides, high-performance liquid chromatography (HPLC) analysis revealed that both the RU and RC extracts contained chrysophanol, emodin, and physcion, and those bioactive compounds were relatively higher in the n-hexane solvent extracts. Additionally, we observed different levels of dose-dependent cytotoxic effects in all the extracts by cell viability assay. Notably, the ethanol extract of RU had a compelling cytotoxic effect with the lowest half-maximum inhibition concentration (IC50-171.94 ± 6.56 µg/mL at 48 h) among the RU extracts than the ethanol extract of RC. Interestingly, the ethanol extract of RU but not RC significantly induced apoptosis in the human liver cancer cell line, HepG2, with a distinct pattern in caspase-3 activation, resulting in increased PARP cleavage and DNA damage. In summary, Mongolian Rhubarb, RU, showed more phytochemical contents, as well as a higher antioxidant capacity and apoptotic effect to HepG2 than RC; thus, it can be exploited for the proper source of natural antioxidants and liver cancer treatment in further investigation.
Collapse
Affiliation(s)
- Ganbolor Jargalsaikhan
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (G.J.); (Y.-C.C.)
- Liver Center, Ulaanbaatar 14230, Mongolia
| | - Jin-Yi Wu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 60004, Taiwan;
| | - Yen-Chou Chen
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (G.J.); (Y.-C.C.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Orthopedics Research Center, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-Ling Yang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- American College of Acupuncture and Oriental Medicine, Houston, TX 77063, USA
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Integrative Therapy Center for Gastroenterological Cancers, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
4
|
Teng H, Fan X, Lv Q, Zhang Q, Xiao J, Qian Y, Zheng B, Gao H, Gao S, Chen L. Folium nelumbinis (Lotus leaf) volatile-rich fraction and its mechanisms of action against melanogenesis in B16 cells. Food Chem 2020; 330:127030. [PMID: 32535311 DOI: 10.1016/j.foodchem.2020.127030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/09/2020] [Accepted: 05/09/2020] [Indexed: 02/08/2023]
Abstract
This study was aimed at determining the influence of Folium nelumbinis (Lotus leaf) extracts on melanogenesis in vitro models of melanoma cell line. The anticancer activity of four fractions, including petroleum ether (PEE), n-hexane (HE), ethanol (EE), and ethyl acetate (EAE) from F. nelumbinis on B16 cell lines (C57BL/6J melanoma cell), were evaluated after 24 and 48 h treatment. Results showed that PEE as well as volatile-rich fractions of linolenic acid and linolenic acid ethyl ester significantly (p < 0.05) reduced tyrosinase activity and melanin content in B16 melanoma cells model. Meanwhile, PEE and its primarily contained compound triggered apoptosis of B16 cells in a dose-dependent way. These results demonstrated that PEE possessed effective activities against melanin and tyrosinase generations through the induction of apoptosis. Moreover, a relation between the volatile-rich fractions of F. nelumbinis and the anticancer effects was demonstrated as well.
Collapse
Affiliation(s)
- Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoyun Fan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qiyan Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qin Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuewei Qian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hui Gao
- Department of Pharmacolgoy, Medical College of Shaoxing University, Shaoxing 312000, Zhejiang Province, China.
| | - Sihai Gao
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Rheum turkestanicum Induced Apoptosis Through ROS Without a Differential Effect on Human Leukemic Cells. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.12198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
6
|
Trinh TA, Lee D, Park S, Kim SH, Park JG, Kim JH, Kang KS. Stilbenes contribute to the anticancer effects of Rheum undulatum L. through activation of apoptosis. Oncol Lett 2019; 17:2953-2959. [PMID: 30854073 DOI: 10.3892/ol.2019.9926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023] Open
Abstract
Rheum undulatum L. (R. undulatum) is a medicinal plant used for the treatment of inflammatory diseases in East Asian countries. Numerous stilbenes isolated from R. undulatum have been revealed to possess anticancer effects. The aim of the present study was to evaluate the effect of extracts and compounds isolated from R. undulatum on human gastric cancer cell viability and to elucidate their molecular mechanism of action on the apoptosis pathway. The results demonstrated that aloe-emodin and chrysophanol 1-O-β-D-glucopyranoside, isolated from the methanolic extract of dried rhizomes of R. undulatum, exhibited anti-proliferative effects on the human gastric carcinoma cell line AGS, with IC50 values of 84.66±0.44 and 68.28±0.29 µM, respectively. The percentage of apoptotic cells increased significantly following treatment with each compound at a concentration of 100 µM, compared with that in the non-treated group in the image-based cytometry assay. Western blot analysis revealed that these compounds activated the caspase cascade and inhibited B-cell lymphoma-2, an anti-apoptotic protein.
Collapse
Affiliation(s)
- Tuy An Trinh
- College of Korean Medicine, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Seonju Park
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Gyeonggi 21983, Republic of Korea
| | - Seung Hyun Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Gyeonggi 21983, Republic of Korea
| | - Jae Gyu Park
- Advanced Bio Convergenve Center, Pohang Technopark Foundation, Pohang, North Gyeongsang 37668, Republic of Korea
| | - Ji Hwan Kim
- College of Korean Medicine, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, Gyeonggi 13120, Republic of Korea
| |
Collapse
|
7
|
Jang B, Yang IH, Cho NP, Jin B, Lee W, Jung YC, Hong SD, Shin JA, Cho SD. Down-regulation and nuclear localization of survivin by sodium butyrate induces caspase-dependent apoptosis in human oral mucoepidermoid carcinoma. Oral Oncol 2019; 88:160-167. [PMID: 30616788 DOI: 10.1016/j.oraloncology.2018.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/20/2018] [Accepted: 11/29/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Sodium butyrate (NaBu) is a histone deacetylase inhibitor that possesses an apoptotic ability. However, the molecular mechanism by which NaBu induces apoptosis in human oral mucoepidermoid carcinoma (MEC), a type of salivary gland tumor, remains unclear. MATERIALS AND METHODS The anticancer effects of NaBu and its related molecular mechanisms were determined by trypan blue exclusion assay, 4'-6-diamidino-2-phenylindole staining, live/dead assay, human apoptosis array, RT-PCR, western blotting, immunocytochemistry, preparation of nuclear fractions, and nude mice tumor xenograft. RESULTS In this study, we found that NaBu inhibited growth and induced apoptosis in the human oral MEC cell lines MC3 and YD15 with acetylation of histone proteins H2A and H3. NaBu apparently down-regulated survivin protein, as evidenced by the results of the human apoptosis antibody array, and modulated it at the post-translational process. Interestingly, NaBu caused nuclear translocation of survivin protein in both cell lines. NaBu also resulted in decreased expression levels of Bcl-xL mRNA and protein, leading to induction of caspase-dependent apoptosis in human oral MEC cell lines. In addition, NaBu administration inhibited tumor growth in vivo at a dosage of 500 mg/kg/day, but it did not cause any hepatic or renal toxicity. CONCLUSION This study provides new insights into the molecular mechanism of apoptotic actions by NaBu in human oral MEC and the basis of its clinical application for the treatment of human oral MEC.
Collapse
Affiliation(s)
- Boonsil Jang
- Department of Dental Hygiene, Sorabol College, Gyeongju 38063, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience and Biodegradable Material, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Nam-Pyo Cho
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience and Biodegradable Material, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Bohwan Jin
- Laboratory Animal Center, CHA University, CHA Biocomplex, Sampyeong-dong, Seongnam 13488, Republic of Korea
| | - WonWoo Lee
- Laboratory Animal Center, CHA University, CHA Biocomplex, Sampyeong-dong, Seongnam 13488, Republic of Korea
| | - Yun Chan Jung
- Chaon, 301-3, 240, Pangyoyeok-ro, Bundang-gu, Seongnam, Republic of Korea
| | - Seong Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
8
|
Kang TH, Yoon G, Kang IA, Oh HN, Chae JI, Shim JH. Natural Compound Licochalcone B Induced Extrinsic and Intrinsic Apoptosis in Human Skin Melanoma (A375) and Squamous Cell Carcinoma (A431) Cells. Phytother Res 2017; 31:1858-1867. [PMID: 29027311 DOI: 10.1002/ptr.5928] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Abstract
Licochalcone B (Lico B), which is normally isolated from the roots of Glycyrrhiza inflata (Chinese Licorice), generally classified into organic compounds including retrochalcones. Potential pharmacological properties of Lico B include anti-inflammatory, anti-bacterial, anti-oxidant, and anti-cancer activities. However, its biological effects on melanoma and squamous cell carcinoma (SCC) are unknown. Based on these known facts, this study investigated the role of Lico B in apoptosis, through the extrinsic and intrinsic pathways and additional regulation of specificity protein 1 in human skin cancer cell lines. Annexin V/7-aminoactinomycin D staining, western blot analysis, mitochondrial membrane potential assay, and an anchorage-independent cell transformation assay demonstrated that Lico B treatment of human melanoma and SCC cells significantly inhibited cell proliferation and induced apoptotic cell death. More specifically, Lico B induced apoptosis through the regulation of specificity protein 1 and apoptosis-related proteins including CCAAT/enhancer-binding protein homologous protein, death receptors, and poly (ADP-ribose) polymerase. These results indicate that Lico B has apoptotic effect on A375 and A431 skin cancer cells, suggesting the potential value of Lico B for the treatment of human melanoma and SCC. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tae-Ho Kang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - In-A Kang
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Chen YY, Hsieh MJ, Hsieh YS, Chang YC, Chen PN, Yang SF, Ho HY, Chou YE, Lin CW. Antimetastatic effects of Rheum palmatum L. extract on oral cancer cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2287-2294. [PMID: 28678381 DOI: 10.1002/tox.22444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Rheum palmatum L., a traditional Chinese medication, has been used for the treatment of various disorders. However, the detailed impacts and underlying mechanisms of R. palmatum L. extracts (RLEs) on human oral cancer cell metastasis are still unclear. Here, we tested the hypothesis that an RLE has antimetastatic effects on SCC-9 and SAS human oral cancer cells. Gelatin zymography, Western blot, real-time polymerase chain reaction, and luciferase assay were used to explore the underlying mechanisms involved in the antimetastatic effects on oral cancer cells. Our results revealed that the RLE (up to 20 μg/mL, without cytotoxicity) attenuated SCC-9 and SAS cell motility, invasiveness, and migration by reducing matrix metalloproteinase (MMP)-2 enzyme activities. Western blot analysis of the MAPK signaling pathway indicated that the RLE significantly decreased phosphorylated ERK1/2 levels but not p38 and JNK levels. In conclusion, RLEs exhibit antimetastatic activity against oral cancer cells through the transcriptional repression of MMP-2 via the Erk1/2 signaling pathways. Thus, RLEs may be potentially useful as antimetastatic agents for oral cancer chemotherapy.
Collapse
Affiliation(s)
- Yang-Yu Chen
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Changhua Christian Hospital, Cancer Research Center, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Chao Chang
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ying-Erh Chou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Oh H, Yoon G, Shin JC, Park SM, Cho SS, Cho JH, Lee MH, Liu K, Cho YS, Chae JI, Shim JH. Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways. Int J Oncol 2016; 48:1749-57. [PMID: 26847145 DOI: 10.3892/ijo.2016.3365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/27/2015] [Indexed: 11/05/2022] Open
Abstract
Licochalcone B (Lico B), which belongs to the retrochalcone family, is isolated from the roots of Chinese licorice. Lico B has been reported to have several other useful pharmacological properties, such as anti-inflammatory, antibacterial, antioxidant, antiulcer, anticancer, and anti-metastasis activities. We elucidated the underlying mechanism by which Lico B can induce apoptosis in oral squamous cell carcinoma (OSCC). Our results showed that exposure of OSCC cells (HN22 and HSC4) to Lico B significantly inhibited cell proliferation in a time- and concentration-dependent manner. Lico B caused cell cycle arrest at G1 phase along with downregulation of cyclin D1 and upregulation of p21 and p27 proteins. Lico B also facilitated the diffusion of phospholipid phosphatidylserine (PS) from inner to outer leaflets of the plasma membrane with chromatin condensation, DNA fragmentation, accumulated sub-G1 population in a concentration-dependent manner. Moreover, Lico B promoted the generation of reactive oxygen species (ROS), which, in turn, can induce CHOP, death receptor (DR) 4 and DR5. Lico B treatment induced downregulation of anti-apoptotic proteins (Bid and Bcl-xl and Mcl-1), and up-regulation of pro-apoptotic protein (Bax). Lico B also led to the loss of mitochondrial membrane potential (MMP), resulting in cytochrome c release. As can be expected from the above results, the apoptotic protease activating factor-1 (Apaf-1) and survivin were oppositely expressed in favor of apoptotic cell death. This notion was supported by the fact that Lico B activated multi-caspases with cleavage of poly (ADP-ribose) polymerase (PARP) protein. Therefore, it is suggested that Lico B is a promising drug for the treatment of human oral cancer via the induction of apoptotic cell death.
Collapse
Affiliation(s)
- Hana Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang, Gyeongbuk 790‑834, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Mee-Hyun Lee
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450001, P.R. China
| | - Young Sik Cho
- College of Pharmacy, Keimyung University, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
11
|
Cho JJ, Chae JI, Kim KH, Cho JH, Jeon YJ, Oh HN, Yoon G, Yoon DY, Cho YS, Cho SS, Shim JH. Manumycin A from a new Streptomyces strain induces endoplasmic reticulum stress-mediated cell death through specificity protein 1 signaling in human oral squamous cell carcinoma. Int J Oncol 2015; 47:1954-62. [PMID: 26352011 DOI: 10.3892/ijo.2015.3151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/10/2015] [Indexed: 11/05/2022] Open
Abstract
Manumycin A (Manu A) is a natural antibiotic produced by new Streptomyces strain, exhibiting antitumor and anticancer effects. However, the anticancer effects of Manu A on oral squamous cell carcinoma (OSCC) have not been reported. OSCC is an aggressive type of cancer because of its poor prognosis and low survival rate despite advanced medical treatment. We observed that Manu A reduced cell growth and Sp1 protein levels in OSCC cell lines (HN22 and HSC4) in a dose- and time-dependent manner. We also observed downregulation of Sp1 downstream target genes such as p27, p21, Mcl-1 and survivin. Moreover, nuclear staining with DAPI showed that Manu A was able to cause nuclear condensation and further fragmentation. Flow cytometry analyses using Annexin V and propiodium iodide supported Manu A-mediated apoptotic cell death of OSCC cells. Furthermore, Bcl-2 family such as mitochondrial pro‑apoptotic Bax, anti-apoptotic Bcl-xl and Bid were regulated by Manu A, triggering the mitochondrial apoptotic pathway. In conclusion, these results indicate that Manu A is a potential to treat human OSCC via cell apoptosis through the downregulation of Sp1.
Collapse
Affiliation(s)
- Jung Jae Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Ka Hwi Kim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Ha Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Do Young Yoon
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young Sik Cho
- College of Pharmacy, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
12
|
Hong NR, Park HS, Ahn TS, Jung MH, Kim BJ. Association of a Methanol Extract of Rheum undulatum L. Mediated Cell Death in AGS Cells with an Intrinsic Apoptotic Pathway. J Pharmacopuncture 2015; 18:26-32. [PMID: 26120485 PMCID: PMC4481396 DOI: 10.3831/kpi.2015.18.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Rheum undulatum L. has traditionally been used for the treatment of many diseases in Asia. However, its anti-proliferative activity in cancer has still not been studied. In the present study, we investigated the anti-cancer effects of methanol extract of Rheum undulatum L. (MERL) on human adenocarcinoma gastric cell lines (AGS). METHODS To investigate the anti-cancer effect of MERL on AGS cells, we treated the AGS cells with varying con¬centrations of MERL and performed 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Cell cycle analyses, measurements of the mitochondrial membrane potential (MMP), caspase activity assays and Western blots were conducted to determine whether AGS cell death occurred by apoptosis. RESULTS Treatment with MERL significantly inhibited growth of AGS cells in a concentration dependent manner. MERL treatment in AGS cells leaded to increased accumulation of apoptotic sub G1 phase cells in a concentration dependent manner. In control cultures, 5.38% of the cells were in the sub G1 phase. In MERL treated cells, however, this percentage was significantly increased (9.95% at 70 μg/mL, 15.94% at 140 μg/mL, 26.56% at 210 μg/mL and 38.08% at 280 μg/mL). MERL treatment induced the decreased expression of pro-caspase-8 and -9 in a concentration dependent manner, whereas the expression of the active form of caspase-3 was increased. A subsequent Western blot analysis revealed increased cleaved levels of poly (ADP-ribose) polymerase (PARP) protein. Also, treatment with MERL increased the activities of caspase-3 and -9 compared with the control. MERL treatment increased the levels of the pro-apoptotic truncated Bid (tBid) and Bcl2 Antagonist X (Bax) proteins and decreased the levels of the anti-apoptotic B-cell lymphoma 2 (Bcl-2) protein, whose is the stabilization of mitochondria. However, inhibitions of p38, extracellular signal regulated kinases (ERKs) and C-Jun N-terminal kinases (JNK) by MERL treatment did not affect cell death. CONCLUSION These results suggest that MERL mediated cell death is associated with an intrinsic apoptotic pathway in AGS cells.
Collapse
Affiliation(s)
- Noo Ri Hong
- Division of Longevity and Biofunctional Medicine, Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Busan, Korea
| | - Hyun Soo Park
- Division of Longevity and Biofunctional Medicine, Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Busan, Korea
| | - Tae Seok Ahn
- Division of Longevity and Biofunctional Medicine, Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Busan, Korea
| | - Myeong Ho Jung
- Division of Longevity and Biofunctional Medicine, Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Busan, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Busan, Korea
| |
Collapse
|
13
|
Lee RH, Cho JH, Jeon YJ, Bang W, Cho JJ, Choi NJ, Seo KS, Shim JH, Chae JI. Quercetin Induces Antiproliferative Activity Against Human Hepatocellular Carcinoma (HepG2) Cells by Suppressing Specificity Protein 1 (Sp1). Drug Dev Res 2015; 76:9-16. [PMID: 25619802 DOI: 10.1002/ddr.21235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/02/2014] [Indexed: 12/22/2022]
Abstract
Preclinical Research Quercetin, found in red onions and red apple skin can induce apoptosis insome malignant cells. However, the apoptotic effect of quercetin in hepatocellular carcinoma HepG2 cells via regulation of specificity protein 1 (Sp1) has not been studied. Here, we demonstrated that quercetin decreased cell growth and induce apoptosis in HepG2 cells via suppression of Sp1 using 3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V, and Western blot analysis, an effect that was dose- and time-dependent manner. Treatment of HepG2 cells with quercetin reduced cell growth and induced apoptosis, followed by regulation of Sp1 and Sp1 regulatory protein. Taken together, the results suggest that quercetin can induce apoptotic cell death by regulating cell cycle and suppressing antiapoptotic proteins. Therefore, quercetin may be useful for cancer prevention. Drug Dev Res 76 : 9-16, 2015.
Collapse
Affiliation(s)
- Ra Ham Lee
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| | - Jin Hyoung Cho
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| | - Young-Joo Jeon
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| | - Woong Bang
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| | - Jung-Jae Cho
- Department of Pharmacy, Natural Medicine Research Institute, College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam, 534-729
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural & Life Science, Chonbuk National University, Jeonju, 651-756
| | - Kang Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, Natural Medicine Research Institute, College of Pharmacy, Mokpo National University, Muan-gun, Jeonnam, 534-729
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju, 651-756
| |
Collapse
|
14
|
Cho JJ, Chae JI, Yoon G, Kim KH, Cho JH, Cho SS, Cho YS, Shim JH. Licochalcone A, a natural chalconoid isolated from Glycyrrhiza inflata root, induces apoptosis via Sp1 and Sp1 regulatory proteins in oral squamous cell carcinoma. Int J Oncol 2014; 45:667-74. [PMID: 24858379 DOI: 10.3892/ijo.2014.2461] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/07/2014] [Indexed: 11/06/2022] Open
Abstract
Licochalcone A (LCA), a chalconoid derived from root of Glycyrrhiza inflata, has been known to possess a wide range of biological functions such as antitumor, anti-angiogenesis, antiparasitic, anti-oxidant, antibacterial and anti-inflammatory effects. However, the anticancer effects of LCA on oral squamous cell carcinoma (OSCC) have not been reported. Our data showed that LCA inhibited OSCC cell (HN22 and HSC4) growth in a concentration- and time-dependent manner. Mechanistically, it was mediated via downregulation of specificity protein 1 (Sp1) expression and subsequent regulation of Sp1 downstream proteins such as p27, p21, cyclin D1, Mcl-1 and survivin. Here, we found that LCA caused apoptotic cell death in HSC4 and HN22 cells, as characterized by sub-G1 population, nuclear condensation, Annexin V staining, and multi-caspase activity and apoptotic regulatory proteins such as Bax, Bid, Bcl(-xl), caspase-3 and PARP. Consequently, this study strongly suggests that LCA induces apoptotic cell death of OSCC cells via downregulation of Sp1 expression, prompting its potential use for the treatment of human OSCC.
Collapse
Affiliation(s)
- Jung Jae Cho
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Goo Yoon
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Ka Hwi Kim
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Jin Hyoung Cho
- Department of Oral Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Republic of Korea
| | - Seung-Sik Cho
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Young Sik Cho
- College of Pharmacy, Keimyung University, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Jung-Hyun Shim
- Natural Medicine Research Institute, Department of Pharmacy, College of Pharmacy, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
15
|
Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury. Redox Biol 2014; 2:504-12. [PMID: 24624340 PMCID: PMC3949088 DOI: 10.1016/j.redox.2014.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 12/30/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an important anti-inflammatory, antioxidative and cytoprotective enzyme that is regulated by the activation of the major transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In the present study, six stilbene derivatives isolated from Rheum undulatum L. were assessed for their antioxidative potential. In the tert-butylhydroperoxide (t-BHP)-induced RAW 264.7 macrophage cell line, desoxyrhapontigenin was the most potent component that reduced intracellular reactive oxygen species (ROS) and peroxynitrite. In response to desoxyrhapontigenin, the mRNA expression levels of antioxidant enzymes were up-regulated. An electrophoretic mobility shift assay (EMSA) confirmed that desoxyrhapontigenin promoted the DNA binding of Nrf2 and increased the expression of antioxidant proteins and enzymes regulated by Nrf2. Further investigation utilizing specific inhibitors of Akt, p38, JNK and ERK demonstrated that the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediates HO-1 expression. Moreover, the increase in Nrf2 expression mediated by treatment with desoxyrhapontigenin was reversed by Nrf2 or Akt gene knock-down. In the LPS-induced in vivo lung inflammation model, pretreatment with desoxyrhapontigenin markedly ameliorated LPS-induced lung inflammation and histological changes. Immunohistochemical analysis of Nrf2, HO-1 and p65 was conducted and confirmed that treatment with desoxyrhapontigenin induced Nrf2 and HO-1 expression but reduced p65 expression. These findings suggest that desoxyrhapontigenin may be a potential therapeutic candidate as an antioxidant or an anti-inflammatory agent. Enhancement of the levels of antioxidant enzymes by desoxyrhapontigenin. Promotion of DNA binding affinity of Nrf2 in RAW 264.7 macrophages. Induction of HO-1 expression and inhibition of Keap1 by desoxyrhapontigenin via the Akt pathway. Amelioration of LPS-induced inflammatory lung injury in mice.
Collapse
|
16
|
Shin DY, Kim GY, Hwang HJ, Kim WJ, Choi YH. Diallyl trisulfide-induced apoptosis of bladder cancer cells is caspase-dependent and regulated by PI3K/Akt and JNK pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:74-83. [PMID: 24309133 DOI: 10.1016/j.etap.2013.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 05/26/2023]
Abstract
Diallyl trisulfide (DATS) is one of the major organosulfur components of garlic (Allium sativum L.), which inhibits the proliferation of various cancer cells, but the exact mechanisms of this action in human bladder cancer cells still remain largely unresolved. In this study, we investigated how DATS induces apoptosis in T24 human bladder cancer cells in vitro. Treatment of T24 cells with DATS resulted in potent anti-proliferative activity. Additionally, some typical apoptotic characteristics, such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells, were observed. With respect to the mechanism underlying the induction of apoptosis, DATS reduced the expression of anti-apoptotic Bcl-2 and Bcl-xL, and inhibitor of apoptosis protein family proteins, but the expression of pro-apoptotic Bax and death receptor-related proteins was increased compared with the controls. DATS also activated caspase-8 and -9, the respective initiator caspases of the extrinsic and the intrinsic apoptotic pathways. The increase in mitochondrial membrane depolarization was correlated with activation of effector caspase-3 and cleavage of poly-ADP-ribose polymerase, a vital substrate of activated caspase-3. Blockage of caspase activation through treatment with a pan-caspase inhibitor consistently inhibited apoptosis and abrogated growth inhibition in DATS-treated T24 cells. The study further investigated the roles of the phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs) pathways with respect to the apoptotic effect of DATS, and showed that DATS deactivates Akt. Additionally, DATS activates extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK), but not p38 MAPK, in T24 cells. Unlike ERK, JNK inhibitors reversed DATS-induced apoptosis and growth inhibition; however, inhibition of PI3K/Akt notably enhanced the apoptotic action of DATS. The results suggest that the pro-apoptotic activity of DATS is probably regulated by a caspase-dependent cascade through the activation of both intrinsic and extrinsic signaling pathways, which is mediated through the blocking of PI3K/Akt and the activation of the JNK pathway.
Collapse
Affiliation(s)
- Dong Yeok Shin
- Dongnam Institute of Radiological & Medicine Sciences, Busan 619-953, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hye Jin Hwang
- Department of Food and Nutrition, College of Human Ecology, Dongeui University, Busan 614-714, Republic of Korea; Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 361-763, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center & Blue-Bio Industry RIC, Dongeui University, Busan 614-714, Republic of Korea; Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Republic of Korea.
| |
Collapse
|
17
|
Kim JS, Park MR, Lee SY, Kim DK, Moon SM, Kim CS, Cho SS, Yoon G, Im HJ, You JS, Oh JS, Kim SG. Licochalcone A induces apoptosis in KB human oral cancer cells via a caspase-dependent FasL signaling pathway. Oncol Rep 2013; 31:755-62. [PMID: 24337492 PMCID: PMC3983909 DOI: 10.3892/or.2013.2929] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/25/2013] [Indexed: 12/11/2022] Open
Abstract
Licochalcone A (Lico-A) is a natural phenol licorice compound with multiple bioactivities, including anti-inflammatory, anti-microbial, anti-fungal and osteogenesis-inducing properties. In the present study, we investigated the Lico-A-induced apoptotic effects and examined the associated apoptosis pathway in KB human oral cancer cells. Lico-A decreased the number of viable KB oral cancer cells. However, Lico-A did not have an effect on primary normal human oral keratinocytes. In addition, the IC50 value of Lico-A was determined to be ~50 μM following dose-dependent stimulation. KB oral cancer cells stimulated with Lico-A for 24 h showed chromatin condensation by DAPI staining, genomic DNA fragmentation by agarose gel electrophoresis and a gradually increased apoptotic cell population by FACS analysis. These data suggest that Lico-A induces apoptosis in KB oral cancer cells. Additionally, Lico-A-induced apoptosis in KB oral cancer cells was mediated by the expression of factor associated suicide ligand (FasL) and activated caspase-8 and −3 and poly(ADP-ribose) polymerase (PARP). Furthermore, in the KB oral cancer cells co-stimulation with a caspase inhibitor (Z-VAD-fmk) and Lico-A significantly abolished the apoptotic phenomena. Our findings demonstrated that Lico-A-induced apoptosis in KB oral cancer cells involves the extrinsic apoptotic signaling pathway, which involves a caspase-dependent FasL-mediated death receptor pathway. Our data suggest that Lico-A be developed as a chemotherapeutic agent for the management of oral cancer.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Mi-Ra Park
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Sook-Young Lee
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Do Kyoung Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Sung-Min Moon
- Department of Oral Biochemistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Chun Sung Kim
- Department of Oral Biochemistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Seung Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729, Republic of Korea
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jae-Seek You
- Department of Oral and Maxillofacial Surgery, Chosun University, Gwangju 501-759, Republic of Korea
| | - Ji-Su Oh
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Su-Gwan Kim
- Regional Innovation Center for Dental Science and Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| |
Collapse
|
18
|
Moon SM, Yun SJ, Kook JK, Kim HJ, Choi MS, Park BR, Kim SG, Kim BO, Lee SY, Ahn H, Chun HS, Kim DK, Kim CS. Anticancer activity of Saussurea lappa extract by apoptotic pathway in KB human oral cancer cells. PHARMACEUTICAL BIOLOGY 2013; 51:1372-1377. [PMID: 23855888 DOI: 10.3109/13880209.2013.792847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT Saussurea lappa Dence (Compositae) is used as a traditional herbal medicine to treat abdominal pain and tenesmus in East Asia. Current studies have shown that S. lappa has anticancer activity in divergent of cancer cells. However, the effects of S. lappa on oral cancer and its mechanisms of action have yet to be elucidated. OBJECTIVE To explore its potential chemotherapeutic effects and mechanism of cell growth inhibition on human oral cancer cells. MATERIALS AND METHODS The dried roots of S. lappa were used in this study. Cell viability of KB cells was evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assay after treatment with 30 µg/ml of methanol extract from the dried roots of S. lappa. To understand whether its effect on cell death is related with apoptosis pathway, we performed DNA fragmentation assay, western blot, caspase activity assay and fluorescence-activated cell sorting (FACS) analysis. RESULTS Treatment of S. lappa extract onto KB cells reduced cell viability significantly with an IC50 value of 30 µg/ml. The formation of a DNA ladder was observed starting at the 24 h treatment. In western blotting analysis, the S. lappa extract induced the proteolytic processing of caspase-3, -9 and poly (ADP-ribose) polymerase, a significant increase of Bax and marked reduction of Bcl-2. We also confirmed the activation of caspase-3/-7 in living KB cells by fluorescence microscopy. CONCLUSION These results suggested that S. lappa extract inhibited cell proliferation through the apoptosis pathway in KB human oral cancer cells.
Collapse
Affiliation(s)
- Sung-Min Moon
- Oral Biology Research Institute, Chosun University , Dong-Gu, Gwangju , Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shiezadeh F, Mousavi SH, Amiri MS, Iranshahi M, Tayarani-Najaran Z, Karimi G. Cytotoxic and Apoptotic Potential of Rheum turkestanicum Janisch Root Extract on Human Cancer and Normal Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2013; 12:811-9. [PMID: 24523761 PMCID: PMC3920695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Rheum turkestanicum Janischew. (Polygonaceae) is a plant that grows in central Asia and in north-east of Iran. Traditionally, people use roots of R. turkestanicum as an anti-diabetic and anti-hypertensive as well as anticancer agent. In this study the cytotoxicity and apoptogenic properties of ethyl acetate (EtOAc), n-hexane and H2O extracts from Rheum turkestanicum Janischew. (Polygonaceae) root were determined against HeLa and MCF-7 cell lines and human blood lymphocytes. Malignant and non-malignant cells were cultured in RPMI 1640 medium and incubated with different concentrations of plant extracts. Cell viability was measured by MTS assay. Apoptotic cells were evaluated using PI staining of DNA fragmentation by flow cytometry (sub-G1 peak). The degree of DNA fragmentation was analyzed using agarose gel electrophoresis based on the formation of inter-nucleosomal units. The expression of apoptosis-related protein Bax and PARP cleavage were detected by Western blotting. EtOAc and n-hexane extracts decreased cell viability in malignant but not in non-malignant cells, as a concentration and time dependent manner. EtOAc extract induced a sub-G1 peak in flow cytometry histogram of treated cells compared to the control. DNA fragmentation indicating apoptotic cell death was involved in R. turkestanicum induced toxicity and cleaved PARP fragment was also detected. In conclusion, this is the first report on the cytotoxic effects of R. turkestanicum in which apoptosis played an important role. However, further evaluations are needed to fully understand the possible anti-tumor properties.
Collapse
Affiliation(s)
- Farideh Shiezadeh
- Pharmacological Research Centre of Medicinal Plants, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran.
| | - Seyed Hadi Mousavi
- Pharmacological Research Centre of Medicinal Plants, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran.
| | | | - Mehrdad Iranshahi
- Biotechnology Research Center and School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad, University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Medical Toxicology Research Center and Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran. ,Corresponding author: E-mail:
| |
Collapse
|
20
|
Hsu SC, Chung JG. Anticancer potential of emodin. Biomedicine (Taipei) 2012; 2:108-116. [PMID: 32289000 PMCID: PMC7104001 DOI: 10.1016/j.biomed.2012.03.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/06/2012] [Accepted: 03/28/2012] [Indexed: 02/08/2023] Open
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical research due to its low toxicity, low number of side effects, and low cost. Many components of common fruits and vegetables play well-documented roles as chemopreventive or chemotherapeutic agents that suppress tumorigenesis. Anthraquinones are commonly extracted from the Polygonaceae family of plants, e.g., Rheum palmatum and Rheum officinale. Some of the major chemical components of anthraquinone and its derivatives, such as aloe-emodin, danthron, emodin, chrysophanol, physcion, and rhein, have demonstrated potential anticancer properties. This review evaluates the pharmacological effects of emodin, a major component of Aloe vera. In particular, emodin demonstrates anti-neoplastic, anti-inflammatory, anti-angiogenesis, and toxicological potential for use in pharmacology, both in vitro and in vivo. Emodin demonstrates cytotoxic effects (e.g., cell death) through the arrest of the cell cycle and the induction of apoptosis in cancer cells. The overall molecular mechanisms of emodin include cell cycle arrest, apoptosis, and the promotion of the expression of hypoxia-inducible factor 1α, glutathione S-transferase P, N-acetyltransferase, and glutathione phase I and II detoxification enzymes while inhibiting angiogenesis, invasion, migration, chemical-induced carcinogen-DNA adduct formation, HER2/neu, CKII kinase, and p34cdc2 kinase in human cancer cells. Hopefully, this summary will provide information regarding the actions of emodin in cancer cells and broaden the application potential of chemotherapy to additional cancer patients in the future.
Collapse
Affiliation(s)
- Shu-Chun Hsu
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
21
|
Chae JI, Cho JH, Lee KA, Choi NJ, Seo KS, Kim SB, Lee SH, Shim JH. Role of transcription factor Sp1 in the quercetin-mediated inhibitory effect on human malignant pleural mesothelioma. Int J Mol Med 2012; 30:835-41. [PMID: 22842769 DOI: 10.3892/ijmm.2012.1075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/25/2012] [Indexed: 11/05/2022] Open
Abstract
Quercetin (Qu) is found in plants, including red onions and in the skins of red apples, and induces the apoptosis of certain malignant cells. However, no report has been issued on the apoptotic effect of Qu on human malignant pleural mesothelioma. In the present study, it was found that MSTO-211H mesothelioma cell viability was reduced and apoptotic cell death was increased by Qu (20-80 µM), which was found to have an IC₅₀ of 58 µM. In addition, Qu increased the sub-G₁ cell population, and was found to interact with specificity protein 1 (Sp1) and significantly suppressed its expression at the protein and mRNA levels. Furthermore, Qu modulated the levels of Sp1 regulatory genes, such as cyclin D1, myeloid cell leukemia (Mcl)-1 and survivin in MSTO-211H cells. Apoptotic signaling cascades were activated by the cleavage of Bid, caspase-3 and PARP, and by the downregulation of Bcl-xL and the upregulation of Bax in MSTO-211H cells. Our results strongly suggest that Sp1 be considered as a novel molecular target of Qu in human malignant pleural mesothelioma.
Collapse
Affiliation(s)
- Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
OCT4 Expression Enhances Features of Cancer Stem Cells in a Mouse Model of Breast Cancer. Lab Anim Res 2011; 27:147-52. [PMID: 21826175 PMCID: PMC3145994 DOI: 10.5625/lar.2011.27.2.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 01/15/2023] Open
Abstract
The cancer stem cell (CSC) hypothesis proposes that CSCs are responsible for metastasis and disease recurrence. Therefore, targeting CSCs has the potential to significantly improve outcomes for cancer patients. The OCT4 transcription factor gene is a master gene that plays a key role in the self-renewal and pluripotency of stem cells. In this study, we introduced an OCT4 reporting vector into 4T1 mouse breast cancer cells and sorted OCT4 high and OCT4 low cell populations. We then determined whether OCT4 expression is associated with maintenance and expansion of CSCs. We found that OCT4high 4T1 cells have an increased ability to form tumorsphere and a high expression of stem cell markers such as Sca-1, CD133, CD34, and ALDH1, when compared with OCT4low 4T1 cells. In addition, OCT4high 4T1 cells have greater tumorigenic potential in vivo. These findings suggest that OCT4 expression may be a useful target for stem cell-specific cancer therapy.
Collapse
|