1
|
Xu W, Yan J, Travis ZD, Lenahan C, Gao L, Wu H, Zheng J, Zhang J, Shao A, Yu J. Apelin/APJ system: a novel promising target for anti-oxidative stress in stroke. Front Pharmacol 2025; 15:1352927. [PMID: 39881878 PMCID: PMC11775478 DOI: 10.3389/fphar.2024.1352927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
The apelin/APJ system has garnered increasing attention in recent years. In this review, we comprehensively discuss the physiological and pathological mechanisms of the apelin/APJ system in stroke. The apelin/APJ system is widely expressed in the central nervous system (CNS). However, the distribution of the apelin/APJ system varies across different regions and subcellular organelles of the brain. Additionally, the neuroprotective effects of the apelin/APJ system have been reported to inhibit oxidative and nitrative stresses via various signaling pathways. Despite this, the clinical application of the apelin/APJ system remains distant, as apelin has numerous active forms and signaling pathways. The development of a range of drugs targeting the apelin/APJ system holds promise for treating stroke.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Zachary D. Travis
- Department of Medical Science Education, College of Health Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, New Mexico State University, Las Cruces, NM, United States
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Haijian Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Jun Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Lin P, Lin C, Diao L. RBM3 Ameliorates Acute Brain Injury-induced Inflammation and Oxidative Stress by Stabilizing GAS6 mRNA Through Nrf2 Signaling Pathway. Neuroscience 2024; 547:74-87. [PMID: 38555015 DOI: 10.1016/j.neuroscience.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
RNA-binding motif protein 3 (RBM3), as a cold-inducible protein, exhibits neuroprotective function in brain disorders. This study was conducted to investigate the effects of RBM3 on acute brain injury (ABI) and its underlying mechanism. The cerebral injury (CI) rat model and oxygen-glucose deprivation (OGD) cell model were established. The neurological severity score, wire-grip score, morris water maze test, and Y-maze test were used to detect the neurological damage, vestibular motor, learning, and memory functions. Cerebral injury, apoptosis, oxidative stress, and inflammatory level were evaluated by hematoxylin-eosin and TUNEL staining and specific kits. Flow cytometry was used to analyze the apoptosis rate. The relationship between RBM3 and growth arrest specific (GAS) 6 was analyzed by RNA immunoprecipitation assay. The results indicated that RBM3 recovered of neurological function and behaviour impairment of CI rats. Additionally, RBM3 reversed the increased oxidative stress, inflammatory level, and apoptosis induced by CI and OGD. RBM3 interacted with GAS6 to activate the Nrf2 signaling pathway, thus playing neuroprotection on ABI. Besides, the results of RBM3 treatment were similar to those of mild hypothermia treatment. In summary, RBM3 exerted neuroprotection and ameliorated inflammatory levels and oxidative stress by stabilizing GAS6 mRNA through the Nrf2 signaling pathway, suggesting that RBM3 might be a potential therapeutic candidate for treating ABI.
Collapse
Affiliation(s)
- Pingqing Lin
- Department Of Emergency, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China.
| | - Chengshi Lin
- Department Of Emergency, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China
| | - Liangbiao Diao
- Department Of Nephrology, Fuzhou Second General Hospital, Fuzhou City, Fujian Province 350007, China
| |
Collapse
|
3
|
Montemurro N, Aliaga N, Graff P, Escribano A, Lizana J. New Targets and New Technologies in the Treatment of Parkinson's Disease: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:8799. [PMID: 35886651 PMCID: PMC9321220 DOI: 10.3390/ijerph19148799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, whose main neuropathological finding is pars compacta degeneration due to the accumulation of Lewy bodies and Lewy neurites, and subsequent dopamine depletion. This leads to an increase in the activity of the subthalamic nucleus (STN) and the internal globus pallidus (GPi). Understanding functional anatomy is the key to understanding and developing new targets and new technologies that could potentially improve motor and non-motor symptoms in PD. Currently, the classical targets are insufficient to improve the entire wide spectrum of symptoms in PD (especially non-dopaminergic ones) and none are free of the side effects which are not only associated with the procedure, but with the targets themselves. The objective of this narrative review is to show new targets in DBS surgery as well as new technologies that are under study and have shown promising results to date. The aim is to give an overview of these new targets, as well as their limitations, and describe the current studies in this research field in order to review ongoing research that will probably become effective and routine treatments for PD in the near future.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Nelida Aliaga
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Pablo Graff
- Functional Neurosurgery Program, Department of Neurosurgery, San Miguel Arcángel Hospital, Buenos Aires B1406, Argentina;
| | - Amanda Escribano
- Medicine Faculty, Austral University, Buenos Aires B1406, Argentina; (N.A.); (A.E.)
| | - Jafeth Lizana
- Department of Neurosurgery, Hospital Nacional Guillermo Almenara Irigoyen, Lima 07035, Peru;
- Medicine Faculty, Universidad Nacional Mayor de San Marcos, Lima 07035, Peru
| |
Collapse
|
4
|
Inhibiting PDE7A Enhances the Protective Effects of Neural Stem Cells on Neurodegeneration and Memory Deficits in Sevoflurane-Exposed Mice. eNeuro 2021; 8:ENEURO.0071-21.2021. [PMID: 34135002 PMCID: PMC8266220 DOI: 10.1523/eneuro.0071-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/03/2022] Open
Abstract
Sevoflurane is widely used in general anesthesia, especially for children. However, prolonged exposure to sevoflurane is reported to be associated with adverse effects on the development of brain in infant monkey. Neural stem cells (NSCs), with potent proliferation, differentiation, and renewing ability, provide an encouraging tool for basic research and clinical therapies for neurodegenerative diseases. We aim to explore the functional effects of injecting NSCs with phosphodiesterase 7A (PDE7A) knock-down in infant mice exposed to sevoflurane. The effects of PDE7A in NSCs proliferation and differentiation were determined by cell counting kit-8 (CCK-8) assay and differentiation-related gene expression assay, respectively. The effects of NSCs with modified PDE7A on mice’s long-term memory and learning ability were assessed by behavioral assays. Our data demonstrated that depleting PDE7A promoted, whereas forcing PDE7A suppressed the activation of cAMP/cAMP-response element binding protein (CREB) signaling as well as cell proliferation and neuronal differentiation of NSCs. Inhibition of PDE7A in NSCs exhibited profound improved effects on long-term memory and learning ability of mice exposed to sevoflurane. Our results for the first time show that knock-down of PDE7A improves the neurogenesis of NSCs in vitro and in vivo, and is beneficial for alleviating sevoflurane-induced brain damage in infant mice.
Collapse
|
5
|
Zhou Y, Yao Y, Sheng L, Zhang J, Zhang JH, Shao A. Osteopontin as a candidate of therapeutic application for the acute brain injury. J Cell Mol Med 2020; 24:8918-8929. [PMID: 32657030 PMCID: PMC7417697 DOI: 10.1111/jcmm.15641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 06/05/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023] Open
Abstract
Acute brain injury is the leading cause of human death and disability worldwide, which includes intracerebral haemorrhage, subarachnoid haemorrhage, cerebral ischaemia, traumatic brain injury and hypoxia‐ischaemia brain injury. Currently, clinical treatments for neurological dysfunction of acute brain injury have not been satisfactory. Osteopontin (OPN) is a complex adhesion protein and cytokine that interacts with multiple receptors including integrins and CD44 variants, exhibiting mostly neuroprotective roles and showing therapeutic potential for acute brain injury. OPN‐induced tissue remodelling and functional repair mainly rely on its positive roles in the coordination of pro‐inflammatory and anti‐inflammatory responses, blood‐brain barrier maintenance and anti‐apoptotic actions, as well as other mechanisms such as affecting the chemotaxis and proliferation of nerve cells. The blood OPN strongly parallel with the OPN induced in the brain and can be used as a novel biomarker of the susceptibility, severity and outcome of acute brain injury. In the present review, we summarized the molecular signalling mechanisms of OPN as well as its overall role in different kinds of acute brain injury.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lesang Sheng
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Anesthesiology, Neurosurgery and Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Luo S, Du L, Cui Y. Potential Therapeutic Applications and Developments of Exosomes in Parkinson’s Disease. Mol Pharm 2020; 17:1447-1457. [DOI: 10.1021/acs.molpharmaceut.0c00195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siqi Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
7
|
Harris JP, Burrell JC, Struzyna LA, Chen HI, Serruya MD, Wolf JA, Duda JE, Cullen DK. Emerging regenerative medicine and tissue engineering strategies for Parkinson's disease. NPJ Parkinsons Dis 2020; 6:4. [PMID: 31934611 PMCID: PMC6949278 DOI: 10.1038/s41531-019-0105-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease, affecting 1-2% of people over 65. The classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in a loss of their long axonal projections to the striatum. Current treatment strategies such as dopamine replacement and deep brain stimulation (DBS) can only minimize the symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Regenerative medicine-based solutions are being aggressively pursued with the goal of restoring dopamine levels in the striatum, with several emerging techniques attempting to reconstruct the entire nigrostriatal pathway-a key goal to recreate feedback pathways to ensure proper dopamine regulation. Although many pharmacological, genetic, and optogenetic treatments are being developed, this article focuses on the evolution of transplant therapies for the treatment of PD, including fetal grafts, cell-based implants, and more recent tissue-engineered constructs. Attention is given to cell/tissue sources, efficacy to date, and future challenges that must be overcome to enable robust translation into clinical use. Emerging regenerative medicine therapies are being developed using neurons derived from autologous stem cells, enabling the construction of patient-specific constructs tailored to their particular extent of degeneration. In the upcoming era of restorative neurosurgery, such constructs may directly replace SNpc neurons, restore axon-based dopaminergic inputs to the striatum, and ameliorate motor deficits. These solutions may provide a transformative and scalable solution to permanently replace lost neuroanatomy and improve the lives of millions of people afflicted by PD.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - Laura A. Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - John A. Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Parkinson’s Disease Research, Education, and Clinical Center (PADRECC), Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
8
|
Xu W, Gao L, Li T, Shao A, Zhang J. Neuroprotective Role of Agmatine in Neurological Diseases. Curr Neuropharmacol 2018; 16:1296-1305. [PMID: 28786346 PMCID: PMC6251039 DOI: 10.2174/1570159x15666170808120633] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Background: Neurological diseases have always been one of the leading cause of mobility and mortality world-widely. However, it is still lacking efficient agents. Agmatine, an endogenous polyamine, exerts its diverse biological characteristics and therapeutic potential in varied aspects. Methods: This review would focus on the neuroprotective actions of agmatine and its potential mechanisms in the setting of neurological diseases. Results: Numerous studies had demonstrated the neuroprotective effect of agmatine in varied types of neurological diseases, including acute attack (stroke and trauma brain injury) and chronic neurodegenerative diseases (Parkinson's disease, Alz-heimer’s disease). The potential mechanism of agmatine induced neuroprotection includes anti-oxidation, anti-apoptosis, anti-inflammation, brain blood barrier (BBB) protection and brain edema prevention. Conclusions: The safety and low incidence of adverse effects indicate the vast potential therapeutic value of agmatine in the treatment of neurological diseases. However, most of the available studies relate to the agmatine are conducted in experi-mental models, more clinical trials are needed before the agmatine could be extensively clinically used
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Xu W, Gao L, Zheng J, Li T, Shao A, Reis C, Chen S, Zhang J. The Roles of MicroRNAs in Stroke: Possible Therapeutic Targets. Cell Transplant 2018; 27:1778-1788. [PMID: 29871520 PMCID: PMC6300776 DOI: 10.1177/0963689718773361] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stroke is one of the most devastating diseases worldwide. In recent years, a great number of studies have focused on the effects of microRNAs (miRNAs) on stroke and the results demonstrated that the expressions of miRNAs are associated with the prognosis of stroke. In the present study, we review relevant articles regarding miRNAs and stroke and will explain the complex link between both. The miRNAs participate extensively in the pathophysiology following the stroke, including apoptosis, neuroinflammation, oxidative stress, blood–brain barrier (BBB) disruption and brain edema. The information about the stroke–miRNA system may be helpful for therapeutic and diagnostic methods in stroke treatment.
Collapse
Affiliation(s)
- Weilin Xu
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liansheng Gao
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwei Zheng
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Li
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cesar Reis
- 4 Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Sheng Chen
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- 1 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,2 Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang, China.,3 Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Pang AL, Xiong LL, Xia QJ, Liu F, Wang YC, Liu F, Zhang P, Meng BL, Tan S, Wang TH. Neural Stem Cell Transplantation Is Associated with Inhibition of Apoptosis, Bcl-xL Upregulation, and Recovery of Neurological Function in a Rat Model of Traumatic Brain Injury. Cell Transplant 2018; 26:1262-1275. [PMID: 28933221 PMCID: PMC5657736 DOI: 10.1177/0963689717715168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) is a common disease that usually causes severe neurological damage, and current treatment is far from satisfactory. The neuroprotective effects of neural stem cell (NSC) transplantation in the injured nervous system have largely been known, but the underlying mechanisms remain unclear, and their limited sources impede their clinical application. Here, we established a rat model of TBI by dropping a weight onto the cortical motor area of the brain and explored the effect of engrafted NSCs (passage 3, derived from the hippocampus of embryonic 12- to 14-d green fluorescent protein transgenic mice) on TBI rats. Moreover, RT-PCR and Western blotting were employed to investigate the possible mechanism associated with NSC grafts. We found rats with TBI exhibited a severe motor and equilibrium dysfunction, while NSC transplantation could partly improve the motor function and significantly reduce cell apoptosis and increase B-cell lymphoma–extra large (Bcl-xL) expression at 7 d postoperation. However, other genes including Bax, B-cell lymphoma 2, Fas ligand, and caspase3 did not exhibit significant differences in expression. Moreover, to test whether Bcl-xL could be used as a therapeutic target, herpes simplex virus (HSV) 1 carrying Bcl-xL recombinant was constructed and injected into the pericontusional cortices. Bcl-xL overexpression not only resulted in a significant improvement in neurological function but also inhibits cell apoptosis, as compared with the TBI rats, and exhibits the same effects as the administration of NSC. The present study therefore indicated that NSC transplantation could promote the recovery of TBI rats in a manner similar to that of Bcl-xL overexpression. Therefore, Bcl-xL overexpression, to some extent, could be considered as a useful strategy to replace NSC grafting in the treatment of TBI in future clinical practices.
Collapse
Affiliation(s)
- Ai-Lan Pang
- 1 Department of Neurology, Zhujiang Hospital Southern Medical University, Guangzhou, Guangdong, China.,4 Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Liu-Lin Xiong
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xia
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fen Liu
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - You-Cui Wang
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Liu
- 3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Piao Zhang
- 2 Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Bu-Liang Meng
- 5 Department of Human Anatomy Histology and Embryology, Kunming Medical University, Kunming, China
| | - Sheng Tan
- 1 Department of Neurology, Zhujiang Hospital Southern Medical University, Guangzhou, Guangdong, China
| | - Ting-Hua Wang
- 2 Institute of Neuroscience, Kunming Medical University, Kunming, China.,3 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Tree shrew neural stem cell transplantation promotes functional recovery of tree shrews with a hemi‑sectioned spinal cord injury by upregulating nerve growth factor expression. Int J Mol Med 2018. [PMID: 29532893 PMCID: PMC5881798 DOI: 10.3892/ijmm.2018.3553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to determine the effect of implanted neural stem cells (NSCs) on the functional recovery of tree shrews (TSs) subjected to hemi-sectioned spinal cord injury (hSCI), and to investigate the possible mechanism involved. NSCs (passage 2), derived from the hippocampus of TSs (embryonic day 20), were labeled with Hoechst 33342 and transplanted intraspinally into the hSC of TSs at thoracic level 10 in the acute (immediately after injury) and chronic (day 9 post-injury) stages. The Basso-Beattie-Bresnahan (BBB) score was recorded from days 1 to 16 post-injury, and the survival, migration, differentiation and neurotrophic factor (NTF) expression in vivo were detected. In vitro and in vivo, the expanded NSCs were able to differentiate into neurons and astrocytes, and secreted a variety of NTFs, including ciliary NTF, transforming growth factor-β1, glial cell line-derived NTF, nerve growth factor (NGF), brain-derived NTF and insulin-like growth factor. Following transplantation, the BBB score in the TSs with chronic-stage transplantation exhibited a statistically significant increase, while there was no significant difference in the acute group, compared with the control group. This corresponded with the marked upregulation of NGF indicated by reverse transcription-quantitative polymerase chain reaction. In conclusion, the transplantation of NSCs into the hSC in the chronic phase, but not the acute stage, of hSCI in non-human primate TSs is effective and associated with upregulated NGF expression. These findings may provide novel strategies for the treatment of SCI in clinical patients.
Collapse
|
12
|
Neuroprotective Effects of Stem Cells in Ischemic Stroke. Stem Cells Int 2017; 2017:4653936. [PMID: 28757878 PMCID: PMC5512103 DOI: 10.1155/2017/4653936] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/11/2017] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke, the most common subtype of stroke, has been one of the leading causes of mobility and mortality worldwide. However, it is still lacking of efficient agents. Stem cell therapy, with its vigorous advantages, has attracted researchers around the world. Numerous experimental researches in animal models of stroke have demonstrated the promising efficacy in treating ischemic stroke. The underlying mechanism involved antiapoptosis, anti-inflammation, promotion of angiogenesis and neurogenesis, formation of new neural cells and neuronal circuitry, antioxidation, and blood-brain barrier (BBB) protection. This review would focus on the types and neuroprotective actions of stem cells and its potential mechanisms for ischemic stroke.
Collapse
|
13
|
Jeon SY, Hwang KA, Kim CW, Jeung EB, Choi KC. Altered expression of epithelial mesenchymal transition and pluripotent associated markers by sex steroid hormones in human embryonic stem cells. Mol Med Rep 2017; 16:828-836. [DOI: 10.3892/mmr.2017.6672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/30/2017] [Indexed: 11/05/2022] Open
|
14
|
Zhang M, Liu X, Huang J, Wang L, Shen H, Luo Y, Li Z, Zhang H, Deng Z, Zhang Z. Ultrasmall graphene oxide based T 1 MRI contrast agent for in vitro and in vivo labeling of human mesenchymal stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2475-2483. [PMID: 28552648 DOI: 10.1016/j.nano.2017.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/08/2017] [Accepted: 03/03/2017] [Indexed: 01/08/2023]
Abstract
Herein, we report on development of a two-dimensional nanomaterial graphene oxide (GO)-based T1 magnetic resonance imaging (MRI) contrast agent (CA) for in vitro and in vivo labeling of human mesenchymal stem cells (hMSCs). The CA was synthesized by PEGylation of ultrasmall GO, followed by conjugation with a chelating agent DOTA and then gadolinium(III) to form GO-DOTA-Gd complexes. Thus-prepared GO-DOTA-Gd complexes exhibited significantly improved T1 relaxivity, and the r1 value was 14.2 mM-1s-1 at 11.7 T, approximately three times higher than Magnevist, a commercially available CA. hMSCs can be effectively labeled by GO-DOTA-Gd, leading to remarkably enhanced cellular MRI effect without obvious adverse effects on proliferation and differentiation of hMSCs. More importantly, in vivo experiment revealed that intracranial detection of 5×105 hMSCs labeled with GO-DOTA-Gd is achieved. The current work demonstrates the feasibility of the GO-based T1 MRI CA for stem cell labeling, which may find potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Mengxin Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoyun Liu
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Huang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Lina Wang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - He Shen
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yu Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhenjun Li
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Hailu Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zongwu Deng
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhijun Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.
| |
Collapse
|
15
|
Pires AO, Teixeira FG, Mendes-Pinheiro B, Serra SC, Sousa N, Salgado AJ. Old and new challenges in Parkinson's disease therapeutics. Prog Neurobiol 2017; 156:69-89. [PMID: 28457671 DOI: 10.1016/j.pneurobio.2017.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 03/15/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and/or loss od neuronal projections, in several dopaminergic networks. Current treatments for idiopathic PD rely mainly on the use of pharmacologic agents to improve motor symptomatology of PD patients. Nevertheless, so far PD remains an incurable disease. Therefore, it is of utmost importance to establish new therapeutic strategies for PD treatment. Over the last 20 years, several molecular, gene and cell/stem-cell therapeutic approaches have been developed with the aim of counteracting or retarding PD progression. The scope of this review is to provide an overview of PD related therapies and major breakthroughs achieved within this field. In order to do so, this review will start by focusing on PD characterization and current treatment options covering thereafter molecular, gene and cell/stem cell-based therapies that are currently being studied in animal models of PD or have recently been tested in clinical trials. Among stem cell-based therapies, those using MSCs as possible disease modifying agents for PD therapy and, specifically, the MSCs secretome contribution to meet the clinical challenge of counteracting or retarding PD progression, will be more deeply explored.
Collapse
Affiliation(s)
- Ana O Pires
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - F G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - B Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Sofia C Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
16
|
Yun JW, Ahn JB, Kwon E, Ahn JH, Park HW, Heo H, Park JS, Kim H, Paek SH, Kang BC. Behavior, PET and histology in novel regimen of MPTP marmoset model of Parkinson's disease for long-term stem cell therapy. Tissue Eng Regen Med 2015; 13:100-109. [PMID: 30603390 DOI: 10.1007/s13770-015-0106-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Stem cell technologies are particularly attractive in Parkinson's disease (PD) research although they occasionally need long-term treatment for anti-parkinsonian activity. Unfortunately, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) widely used as a model for PD has several limitations, including the risk of dose-dependent mortality and the difficulty of maintenance of PD symptoms during the whole experiment period. Therefore, we tested if our novel MPTP regimen protocol (2 mg/kg for 2 consecutive days and 1 mg/kg for next 3 consecutive days) can be maintained stable parkinsonism without mortality for long-term stem cell therapy. For this, we used small-bodied common marmoset monkeys (Callithrix jacchus) among several nonhuman primates showing high anatomical, functional, and behavioral similarities to humans. Along with no mortality, the behavioral changes involved in PD symptoms were maintained for 32 weeks. Also, the loss of jumping ability of the MPTP-treated marmosets in the Tower test was not recovered by 32 weeks. Positron emission tomography (PET) analysis revealed that remarkable decreases of bindings of 18F-FP-CIT were observed at the striatum of the brains of the marmosets received MPTP during the full period of the experiment for 32 weeks. In the substantia nigra of the marmosets, the loss of tyrosine hydroxylase (TH) immunoreactivity was also observed at 32 weeks following the MPTP treatment. In conclusion, our low-dose MPTP regimen protocol was found to be stable parkinsonism without mortality as evidenced by behavior, PET, and TH immunohistochemistry. This result will be useful for evaluation of possible long-term stem cell therapy for anti-parkinsonian activity.
Collapse
Affiliation(s)
- Jun-Won Yun
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae-Bum Ahn
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,2Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Euna Kwon
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae Hun Ahn
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,2Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung Woo Park
- 3Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hwon Heo
- 4Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Jin-Sung Park
- 5Department of Neurogenetics, Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, St. Leonards, New South Wales, Australia
| | - Hyeonjin Kim
- 4Department of Biomedical Sciences, Seoul National University, Seoul, Korea.,6Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Sun Ha Paek
- 3Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong-Cheol Kang
- 1Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,2Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,7Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|
17
|
Co-treatment with therapeutic neural stem cells expressing carboxyl esterase and CPT-11 inhibit growth of primary and metastatic lung cancers in mice. Oncotarget 2015; 5:12835-48. [PMID: 25544747 PMCID: PMC4350335 DOI: 10.18632/oncotarget.2547] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/29/2014] [Indexed: 01/10/2023] Open
Abstract
In this study, neural stem cells (NSCs)-derived enzyme/prodrug therapy (NDEPT) was used to treat primary lung cancer or metastatic lung cancer in the brain. To confirm the anti-tumor effect of NSCs expressing carboxyl esterase (CE), A549 lung cancer cells were treated with HB1.F3.CE cells and CPT-11. A significant decrease in the viability/proliferation of lung cancer cells was observed compared to negative controls or cells treated with CPT-11 alone. To produce a mouse model of primary lung cancer or lung cancer metastasis to the brain, A549 cells were implanted in the dorsal area of the mouse or right hemisphere. CM-DiI pre-stained stem cells were implanted near the primary lung cancer tumor mass or in the contralateral brain. Two days after stem cells injection, mice were inoculated with CPT-11 (13.5 kg/mouse/day) via intraperitoneal injection. In the primary lung cancer mouse models, tumor mass was 80% lower in response to HB1.F3.CE in conjunction with CPT-11, while it was only reduced by 40% in the group treated with CPT-11 alone. Additionally, therapeutic efficacy of co-treatment with stem cells and CPT-11 was confirmed by detection of apoptosis and necrosis in primary and metastatic lung cancer tissues. By secreting VEGF, tumor cells modulate Erk1/2 and Akt signaling and migration of stem cells. This further increased tumor-selectivity of stem cell/prodrug co-therapy. Overall, these results indicate that NSCs expressing the therapeutic gene may be a powerful tool for treatment of primary lung cancer or metastasis of lung cancer to the brain.
Collapse
|
18
|
Kavanagh JN, Waring EJ, Prise KM. Radiation responses of stem cells: targeted and non-targeted effects. RADIATION PROTECTION DOSIMETRY 2015; 166:110-117. [PMID: 25877536 DOI: 10.1093/rpd/ncv161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal.
Collapse
Affiliation(s)
- J N Kavanagh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - E J Waring
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - K M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| |
Collapse
|
19
|
Yi BR, Kim SU, Choi KC. Additional effects of engineered stem cells expressing a therapeutic gene and interferon-β in a xenograft mouse model of endometrial cancer. Int J Oncol 2015; 47:171-8. [PMID: 25963746 DOI: 10.3892/ijo.2015.2999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in women worldwide. In the present study, we evaluated the effects of neural stem cell-directed enzyme/prodrug therapy (NDEPT) designed to more selectively target endometrial cancer. For this, we employed two different types of neural stem cells (NSCs), HB1.F3.CD and HB1.F3.CD.IFN-β cells. Cytosine deaminase (CD) can convert the non-toxic prodrug, 5-fluorocytosine (5-FC), into a toxic agent, 5-fluorouracil (5-FU), which inhibits DNA synthesis. IFN-β is a powerful cytotoxic cytokine that is released by activated immune cells or lymphocytes. In an animal model xenografted with endometrial Ishikawa cancer cells, the stem cells stained with CM-DiI were injected into nearby tumor masses and 5-FC was delivered by intraperitoneal injection. Co-expression of CD and IFN-β significantly inhibited the growth of cancer (~50-60%) in the presence of 5-FC. Among migration-induced factors, VEGF gene was highly expressed in endometrial cancer cells. Histological analysis showed that the aggressive nature of cancer was inhibited by 5-FC in the mice treated with the therapeutic stem cells. Furthermore, PCNA expression was more decreased in HB1.F3.CD.IFN-β treated mice rather than HB1.F3.CD treated mice. To confirm the in vitro combined effects of 5-FU and IFN-β, 5-FU was treated in Ishikawa cells. 5-FU increased the IFN-β/receptor 2 (IFNAR2) and BXA levels, indicating that 5-FU increased sensitivity of endometrial cancer cells to IFN-β, leading to apoptosis of cancer cells. Taken together, these results provide evidence for the efficacy of therapeutic stem cell-based immune therapy involving the targeted expression of CD and IFN-β genes at endometrial cancer sites.
Collapse
Affiliation(s)
- Bo-Rim Yi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seung U Kim
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
20
|
Maiese K. SIRT1 and stem cells: In the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells 2015; 7:235-242. [PMID: 25815111 PMCID: PMC4369483 DOI: 10.4252/wjsc.v7.i2.235] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/10/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, nervous system disorders, and cancer in association with other diseases such as diabetes mellitus result in greater than sixty percent of the global annual deaths. These noncommunicable diseases also affect at least one-third of the population in low and middle-income countries and lead to hypertension, elevated cholesterol, malignancy, and neurodegenerative disorders such as Alzheimer’s disease and stroke. With the climbing lifespan of the world’s population, increased prevalence of these disorders is expected requiring the development of new therapeutic strategies against these disabling disease entities. Targeting stem cell proliferation for cardiac disease, vascular disorders, cancer, and neurodegenerative disorders is receiving great enthusiasm, especially those that focus upon SIRT1, a mammalian homologue of the yeast silent information regulator-2. Modulation of the cellular activity of SIRT1 can involve oversight by nicotinamide/nicotinic acid mononucleotide adenylyltransferase, mammalian forkhead transcription factors, mechanistic of rapamycin pathways, and cysteine-rich protein 61, connective tissue growth factor, and nephroblastoma over-expressed gene family members that can impact cytoprotective outcomes. Ultimately, the ability of SIRT1 to control the programmed cell death pathways of apoptosis and autophagy can determine not only cardiac, vascular, and neuronal stem cell development and longevity, but also the onset of tumorigenesis and the resistance against chemotherapy. SIRT1 therefore has a critical role and holds exciting prospects for new therapeutic strategies that can offer reparative processes for cardiac, vascular, and nervous system degenerative disorders as well as targeted control of aberrant cell growth during cancer.
Collapse
|
21
|
Qiao LY, Huang FJ, Zhao M, Xie JH, Shi J, Wang J, Lin XZ, Zuo H, Wang YL, Geng TC. A two-year follow-up study of cotransplantation with neural stem/progenitor cells and mesenchymal stromal cells in ischemic stroke patients. Cell Transplant 2014; 23 Suppl 1:S65-72. [PMID: 25333752 DOI: 10.3727/096368914x684961] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy is an emerging therapeutic modality in the treatment of stroke. We assessed the safety and feasibility of the cotransplantation of neural stem/progenitor cells (NSPCs) and mesenchymal stromal cells (MSCs) in patients with ischemic stroke. Eight patients were enrolled in this study. All patients had a hemisphere with infarct lesions located on one side of the territories of the cerebral middle or anterior arteries as revealed with cranial magnetic resonance imaging (MRI). The patients received one of the following two types of treatment: the first treatment involved four intravenous injections of MSCs at 0.5 × 10(6)/kg body weight; the second treatment involved one intravenous injection of MSCs at 0.5 × 10(6)/kg weight followed by three injections of MSCs at 5 × 10(6)/patient and NSPCs at 6 × 10(6)/patient through the cerebellomedullary cistern. The patients' clinical statuses were evaluated with the National Institutes of Health Stroke Scale (NIHSS), the modified Rankin Scale (mRS), and the Barthel index (BI). Six patients were given four cell transplantations. The most common side effect of stem cell transplantation in these six cases was low fever that usually lasted 2-4 days after each therapy. One patient exhibited minor dizziness. All side effects appeared within the first 2-24 h of cell transplantation, and they resolved without special treatment. There was no evidence of neurological deterioration or neurological infection. Most importantly, no tumorigenesis was found at a 2-year follow-up. The neurological functions, disability levels, and daily living abilities of the patients in this study were improved. While these observations support the use of the combination transplantation of NSPCs and MSCs as a safe and feasible method of improving neurological function, further studies that include larger samples, longer follow-ups, and control groups are still needed. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
Collapse
Affiliation(s)
- Li-yan Qiao
- Department of Neurology, Yuquan Hospital of Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Legacz M, Roepke K, Giersig M, Pison U. Contrast Agents and Cell Labeling Strategies for <i>in Vivo</i> Imaging. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/anp.2014.32007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|