1
|
Askarizadeh A, Mashreghi M, Mirhadi E, Mehrabian A, Heravi Shargh V, Badiee A, Alavizadeh SH, Arabi L, Kamali H, Jaafari MR. Surface-modified cationic liposomes with a matrix metalloproteinase-degradable polyethylene glycol derivative improved doxorubicin delivery in murine colon cancer. J Liposome Res 2024; 34:221-238. [PMID: 37647288 DOI: 10.1080/08982104.2023.2247079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
PEGylation is a commonly used approach to prolong the blood circulation time of cationic liposomes. However, PEGylation is associated with the "PEG dilemma", which hinders binding and uptake into tumor cells. The cleavable PEG products are a possible solution to this problem. In the current research, doxorubicin-loaded cationic liposomes (Dox-CLs) surface-conjugated with a matrix metalloproteinase-2 (MMP-2)-sensitive octapeptide linker-PEG derivative were prepared and compared to non-PEGylated and PEGylated CLs in terms of size, surface charge, drug encapsulation and release, uptake, in vivo pharmacokinetics, and anticancer efficacy. It was postulated that PEG deshielding in response to the overexpressed MMP-2 in the tumor microenvironment increases the interaction of protected CLs with cellular membranes and improves their uptake by tumor cells/vasculature. MMP2-responsive Dox-CLs had particle sizes of ∼115-140 nm, surface charges of ∼+25 mV, and encapsulation efficiencies of ∼85-95%. In vitro cytotoxicity assessments showed significantly enhanced uptake and cytotoxicity of PEG-cleavable CLs compared to their non-cleavable PEG-coated counterparts or Caelyx®. Also, the chick chorioallantoic membrane assay showed great antiangiogenesis ability of Dox-CLs leading to target and prevent tumor neovascularization. Besides, in vivo studies showed an effective therapeutic efficacy of PEG-cleavable Dox-CLs in murine colorectal cancer with negligible hematological and histopathological toxicity. Altogether, our results showed that MMP2-responsive Dox-CLs could be served as a promising approach to improve tumor drug delivery and uptake.
Collapse
Affiliation(s)
- Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mehrabian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Heravi Shargh
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Soliman AG, Mahmoud B, Eldin ZE, El-Shahawy AAG, Abdel-Gabbar M. Optimized synthesis characterization and protective activity of quercetin and quercetin–chitosan nanoformula against cardiotoxicity that was induced in male Wister rats via anticancer agent: doxorubicin. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
AbstractThe study’s goal was to look into the protective properties of quercetin (QU) in natural form and QU nanoparticles-loaded chitosan nanoparticles (QU-CHSNPs) against cardiotoxicity. The ionotropic gelation approach was adopted to form QU-CHSNPs. The characterizations were performed using advanced techniques. In vitro, the release profile of QU was studied. Cardiotoxicity was induced by doxorubicin (DOX) and protected via concurrent administration of QU and QU-CHSNPs. The heart's preventive effects of QU and QU-CHSNPs were manifested by a decrease in elevated serum activities of cardiac enzymes, as well as an improvement in the heart's antioxidant defence system and histological changes. The findings substantiated QU-CHSNPs' structure with an entrapment efficiency of 92.56%. The mean of the zeta size distribution was 150 nm, the real average particle size was 50 nm, and the zeta potential value was − 27.9 mV, exhibiting low physical stability. The percent of the free QU-cumulative release was about 70% after 12 h, and QU-CHSNPs showed a 49% continued release with a pattern of sustained release, reaching 98% after 48 h. And as such, QU and QU-CHSNPs restrained the induced cardiotoxicity of DOX in male Wistar rats, with the QU-CHSNPs being more efficient.
Collapse
|
3
|
Yu Y, Guo D, Zhao L. MiR-199 Aggravates Doxorubicin-Induced Cardiotoxicity by Targeting TAF9b. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4364779. [PMID: 35873641 PMCID: PMC9307339 DOI: 10.1155/2022/4364779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
The clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. However, the pathogenic mechanism of DOX and the role of miRNA in DOX-induced cardiotoxicity remain to be further studied. This study aimed to investigate the role of miR-199 in DOX-mediated cardiotoxicity. A mouse model of myocardial cell injury induced by DOX was established. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression changes of miR-199 and TATA-binding protein associated factor 9B (TAF9b) in DOX-induced cardiac injury. Cell apoptosis was detected by TUNEL staining and flow cytometry. The expression levels of apoptosis-related proteins, namely, Bax and Bcl-2, were detected by qPCR. The expression of Beclin-1 and LC3b was detected by western blotting. The binding effect of miR-199 with TAF9b was verified by dual-luciferase reporter gene assay. In this study, overexpression of miR-199 could promote cardiotoxicity. Inhibition of miR-199 could alleviate DOX-mediated myocardial injury. Further studies showed that miR-199 targeted TAF9b. Moreover, miR-199 promoted apoptosis of myocardial cells and aggravated autophagy. Furthermore, we demonstrated that TAF9B knockdown reversed the myocardial protective effect of miR-199 inhibitors. Therefore, miR-199 promoted DOX-mediated cardiotoxicity by targeting TAF9b, thereby aggravating apoptosis and regulating autophagy.
Collapse
Affiliation(s)
- Yangsheng Yu
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Degang Guo
- Emergency Department, Third People's Hospital of Liaocheng City, Liaocheng 252000, China
| | - Lin Zhao
- Department of Cardiology, Sunshine Union Hospital of Weifang, Weifang 261000, Shandong, China
| |
Collapse
|
4
|
Pilz PM, Ward JE, Chang WT, Kiss A, Bateh E, Jha A, Fisch S, Podesser BK, Liao R. Large and Small Animal Models of Heart Failure With Reduced Ejection Fraction. Circ Res 2022; 130:1888-1905. [PMID: 35679365 DOI: 10.1161/circresaha.122.320246] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) describes a heterogenous complex spectrum of pathological conditions that results in structural and functional remodeling leading to subsequent impairment of cardiac function, including either systolic dysfunction, diastolic dysfunction, or both. Several factors chronically lead to HF, including cardiac volume and pressure overload that may result from hypertension, valvular lesions, acute, or chronic ischemic injuries. Major forms of HF include hypertrophic, dilated, and restrictive cardiomyopathy. The severity of cardiomyopathy can be impacted by other comorbidities such as diabetes or obesity and external stress factors. Age is another major contributor, and the number of patients with HF is rising worldwide in part due to an increase in the aged population. HF can occur with reduced ejection fraction (HF with reduced ejection fraction), that is, the overall cardiac function is compromised, and typically the left ventricular ejection fraction is lower than 40%. In some cases of HF, the ejection fraction is preserved (HF with preserved ejection fraction). Animal models play a critical role in facilitating the understanding of molecular mechanisms of how hearts fail. This review aims to summarize and describe the strengths, limitations, and outcomes of both small and large animal models of HF with reduced ejection fraction that are currently used in basic and translational research. The driving defect is a failure of the heart to adequately supply the tissues with blood due to impaired filling or pumping. An accurate model of HF with reduced ejection fraction would encompass the symptoms (fatigue, dyspnea, exercise intolerance, and edema) along with the pathology (collagen fibrosis, ventricular hypertrophy) and ultimately exhibit a decrease in cardiac output. Although countless experimental studies have been published, no model completely recapitulates the full human disease. Therefore, it is critical to evaluate the strength and weakness of each animal model to allow better selection of what animal models to use to address the scientific question proposed.
Collapse
Affiliation(s)
- Patrick M Pilz
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.).,Ludwig Boltzmann Institute at the Center for Biomedical Research, Medical University of Vienna, Austria (P.M.P., A.K., B.K.P.)
| | - Jennifer E Ward
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA (J.E.W., S.F., R.L.)
| | - Wei-Ting Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Taiwan (W.-T.C.).,Department of Cardiology, Chi-Mei Medical Center, Taiwan (W.-T.C.)
| | - Attila Kiss
- Ludwig Boltzmann Institute at the Center for Biomedical Research, Medical University of Vienna, Austria (P.M.P., A.K., B.K.P.)
| | - Edward Bateh
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.)
| | - Alokkumar Jha
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.)
| | - Sudeshna Fisch
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA (J.E.W., S.F., R.L.)
| | - Bruno K Podesser
- Ludwig Boltzmann Institute at the Center for Biomedical Research, Medical University of Vienna, Austria (P.M.P., A.K., B.K.P.)
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA (J.E.W., S.F., R.L.)
| |
Collapse
|
5
|
Xing W, Wen C, Wang D, Shao H, Liu C, He C, Olatunji OJ. Cardiorenal Protective Effect of Costunolide against Doxorubicin-Induced Toxicity in Rats by Modulating Oxidative Stress, Inflammation and Apoptosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072122. [PMID: 35408518 PMCID: PMC9000510 DOI: 10.3390/molecules27072122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Doxorubicin (DXB) is one of the most commonly used anticancer agents for treating solid and hematological malignancies; however, DXB-induced cardiorenal toxicity presents a limiting factor to its clinical usefulness in cancer patients. Costunolide (COST) is a naturally occurring sesquiterpene lactone with excellent anti-inflammatory, antioxidant and antiapoptotic properties. This study evaluated the effect of COST on DXB-induced cardiorenal toxicity in rats. Rats were orally treated with COST for 4 weeks and received weekly 5 mg/kg doses of DXB for three weeks. Cardiorenal biochemical biomarkers, lipid profile, oxidative stress, inflammatory cytokines, histological and immunohistochemical analyses were evaluated. DXB-treated rats displayed significantly increased levels of lipid profiles, markers of cardiorenal dysfunction (aspartate aminotransferase, creatine kinase, lactate dehydrogenase, troponin T, blood urea nitrogen, uric acid and creatinine). In addition, DXB markedly upregulated cardiorenal malondialdehyde, tumor necrosis factor-α, interleukin-1β, interleukin-6 levels and decreased glutathione, superoxide dismutase and catalase activities. COST treatment significantly attenuated the aforementioned alterations induced by DXB. Furthermore, histopathological and immunohistochemical analyses revealed that COST ameliorated the histopathological features and reduced p53 and myeloperoxidase expression in the treated rats. These results suggest that COST exhibits cardiorenal protective effects against DXB-induced injury presumably via suppression of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Wen Xing
- Department of Gerontology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China; (W.X.); (D.W.)
| | - Chaoling Wen
- Anhui Traditional Chinese Medicine College, Wuhu 241001, China;
| | - Deguo Wang
- Department of Gerontology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China; (W.X.); (D.W.)
| | - Hui Shao
- Department of Clinical Laboratory, East China Normal University Affiliated Wuhu Hospital, Wuhu 241001, China;
| | - Chunhong Liu
- The Second Peoples Hospital of Wuhu City, Wuhu 241001, China;
| | - Chunling He
- Department of Endocrinology, Wannan Medical College Affiliated Yijishan Hospital, Wuhu 241001, China
- Correspondence: (C.H.); (O.J.O.)
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai 90110, Thailand
- Correspondence: (C.H.); (O.J.O.)
| |
Collapse
|
6
|
D'Angelo NA, Noronha MA, Câmara MCC, Kurnik IS, Feng C, Araujo VHS, Santos JHPM, Feitosa V, Molino JVD, Rangel-Yagui CO, Chorilli M, Ho EA, Lopes AM. Doxorubicin nanoformulations on therapy against cancer: An overview from the last 10 years. BIOMATERIALS ADVANCES 2022; 133:112623. [PMID: 35525766 DOI: 10.1016/j.msec.2021.112623] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Doxorubicin (DOX) is a natural antibiotic with antineoplastic activity. It has been used for over 40 years and remains one of the most used drugs in chemotherapy for a variety of cancers. However, cardiotoxicity limits its use for long periods. To overcome this limitation, encapsulation in smart drug delivery systems (DDS) brings advantages in comparison with free drug administration (i.e., conventional anticancer drug therapy). In this review, we present the most relevant nanostructures used for DOX encapsulation over the last 10 years, such as liposomes, micelles and polymeric vesicles (i.e., polymersomes), micro/nanoemulsions, different types of polymeric nanoparticles and hydrogel nanoparticles, as well as novel approaches for DOX encapsulation. The studies highlighted here show these nanoformulations achieved higher solubility, improved tumor cytotoxicity, prolonged DOX release, as well as reduced side effects, among other interesting advantages.
Collapse
Affiliation(s)
- Natália A D'Angelo
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana A Noronha
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mayra C C Câmara
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabelle S Kurnik
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Chuying Feng
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - Victor H S Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil; Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Valker Feitosa
- Micromanufacturing Laboratory, Center for Bionanomanufacturing, Institute for Technological Research (IPT), São Paulo, Brazil
| | | | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo (USP), São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, University of Waterloo, 10 Victoria St S, Kitchener, Ontario N2G1C5, Canada
| | - André M Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
7
|
Hwang DJ, Kwon KC, Choi DH, Song HK, Kim KS, Jung YS, Hwang DY, Cho JY. Comparison of intrinsic exercise capacity and response to acute exercise in ICR (Institute of Cancer Research) mice derived from three different lineages. Lab Anim Res 2021; 37:21. [PMID: 34348800 PMCID: PMC8335942 DOI: 10.1186/s42826-021-00094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a laboratory animal resource, the ICR mouse is commonly used in a variety of research fields. However, information on differences in exercise-related characteristics in ICR mice derived from different lineages and the underlying mechanisms remains to be elucidated. In this study, we investigated the intrinsic exercise capacity and a magnitude of response to acute exercise, and sought to identify mechanisms contributing to difference in Korl:ICR (a novel ICR lineage recently established by the National Institute of Food and Drug Safety Evaluation, Korea) and two commercialized ICR lineages derived from different origins (viz., A:ICR mouse from Orient Bio Com, the United States, and B:ICR mouse from Japan SLC Inc., Japan). RESULTS Results showed that despite no significant difference in body weight and weight-proportioned tissue mass of heart and skeletal muscles among groups, the relatively low intrinsic exercise capacity and exaggerated response to acute exercise were identified in B:ICR comparted with Korl:ICR and A:ICR, as reflected by total work and lactate threshold (LT). Also, the mitochondrial efficiency expressed as the complex 1 and complex 1 + 2 respiratory control ratio (RCR) values for cardiac mitochondrial O2 consumption in B:ICR was significantly lower than that in Korl:ICR with higher level of state 2 respiration by glutamate/malate and UCP3 expression in cardiac muscle. CONCLUSIONS Taken together, these results indicate that the intrinsic exercise capacity of ICR mouse varies according to lineages, suggesting the role of cardiac mitochondrial coupling efficiency as a possible mechanism that might contribute to differences in the intrinsic exercise capacity and magnitude of response to exercise.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Exercise Biochemistry Laboratory, Korea National Sport University, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea
| | - Ki-Chun Kwon
- Exercise Biochemistry Laboratory, Korea National Sport University, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea
| | - Dong-Hun Choi
- Exercise Biochemistry Laboratory, Korea National Sport University, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea
| | - Hyun-Keun Song
- Department of Microbiology and Immunology, INJE University College of Medicine, Inje-ro, Gimhae-si, Gyeongsangnam-do, Republic of Korea
| | - Kil-Soo Kim
- College of Veterinary Medicine, Kyungpook National University, Daehak-ro, Buk-gu, Daegu, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Yangjae-daero, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Abu-Khudir R, Ibrahim WM, Shams ME, Salama AF. Trehalose alleviates doxorubicin-induced cardiotoxicity in female Swiss albino mice by suppression of oxidative stress and autophagy. J Biochem Mol Toxicol 2021; 35:e22859. [PMID: 34328254 DOI: 10.1002/jbt.22859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Clinically, the use of doxorubicin (DOX) is limited due to DOX-induced cardiotoxicity (DIC). The current study aimed to evaluate the cardioprotective effect of trehalose (TRE) against DIC in a female Swiss albino mouse model. Mice were divided into five experimental groups: Gp. I: saline control group (200 μl/mouse saline three times per week for 3 weeks day after day), Gp. II: DOX-treated group (2 mg/kg body weight three times per week for 3 weeks day after day), Gp. III: TRE group (200 μg/mouse three times per week for 3 weeks day after day), Gp. IV: DOX + TRE cotreatment group (animals were coadministered with DOX and TRE as in Gp. II and III, respectively), and Gp. V: DOX + TRE posttreatment group (animals were treated with DOX as in Gp. II followed by treatment with TRE as in Gp. III). DOX-treated mice showed significant elevation in cardiac injury biomarkers (lactate dehydrogenase, creatine kinase isoenzyme-MB, and cardiac troponin I), cardiac oxidative stress (OS) markers (malondialdehyde and myeloperoxidase), and cardiac levels of autophagy-related protein 5. Moreover, DOX significantly reduced the levels of total antioxidant capacity and activities of catalase and glutathione S-transferase. In contrast, TRE treatment of DOX-administered mice significantly improved almost all of the above-mentioned assessed parameters. Furthermore, histopathological changes of cardiac tissues observed in mice treated with TRE in combination with DOX were significantly improved as compared to DOX-treated animals. Taken together, the present study provides evidence that TRE has cardioprotective effects against DIC, which is likely mediated via suppression of OS and autophagy.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Chemistry Department, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia.,Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Wafaa M Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohammed E Shams
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| | - Afrah F Salama
- Chemistry Department, Biochemistry Branch, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Alsherbiny MA, Bhuyan DJ, Radwan I, Chang D, Li CG. Metabolomic Identification of Anticancer Metabolites of Australian Propolis and Proteomic Elucidation of Its Synergistic Mechanisms with Doxorubicin in the MCF7 Cells. Int J Mol Sci 2021; 22:ijms22157840. [PMID: 34360606 PMCID: PMC8346082 DOI: 10.3390/ijms22157840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022] Open
Abstract
The combination of natural products with standard chemotherapeutic agents offers a promising strategy to enhance the efficacy or reduce the side effects of standard chemotherapy. Doxorubicin (DOX), a standard drug for breast cancer, has several disadvantages, including severe side effects and the development of drug resistance. Recently, we reported the potential bioactive markers of Australian propolis extract (AP-1) and their broad spectrum of pharmacological activities. In the present study, we explored the synergistic interactions between AP-1 and DOX in the MCF7 breast adenocarcinoma cells using different synergy quantitation models. Biochemometric and metabolomics-driven analysis was performed to identify the potential anticancer metabolites in AP-1. The molecular mechanisms of synergy were studied by analysing the apoptotic profile via flow cytometry, apoptotic proteome array and measuring the oxidative status of the MCF7 cells treated with the most synergistic combination. Furthermore, label-free quantification proteomics analysis was performed to decipher the underlying synergistic mechanisms. Five prenylated stilbenes were identified as the key metabolites in the most active AP-1 fraction. Strong synergy was observed when AP-1 was combined with DOX in the ratio of 100:0.29 (w/w) as validated by different synergy quantitation models implemented. AP-1 significantly enhanced the inhibitory effect of DOX against MCF7 cell proliferation in a dose-dependent manner with significant inhibition of the reactive oxygen species (p < 0.0001) compared to DOX alone. AP-1 enabled the reversal of DOX-mediated necrosis to programmed cell death, which may be advantageous to decline DOX-related side effects. AP-1 also significantly enhanced the apoptotic effect of DOX after 24 h of treatment with significant upregulation of catalase, HTRA2/Omi, FADD together with DR5 and DR4 TRAIL-mediated apoptosis (p < 0.05), contributing to the antiproliferative activity of AP-1. Significant upregulation of pro-apoptotic p27, PON2 and catalase with downregulated anti-apoptotic XIAP, HSP60 and HIF-1α, and increased antioxidant proteins (catalase and PON2) may be associated with the improved apoptosis and oxidative status of the synergistic combination-treated MCF7 cells compared to the mono treatments. Shotgun proteomics identified 21 significantly dysregulated proteins in the synergistic combination-treated cells versus the mono treatments. These proteins were involved in the TP53/ATM-regulated non-homologous end-joining pathway and double-strand breaks repairs, recruiting the overexpressed BRCA1 and suppressed RIF1 encoded proteins. The overexpression of UPF2 was noticed in the synergistic combination treatment, which could assist in overcoming doxorubicin resistance-associated long non-coding RNA and metastasis of the MCF7 cells. In conclusion, we identified the significant synergy and highlighted the key molecular pathways in the interaction between AP-1 and DOX in the MCF7 cells together with the AP-1 anticancer metabolites. Further in vivo and clinical studies are warranted on this synergistic combination.
Collapse
Affiliation(s)
- Muhammad A. Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| | - Ibrahim Radwan
- Faculty of Science and Technology, University of Canberra, Canberra, ACT 2617, Australia;
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia;
- Correspondence: (M.A.A.); (D.J.B.); (C.-G.L.)
| |
Collapse
|
10
|
Kamil M, Fatima A, Ullah S, Ali G, Khan R, Ismail N, Qayum M, Irimie M, Dinu CG, Ahmedah HT, Cocuz ME. Toxicological Evaluation of Novel Cyclohexenone Derivative in an Animal Model through Histopathological and Biochemical Techniques. TOXICS 2021; 9:119. [PMID: 34070633 PMCID: PMC8227666 DOI: 10.3390/toxics9060119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Toxicity studies were conducted to provide safety data of potential drug candidates by determining lethal and toxic doses. This study was designed for pre-clinical evaluation of novel cyclohexenone derivative with respect to the acute and sub-acute toxicity along with the diabetogenic potential. Acute and sub-acute toxicity were assessed after intraperitoneal (i.p) injection of the investigational compound through selected doses for 21 days. This was followed by assessment of isolated body organs (liver, kidney, heart and pancreas) via biochemical indicators and histopathological techniques. No signs of toxicity were revealed in the study of acute toxicity. Similarly, a sub-acute toxicity study showed no significant difference in biochemical indicators on 11th and 21st days between treated and control groups. However, in blood urea nitrogen (BUN) and random blood glucose/sugar (RBS) values, significant differences were recorded. Histopathological evaluation of liver, kidney, pancreas and heart tissues revealed mild to severe changes in the form of steatosis, inflammation, fibrosis, necrosis and myofibrillary damages on 11th and 21st days of treatment. In conclusion, the median lethal dose of the tested compound was expected to be greater than 500 mg/kg. No significant change occurred in selected biomarkers, except BUN and RBS levels, but a histopathological study showed moderate toxic effect on liver, kidney, pancreas and heart tissues by the cyclohexenone derivative.
Collapse
Affiliation(s)
- Muhammad Kamil
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Arifa Fatima
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (M.K.); (A.F.); (G.A.)
| | - Rasool Khan
- Department of Organic Chemistry, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Naila Ismail
- Department of Pathology, Kabir Medical College, Gandhara University, Peshawar 25000, Pakistan;
| | - Mughal Qayum
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Marius Irimie
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
| | | | - Hanadi Talal Ahmedah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Maria Elena Cocuz
- Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania;
| |
Collapse
|
11
|
Chen L, Guo Y, Qu S, Li K, Yang T, Yang Y, Zheng Z, Liu H, Wang X, Deng S, Zhang Y, Zhu X, Li Y. The Protective Effects of Shengmai Formula Against Myocardial Injury Induced by Ultrafine Particulate Matter Exposure and Myocardial Ischemia are Mediated by the PI3K/AKT/p38 MAPK/Nrf2 Pathway. Front Pharmacol 2021; 12:619311. [PMID: 33762941 PMCID: PMC7982744 DOI: 10.3389/fphar.2021.619311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background and Purpose: Ultrafine particulate matter (UFPM) induces oxidative stress (OS) and is considered to be a risk factor of myocardial ischemia (MI). Shengmai formula (SMF) is a traditional Chinese medicine with antioxidant properties and has been used to treat cardiovascular diseases for a long time. The aim of this study was to explore the protective role of SMF and the mechanism by which it prevents myocardial injury in UFPM-exposed rats with MI. Methods: An MI rat model was established. Animals were randomly divided into five groups: sham, UFPM + MI, SMF (1.08 mg/kg⋅d) + UFPM + MI, SMF (2.16 mg/kg⋅d) + UFPM + MI, and SMF (4.32 mg/kg⋅d) + UFPM + MI. SMF or saline was administrated 7 days before UFPM instillation (100 μg/kg), followed by 24 h of ischemia. Physiological and biochemical parameters were measured, and histopathological examinations were conducted to evaluate myocardial damage. We also explored the potential mechanism of the protective role of SMF using a system pharmacology approach and an in vitro myoblast cell model with small molecule inhibitors. Results: UFPM produced myocardial injuries on myocardial infarct size; serum levels of LDH, CK-MB, and cardiac troponin; and OS responses in the rats with MI. Pretreatment with SMF significantly attenuated these damages via reversing the biomarkers. SMF also improved histopathology induced by UFPM and significantly altered the PI3K/AKT/MAPK and OS signaling pathways. The expression patterns of Cat, Gstk1, and Cyba in the UFPM model group were reversed in the SMF-treated group. In in vitro studies, SMF attenuated UFPM-induced reactive oxygen species production, mitochondrial damage, and OS responses. The PI3K/AKT/p38 MAPK/Nrf2 pathway was significantly changed in the SMF group compared with that in the UFPM group, whereas opposite results were obtained for pathway inhibition. Conclusion: These findings indicate that SMF prevents OS responses and exerts beneficial effects against myocardial injury induced by UFPM + MI in rats. Furthermore, the PI3K/AKT/p38 MAPK/Nrf2 signaling pathway might be involved in the protective effects of SMF.
Collapse
Affiliation(s)
- Lina Chen
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Guo
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuiqing Qu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Yang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanmin Yang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Zheng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Liu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xi Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuoqiu Deng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Polymeric micelles coated with hybrid nanovesicles enhance the therapeutic potential of the reversible topoisomerase inhibitor camptothecin in a mouse model. Acta Biomater 2021; 121:579-591. [PMID: 33285325 DOI: 10.1016/j.actbio.2020.11.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022]
Abstract
Nanoparticles with longer blood circulation, high loading capacity, controlled release at the targeted site, and preservation of camptothecin (CPT) in its lactone form are the key characteristics for the effective delivery of CPT. In this regard, natural membrane-derived nanovesicles, particularly those derived from RBC membrane, are important. RBC membrane can be engineered to form vesicles or can be coated over synthetic nanoparticles, without losing their basic structural features and can have prolonged circulation time. Here, we developed a hybrid system to encapsulate CPT inside the amphiphilic micelle and coat it with RBC membrane. Thus, it uses the dual ability of polymeric micelles to preserve CPT in its active form, while maintaining its "stealth" effect due to conserved RBC membrane coating. The hybrid system stabilized 60% of the drug in its active form even after 30 h of incubation in serum, in contrast to 15% active form present in free drug formulation after 1 h of incubation. It showed strong retention inside the Ehrlich Ascites Carcinoma (EAC) mice models for at least 72 h, suggesting camouflaging ability conferred by RBC membrane. Additionally, the nano formulation retarded the tumor growth rate more efficiently than free drug, with no evident signs of necrotic skin lesions. Histopathological analysis showed a significant reduction in cardiac atrophy, hepato-renal degeneration, and lung metastasis, which resulted in the increased overall survival of mice treated with the nano formulation. Hence, CPT-loaded polymeric micelles when coated with RBC membrane can prove to be a better system for the delivery of poorly soluble drug camptothecin.
Collapse
|
13
|
Luu AZ, Luu VZ, Chowdhury B, Kosmopoulos A, Pan Y, Al-Omran M, Quan A, Teoh H, Hess DA, Verma S. Loss of endothelial cell-specific autophagy-related protein 7 exacerbates doxorubicin-induced cardiotoxicity. Biochem Biophys Rep 2021; 25:100926. [PMID: 33553688 PMCID: PMC7851775 DOI: 10.1016/j.bbrep.2021.100926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022] Open
Abstract
Doxorubicin (DOX) is an effective, broad-spectrum antineoplastic agent with serious cardiotoxic side effects, which may lead to the development of heart failure. Current strategies to diagnose, prevent, and treat DOX-induced cardiotoxicity (DIC) are inadequate. Recent evidence has linked the dysregulation and destruction of the vascular endothelium to the development of DIC. Autophagy is a conserved pro-survival mechanism that recycles and removes damaged sub-cellular components. Autophagy-related protein 7 (ATG7) catalyzes autophagosome formation, a critical step in autophagy. In this study, we used endothelial cell-specific Atg7 knockout (EC-Atg7−/−) mice to characterize the role of endothelial cell-specific autophagy in DIC. DOX-treated EC-Atg7−/− mice showed reduced survival and a greater decline in cardiac function compared to wild-type controls. Histological assessments revealed increased cardiac fibrosis in DOX-treated EC-Atg7−/− mice. Furthermore, DOX-treated EC-Atg7−/− mice had elevated serum levels of creatine kinase-myocardial band, a biomarker for cardiac damage. Thus, the lack of EC-specific autophagy exacerbated DIC. Future studies on the relationship between EC-specific autophagy and DIC could establish the importance of endothelium protection in preventing DIC. Recent data suggest that endothelial cells (ECs) may represent a novel target to reduce doxorubicin (DOX)-linked cardiotoxicity. We used EC-specific autophagy-related protein 7 knock-out (EC-Atg7−/−) mice to determine how ATG7 loss in ECs affects DIC. DOX-treated EC-Atg7−/− mice exhibited reduced survival and cardiac function. Cardiac fibrosis and serum creatine kinase-myocardial band levels were increased in DOX-treated EC-Atg7−/− mice. Loss of endothelial Atg7 exacerbated DIC phenotypes.
Collapse
Affiliation(s)
- Albert Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Z Luu
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Biswajit Chowdhury
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Andrew Kosmopoulos
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yi Pan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mohammed Al-Omran
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Division of Vascular Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Molecular Medicine Research Laboratories, Krembil Centre for Stem Cell Biology, Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Liu Q, Liu H, Sacco P, Djaker N, Lamy de la Chapelle M, Marsich E, Li X, Spadavecchia J. CTL-doxorubicin (DOX)-gold complex nanoparticles (DOX-AuGCs): from synthesis to enhancement of therapeutic effect on liver cancer model. NANOSCALE ADVANCES 2020; 2:5231-5241. [PMID: 36132041 PMCID: PMC9419067 DOI: 10.1039/d0na00758g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/29/2020] [Indexed: 06/15/2023]
Abstract
In this work, we bring back a rapid way to conceive doxorubicin (DOX) hybrid gold nanoparticles, in which DOX and Au(iii) ions were complexed with a hydrochloride-lactose-modified chitosan, named CTL and dicarboxylic acid-terminated polyethylene-glycol (PEG), leading to hybrid polymer-sugar-metal nanoparticles (DOX-AuGSs). All formulations were assessed by spectroscopic techniques (Raman and UV-Vis) and transmission electron microscopy (TEM). To estimate the therapeutic effect of DOX-AuGSs in liver cancer, murine HepG2 cells were used to induce a hepatic carcinoma model in nude mice. The survival time of the tumor-bearing mice, body weight and tumor volume were measured and recorded. The cytokines were used to detect the serum inflammatory factors, and the blood cell analyzer was used to determine the blood cell content of different groups of nude mice. The outcomes demonstrate that DOX-AuGCs significantly suppressed the tumor growth derived from human HepG2 injection and reduce the tumor index without affecting the body weight of mice. Moreover, DOX-AuGCs significantly reduced the serum levels of cytokines IL-6, TNF-α and IL-12 P70. Finally, a histological analysis of the heart tissue sections indicated that DOX-AuGCs significantly reduce the chronic myocardial toxicity of DOX during the period of treatment.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord Bobigny France
- IMMM - UMR 6283 CNRS, Université du Mans Avenue Olivier Messiaen 72085 Le Mans, Cedex 9 France
| | - Hui Liu
- Department of Hepato-biliary Surgery, Shenzhen University General Hospital, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Shenzhen 518055 China
- IMMM - UMR 6283 CNRS, Université du Mans Avenue Olivier Messiaen 72085 Le Mans, Cedex 9 France
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste Via L. Giorgieri 5 I-34127 Trieste Italy
- IMMM - UMR 6283 CNRS, Université du Mans Avenue Olivier Messiaen 72085 Le Mans, Cedex 9 France
| | - Nadia Djaker
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord Bobigny France
- IMMM - UMR 6283 CNRS, Université du Mans Avenue Olivier Messiaen 72085 Le Mans, Cedex 9 France
| | - Marc Lamy de la Chapelle
- Department of Medicine, Surgery and Health Sciences, University of Trieste Piazzale Europa 1 I-34127 Trieste Italy
- IMMM - UMR 6283 CNRS, Université du Mans Avenue Olivier Messiaen 72085 Le Mans, Cedex 9 France
| | - Eleonora Marsich
- Department of Life Sciences, University of Trieste Via L. Giorgieri 5 I-34127 Trieste Italy
- IMMM - UMR 6283 CNRS, Université du Mans Avenue Olivier Messiaen 72085 Le Mans, Cedex 9 France
| | - Xiaowu Li
- Department of Hepato-biliary Surgery, Shenzhen University General Hospital, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Shenzhen 518055 China
- IMMM - UMR 6283 CNRS, Université du Mans Avenue Olivier Messiaen 72085 Le Mans, Cedex 9 France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Nord Bobigny France
- IMMM - UMR 6283 CNRS, Université du Mans Avenue Olivier Messiaen 72085 Le Mans, Cedex 9 France
| |
Collapse
|
15
|
Anthracycline-Related Heart Failure: Certain Knowledge and Open Questions : Where Do we Stand with Chemotherapyinduced Cardiotoxicity? Curr Heart Fail Rep 2020; 17:357-364. [PMID: 32964378 PMCID: PMC7683464 DOI: 10.1007/s11897-020-00489-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
In the last decade, cardio-oncology has become a discipline on its own, with tremendous research going on to unravel the mechanisms underpinning different manifestations of cardiotoxicity caused by anticancer drugs. Although this domain is much broader than the effect of chemotherapy alone, a lot of questions about anthracycline-induced cardiotoxicity remain unknown. In this invited review, we provide insights in molecular mechanisms behind anthracycline-induced cardiotoxicity and put it in a clinical framework emphasizing the need for patients to understand, detect, and treat this detrimental condition.
Collapse
|
16
|
Kang MJ, Gong JE, Kim JE, Choi HJ, Bae SJ, Choi YJ, Lee SJ, Seo MS, Kim KS, Jung YS, Cho JY, Lim Y, Hwang DY. Influence of three BALB/c substrain backgrounds on the skin tumor induction efficacy to DMBA and TPA cotreatment. Lab Anim Res 2020; 36:30. [PMID: 32908818 PMCID: PMC7469300 DOI: 10.1186/s42826-020-00063-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/24/2020] [Indexed: 11/10/2022] Open
Abstract
Differences in responsiveness of BALB/c substrains have been investigated in various fields, including diabetes induction, corpus callosum deficiency, virus-induced demyelinating disease, aggressive behavior and osteonecrosis. However, induction efficacy of skin tumor remains untried. We therefore investigated the influence of BALB/c substrain backgrounds on the skin tumor induction efficacy in response to DMBA (7,12-Dimethylbenz[a]anthracene) and TPA (12-O-tetradecanoylphorbol-13-acetate) cotreatment. Alterations in the levels of tumor growth related factors, histopathological structure, and the expression to tumor related proteins were measured in three BALB/c substrains (BALB/cKorl, BALB/cA and BALB/cB) after exposure to DMBA (25 μg/kg) and three different doses of TPA (2, 4 and 8 μg/kg). The average number and induction efficacy of tumors in response to DMBA+TPA treatment were significantly greater in the BALB/cKorl substrain than in BALB/cA and BALB/cB. However, cotreatment with DMBA+TPA induced similar responses for body and organ weights of all three substrains. Few differences were detected in the serum analyzing factors, while similar responsiveness was observed for blood analyzing factors after DMBA+TPA treatment. Furthermore, the three BALB/c substrains exhibited similar patterns in their histopathological structure in DMBA+TPA-induced tumors. The expression levels of apoptotic proteins and tumor related proteins were constantly maintained in all three BALB/c substrains treated with DMBA+TPA. In addition, the responsiveness to cisplatin treatment was overall very similar in the three BALB/c substrains with DMBA+TPA-induced tumors. Taken together, these results indicate that genetic background of the three BALB/c substrains does not have a major effect on the DMBA+TPA-induced skin carcinogenesis and therapeutic responsiveness of cisplatin, except induction efficacy.
Collapse
Affiliation(s)
- Mi Ju Kang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Jeong Eun Gong
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Hyeon Jun Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Su Ji Bae
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Yun Ju Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Su Jin Lee
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Kil Soo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.,College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Young-Suk Jung
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Joon-Yong Cho
- Exercise Biochemistry Laboratory, Korea National Sport University, Seoul, South Korea
| | - Yong Lim
- Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University, Busan, South Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, South Korea
| |
Collapse
|
17
|
Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother Pharmacol 2020; 85:563-571. [DOI: 10.1007/s00280-019-04019-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
|
18
|
3,4-dimethoxybenzyl isothiocyanate enhances doxorubicin efficacy in LoVoDX doxorubicin-resistant colon cancer and attenuates its toxicity in vivo. Life Sci 2019; 231:116530. [DOI: 10.1016/j.lfs.2019.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 01/16/2023]
|
19
|
Kim JY, Seo SM, Lee HK, Kim HW, Choi YK. Comparison of the virulence of Streptococcus pneumoniae in ICR mouse stocks of three different origins. Lab Anim Res 2019; 35:5. [PMID: 31463224 PMCID: PMC6707427 DOI: 10.1186/s42826-019-0002-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 01/13/2023] Open
Abstract
Streptococcus pneumoniae causes many people to suffer from pneumonia, septicemia, and other diseases worldwide. To identify the difference in susceptibility of and treatment efficacy against S. pneumoniae in three ICR mouse stocks (Korl:ICR, A:ICR, and B:ICR) with different origins, mice were infected with 2 × 106, 2 × 107, and 2 × 108 CFU of S. pneumoniae D39 intratracheally. The survival of mice was observed until three weeks after the infection. The three stocks of mice showed no significant survival rate difference at 2 × 106 and 2 × 107 CFU. However, the lung and spleen weight in the A:ICR stock was significantly different from that in the other two stocks, whereas the liver weight in B:ICR stock was significantly lower than that in the other two stocks. Interestingly, no significant CFU difference in the organs was observed between the ICR stocks. The level of interferon gamma inducible protein 10 in Korl:ICR was significantly lower than that in the other two stocks. The level of granulocyte colony stimulating factor in B:ICR was significantly lower than in the other two stocks. However, tumor-necrosis factor-alpha and interleukin-6 levels showed no significant difference between the ICR stocks. In the vancomycin efficacy test after the S. pneumoniae infection, both the single-dose and double-dose vancomycin-treated groups showed a significantly better survival rate than the control group. There was no significant survival difference between the three stocks. These data showed that Korl:ICR, A:ICR, and B:ICR have no susceptibility difference to the S. pneumoniae D39 serotype 2.
Collapse
Affiliation(s)
- Jun-Young Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Sun-Min Seo
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Han-Kyul Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Han-Woong Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029 Republic of Korea
| |
Collapse
|
20
|
Electrochemical, spectroscopic and theoretical monitoring of anthracyclines' interactions with DNA and ascorbic acid by adopting two routes: Cancer cell line studies. PLoS One 2018; 13:e0205764. [PMID: 30372448 PMCID: PMC6205586 DOI: 10.1371/journal.pone.0205764] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/01/2018] [Indexed: 01/08/2023] Open
Abstract
Pharmacodynamic interactions of three anthracycline antibiotics namely doxorubicin (DXH), epirubicin (EpiDXH) and daunorubicin (DNR) with DNA in the absence and presence of ascorbic acid (AA) as natural additive were monitored under physiological conditions (pH = 7.4, 4.7 and T = 309.5K). Route–1 (Anthracycline–AA–DNA) and Route–2 (Anthracycline–DNA–AA) were adopted to see the interactional behavior by cyclic voltammetry (CV) and UV-visible spectroscopy. In comparison to Route–2; voltammetric and spectral responses as well as binding constant (Kb) and Gibb’s free energy change (ΔG) values revealed strongest and more favorable interaction of anthracycline–AA complex with DNA via Route–1. Kb, s (binding site sizes) and ΔG evaluated from experimental (CV, UV-Vis) and theoretical (molecular docking) findings showed enhanced binding strength of tertiary complexes as compared to binary drug–DNA complexes. The results were found comparatively better at pH 7.4. Consistency was observed in binding parameters evaluated from experimental and theoretical techniques. Diffusion coefficients (Do) and heterogeneous electron transfer rate constant (ks,h) confirmed the formation of complexes via slow diffusion kinetics. Percent cell inhibition (%Cinh) of anthracyclines for non-small cell cancer cell lines (NSCCLs) H-1299 and H-157 were evaluated higher in the presence of AA which further complimented experimental and theoretical results.
Collapse
|
21
|
Abstract
Doxorubicin (Dox) is a valuable anticancer drug for hematologic and solid tumors. Yet, it can cause multi-organ toxicities in various patients. Since toxicity evaluation is a major criterion to discuss for every experiment, the current mini-review focuses on the toxicity of Dox to multiple organs and suggests the most probable mechanism. Though several mechanisms have been suggested, the role of oxidative stress remains elusive among other mechanisms and remains the most probable mechanism for cardiotoxic effect of Dox.
Collapse
|