1
|
Yamashita S, Yutani W, Sugimoto M, Miyashita K, Kinoshita M. Role of Dietary Ceramide 2-Aminoethylphosphonate on Aberrant Crypt Foci Formation and Colon Inflammation in 1,2-Dimethylhydrazine-Treated Mice: A Comparison with the Role of Sphingomyelin. Metabolites 2025; 15:147. [PMID: 40137112 PMCID: PMC11943771 DOI: 10.3390/metabo15030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Ceramide 2-aminoethylphosphonate (CAEP), a major sphingolipid class in mollusks, possesses unique structures that are not observed in other sphingolipids. CAEP has a carbon-phosphorus bond and unusual long-chain bases (LCBs). CAEP has been reported to exhibit nutritional functions, such as improving skin conditions and promoting cholesterol metabolism. Objectives: In this study, we investigated the role of dietary CAEP in the formation of aberrant crypt foci (ACF) and colon inflammation induced by 1,2-dimethylhydrazine (DMH) in mice. Methods: Five-week-old female Bagg Albino/c mice were divided into four groups (n = 11), which were treated with the respective experimental diet and DMH intraperitoneal injection nine times for ten weeks. The results obtained after administering CAEP were compared with those obtained after administering sphingomyelin (SPM), which is a major sphingolipid in mammal-derived foods. Results: The predominant LCB in the octopus-extracted CAEP was determined as hexadeca-4-sphingenine. Dietary CAEP suppressed the formation of ACF, and egg yolk-derived dietary SPM exerted a higher suppressive effect on the formation of ACF. Additionally, dietary CAEP suppressed the DMH-decreased expressions of two inflammation-related cytokines in the colon mucosa, whereas dietary SPM normalized the expressions of two cytokines different from those suppressed by CAEP. Conclusions: CAEP provides intestinal protection, with effects that differ from those of SPM. The polar head groups or LCBs in sphingolipids are important for determining their nutritional function in the intestine. The study findings contribute toward the understanding of the nutritional benefits of sphingolipids in daily diets or supplements in maintaining intestinal health.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.)
| | - Wakaba Yutani
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.)
| | - Maho Sugimoto
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.)
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
- Department of Health and Nutrition Sciences, Hokkaido Bunkyo University, Eniwa 061-1449, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.)
| |
Collapse
|
2
|
Allwright M, Guennewig B, Hoffmann AE, Rohleder C, Jieu B, Chung LH, Jiang YC, Lemos Wimmer BF, Qi Y, Don AS, Leweke FM, Couttas TA. ReTimeML: a retention time predictor that supports the LC-MS/MS analysis of sphingolipids. Sci Rep 2024; 14:4375. [PMID: 38388524 PMCID: PMC10883992 DOI: 10.1038/s41598-024-53860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The analysis of ceramide (Cer) and sphingomyelin (SM) lipid species using liquid chromatography-tandem mass spectrometry (LC-MS/MS) continues to present challenges as their precursor mass and fragmentation can correspond to multiple molecular arrangements. To address this constraint, we developed ReTimeML, a freeware that automates the expected retention times (RTs) for Cer and SM lipid profiles from complex chromatograms. ReTimeML works on the principle that LC-MS/MS experiments have pre-determined RTs from internal standards, calibrators or quality controls used throughout the analysis. Employed as reference RTs, ReTimeML subsequently extrapolates the RTs of unknowns using its machine-learned regression library of mass-to-charge (m/z) versus RT profiles, which does not require model retraining for adaptability on different LC-MS/MS pipelines. We validated ReTimeML RT estimations for various Cer and SM structures across different biologicals, tissues and LC-MS/MS setups, exhibiting a mean variance between 0.23 and 2.43% compared to user annotations. ReTimeML also aided the disambiguation of SM identities from isobar distributions in paired serum-cerebrospinal fluid from healthy volunteers, allowing us to identify a series of non-canonical SMs associated between the two biofluids comprised of a polyunsaturated structure that confers increased stability against catabolic clearance.
Collapse
Affiliation(s)
- Michael Allwright
- ForeFront, Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Boris Guennewig
- ForeFront, Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Anna E Hoffmann
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - Cathrin Rohleder
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Endosane Pharmaceuticals GmbH, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Beverly Jieu
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Long H Chung
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Yingxin C Jiang
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Bruno F Lemos Wimmer
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Anthony S Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - F Markus Leweke
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Endosane Pharmaceuticals GmbH, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timothy A Couttas
- Translational Research Collective, Brain and Mind Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
3
|
Yamashita S, Tanaka S, Miyazawa T, Kinoshita M. Bioaccessibility of Glucosylceramide in Rice Based on the Cooking Condition and Cultivar. J Oleo Sci 2024; 73:905-909. [PMID: 38825542 DOI: 10.5650/jos.ess24057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
Abstract
Glucosylceramide (GlcCer), a major sphingolipid in plants, possesses various food functions, including improvement of intestinal impairments. This study evaluated rice cooking conditions and cultivars based on GlcCer levels transferred into the digestive juice using an in vitro digestion model to investigate the factors related to GlcCer availability. GlcCer levels transferred into the digestive juice were higher in rice gruel than in boiled rice. The GlcCer levels in the digestive juice of boiled rice varied based on the rice cultivar, whereas those in rice gruel had no difference. Thus, GlcCer in rice was not fully utilized via digestion. Further, bioaccessibility was related to the amylose ratio and added water content.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Shun Tanaka
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
4
|
Yamashita S, Soga M, Nguma E, Kinoshita M, Miyazawa T. Protective Mechanism of Rice-Derived Lipids and Glucosylceramide in an In Vitro Intestinal Tract Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10206-10214. [PMID: 34455784 DOI: 10.1021/acs.jafc.1c04562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We previously reported that the ethanol extract from polished rice suppresses inflammation and the formation of aberrant crypt foci in the mouse colon and particularly focused on the plant sphingolipid glucosylceramide (GlcCer). Here, we investigated the effects of rice lipid fractions and GlcCer on differentiated Caco-2 cells treated with lipopolysaccharide (LPS), in particular, we evaluated the mechanism of action of GlcCer using related substances and metabolic enzyme inhibitors. Rice-derived polar lipids suppressed the LPS-induced reduction in the number of cells. The polar lipids with higher GlcCer content exerted a better effect than the other fractions. GlcCer-related substances reversed the LPS-induced reduction in the number of cells, and GlcCer-metabolic inhibitors, including a sphingosine kinase inhibitor, suppressed the beneficial effects of GlcCer-related substances. These results suggest that GlcCer is a rice component with intestinal protection. Secondly, GlcCer is metabolized during inflammation and protects intestinal cells by maintaining the sphingolipid levels in cells and producing sphingoid base-1-phosphate.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Michiru Soga
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Ephantus Nguma
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | - Teruo Miyazawa
- Food Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
5
|
Yamashita S, Higaki C, Kikuchi N, Suzuki D, Kinoshita M, Miyazawa T. Sake (Rice Wine) Brewing Hydrolyzes Highly Polar Sphingolipids to Ceramides and Increases Free Sphingoid Bases. J Oleo Sci 2021; 70:1147-1156. [PMID: 34248103 DOI: 10.5650/jos.ess21125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In plants and fungi, sphingolipids, characterized by the presence of a sphingoid base (SB), comprise neutral classes, including ceramide (Cer) and glucosylceramide (GlcCer), and acidic classes, including glycosyl inositol phosphoryl ceramide (GIPC). The major class of plant and fungal sphingolipids is GIPC; however, owing to their complicated extraction and analysis, there is still little information regarding the food characteristics of GIPC compounds. In the present study, we evaluated the content and SB composition of highly polar sphingolipids (HPS) in materials that had been obtained from our previous food processing study for GlcCer and Cer. This assessment was based on the changes that occur in HPS containing GIPC in sake rice (saka-mai) during the rice polishing and sake (rice wine) brewing process. In addition, we report a new investigation into the composition of sphingolipids in koji rice and sake yeast. HPS levels were the highest among the sphingolipid classes in brown rice cultivars and highly polished rice. Sake and sake lees (sake-kasu) were produced using three different starter cultures. In sake lees, Cer levels were the highest among the classes, while HPS was greatly reduced based on the amount of highly polished rice and koji rice, and these HPS were mainly composed of sphinganine (d18:0), which is a minor SB in highly polished rice, koji rice, and sake yeast. In addition, considerable levels of free SBs, mainly comprising d18:0, were detected in sake lees. The levels of HPS and free SBs in sake lees were dependent on the starter culture. These results suggest that HPS was hydrolyzed to Cer and that sake yeast also affected the levels of Cer and free SBs during brewing. One interesting question raised by these results is whether changes in the class and base compositions of sphingolipids during brewing contribute to taste of the final product and other food functions.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Chisato Higaki
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Nobuhiro Kikuchi
- Fukushima Technology Centre, Aizuwakamatsu Technical Support Centre
| | | | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| |
Collapse
|
6
|
Yamashita S, Kinoshita M, Miyazawa T. Dietary Sphingolipids Contribute to Health via Intestinal Maintenance. Int J Mol Sci 2021; 22:7052. [PMID: 34208952 PMCID: PMC8268314 DOI: 10.3390/ijms22137052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022] Open
Abstract
As sphingolipids are constituents of the cell and vacuole membranes of eukaryotic cells, they are a critical component acquired from our daily diets. In the present review, we highlight the knowledge regarding how dietary sphingolipids affect our health, particularly our intestinal health. Animal- and plant-derived foods contain, respectively, sphingomyelin (SM) and glucosylceramide (GlcCer) as their representative sphingolipids, and the sphingoid base as a specific structure of sphingolipids also differs depending upon the source and class. For example, sphingosine is predominant among animal sphingolipids, and tri-hydroxy bases are present in free ceramide (Cer) from plants and fungi. Dietary sphingolipids exhibit low absorption ratios; however, they possess various functions. GlcCer facilitates improvements in intestinal impairments, lipid metabolisms, and skin disorders, and SM can exert both similar and different effects compared to those elicited by GlcCer. We discuss the digestion, absorption, metabolism, and function of sphingolipids while focused on the structure. Additionally, we also review old and new classes in the context of current advancements in analytical instruments.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan;
| |
Collapse
|
7
|
Mikami D, Sakai S, Nishimukai M, Yuyama K, Mukai K, Igarashi Y. Structure-dependent absorption of atypical sphingoid long-chain bases from digestive tract into lymph. Lipids Health Dis 2021; 20:24. [PMID: 33648494 PMCID: PMC7919070 DOI: 10.1186/s12944-021-01448-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dietary sphingolipids have various biofunctions, including skin barrier improvement and anti-inflammatory and anti-carcinoma properties. Long-chain bases (LCBs), the essential backbones of sphingolipids, are expected to be important for these bioactivities, and they vary structurally between species. Given these findings, however, the absorption dynamics of each LCB remain unclear. METHODS In this study, five structurally different LCBs were prepared from glucosylceramides (GlcCers) with LCB 18:2(4E,8Z);2OH and LCB 18:2(4E,8E);2OH moieties derived from konjac tuber (Amorphophallus konjac), from GlcCers with an LCB 18(9Me):2(4E,8E);2OH moiety derived from Tamogi mushroom (Pleurotus cornucopiae var. citrinopileatus), and from ceramide 2-aminoethyphosphonate with LCB 18:3(4E,8E,10E);2OH moiety and LCB 18(9Me):3(4E,8E,10E);2OH moiety derived from giant scallop (Mizuhopecten yessoensis), and their absorption percentages and metabolite levels were analyzed using a lymph-duct-cannulated rat model via liquid chromatography tandem mass spectrometry (LC/MS/MS) with a multistage fragmentation method. RESULTS The five orally administered LCBs were absorbed and detected in chyle (lipid-containing lymph) as LCBs and several metabolites including ceramides, hexosylceramides, and sphingomyelins. The absorption percentages of LCBs were 0.10-1.17%, depending on their structure. The absorption percentage of LCB 18:2(4E,8Z);2OH was the highest (1.17%), whereas that of LCB 18:3(4E,8E,10E);2OH was the lowest (0.10%). The amount of sphingomyelin with an LCB 18:2(4E,8Z);2OH moiety in chyle was particularly higher than sphingomyelins with other LCB moieties. CONCLUSIONS Structural differences among LCBs, particularly geometric isomerism at the C8-C9 position, significantly affected the absorption percentages and ratio of metabolites. This is the first report to elucidate that the absorption and metabolism of sphingolipids are dependent on their LCB structure. These results could be used to develop functional foods that are more readily absorbed.
Collapse
Affiliation(s)
- Daisuke Mikami
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Shota Sakai
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Megumi Nishimukai
- Department of Animal Science, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Kohei Yuyama
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Katsuyuki Mukai
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.,R & D Headquarters, Daicel Corporation, 2-18-1, Konan, Minato-ku, Tokyo, 108-8230, Japan
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita-21 Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
8
|
Yamashita S, Higaki C, Kanai A, Kikuchi N, Suzuki D, Kinoshita M, Miyazawa T. Sphingolipid Properties in Sake Rice Cultivars and Changes During Polishing and Brewing. J Oleo Sci 2021; 70:203-212. [PMID: 33456006 DOI: 10.5650/jos.ess20234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids, including ceramide (Cer) and glucosylceramide (GlcCer), have the characteristic structural units called sphingoid bases, and are constituents of cell and vacuole membranes. Plant sphingolipids bear highly diverse base structures and the base composition differs depending on the plant species. It is thought that the composition of sphingolipid classes and sphingoid bases is related to membrane fractions. However, there is little information about differences in sphingolipids among plant cultivars and the changes occurring in sphingolipids during food processing. This study investigated sphingolipids in sake rice (saka-mai) cultivars grown for sake (rice wine), and the changes in sphingolipids during polishing and brewing. In six brown rice samples, there were no large differences of the base composition among Cer or GlcCer of cultivars, whereas there were differences in their sphingolipid contents. When compared to brown rice, highly polished rice contained lower levels of sphingolipids, especially Cer. For three rice brans from different polishing steps, the Cer content was higher in the outer bran than in the inner bran. Sake and sake lees (sake-kasu) were produced by three different starter cultures (shubo preparations: the mixture of koji rice as an enzyme cocktail containing amylases, sake yeast, and adding rice as a carbohydrate source). The Cer/GlcCer ratio in sake and sake lees depended on the starter culture; Cer and GlcCer in sake lees possessed a fungi-specific base, 9-methyl-trans-4,trans-8- sphingadienine. In addition, sake lees had a higher Cer/GlcCer ratio when compared to highly polished rice as a sake source. These results suggest that the sphingolipid content of brown rice differs depending on the rice cultivar; further, the sphingolipids and the sphingolipid composition in sake and sake lees are affected by fungal sphingolipids and self-digestion during brewing.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Chisato Higaki
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Asuka Kanai
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Nobuhiro Kikuchi
- Fukushima Technology Centre, Aizuwakamatsu Technical Support Centre
| | | | - Mikio Kinoshita
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| |
Collapse
|
9
|
Yamashita S, Hata M, Kikuchi N, Kinoshita M, Miyazawa T. Effects of Dietary Ethanol Extracts from Sake Rice and Sake Lees on Intestinal Impairment in Mice. J Oleo Sci 2020; 69:929-939. [PMID: 32759551 DOI: 10.5650/jos.ess20069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucosylceramide (GlcCer), a major sphingolipid in plants and fungi, is known to have food functions, such as preventing intestinal impairment and enhancing the moisture content of skin. This study investigated the influence of fermentation on the composition and function of lipophilic components containing GlcCer in plant-based foods; we compared the effects of ethanol extracts from sake rice (SR) and sake lees (SL) on colon impairment in mice. GlcCer and ceramide (Cer) levels in SL were much higher than those in SR, and GlcCer in SL contained 9-methyl-trans-4,trans-8-sphingadienine as a fungi-specific sphingoid base. 1,2-dimethylhydrazine (DMH) treatment markedly increased the formation of aberrant crypt foci (ACF) and the levels of TNF-α and lipid oxidation in mice colons. However, dietary SR or SL significantly suppressed these DMH-induced changes, and SR demonstrated stronger effects than SL. In addition, dietary SR or SL suppressed the expression of apoptotic and anti-apoptotic proteins induced by DMH treatment. This study suggests that SR or SL intake could reduce colon ACF formation via the suppression of inflammation and oxidation-induced cell cycle disturbances. When compared to SR, the weaked effects of SL rich in GlcCer may be the result of the changes in sphingolipid composition (sphingoid base and Cer) and differences in the concentration of other bioactive compounds produced or digested during fermentation.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Mariko Hata
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Nobuhiro Kikuchi
- Fukushima Technology Centre, Aizuwakamatsu Technical Support Centre
| | - Mikio Kinoshita
- Department of Life and Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| |
Collapse
|
10
|
Couttas TA, Rustam YH, Song H, Qi Y, Teo JD, Chen J, Reid GE, Don AS. A Novel Function of Sphingosine Kinase 2 in the Metabolism of Sphinga-4,14-Diene Lipids. Metabolites 2020; 10:metabo10060236. [PMID: 32521763 PMCID: PMC7344861 DOI: 10.3390/metabo10060236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
The number, position, and configuration of double bonds in lipids affect membrane fluidity and the recruitment of signaling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Using high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), we observed a marked accumulation of lipids containing a di-unsaturated sphingadiene base in the hippocampus of mice lacking the metabolic enzyme sphingosine kinase 2 (SphK2). The double bonds were localized to positions C4–C5 and C14–C15 of sphingadiene using ultraviolet photodissociation-tandem mass spectrometry (UVPD-MS/MS). Phosphorylation of sphingoid bases by sphingosine kinase 1 (SphK1) or SphK2 forms the penultimate step in the lysosomal catabolism of all sphingolipids. Both SphK1 and SphK2 phosphorylated sphinga-4,14-diene as efficiently as sphingosine, however deuterated tracer experiments in an oligodendrocyte cell line demonstrated that ceramides with a sphingosine base are more rapidly metabolized than those with a sphingadiene base. Since SphK2 is the dominant sphingosine kinase in brain, we propose that the accumulation of sphingadiene-based lipids in SphK2-deficient brains results from the slower catabolism of these lipids, combined with a bottleneck in the catabolic pathway created by the absence of SphK2. We have therefore uncovered a previously unappreciated role for SphK2 in lipid quality control.
Collapse
Affiliation(s)
- Timothy Andrew Couttas
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yepy Hardi Rustam
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
| | - Huitong Song
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jonathan David Teo
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jinbiao Chen
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Gavin Edmund Reid
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony Simon Don
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: ; Tel.: +61-28627-5578
| |
Collapse
|
11
|
Kawata M, Suzuki M, Akutsu S, Kawahara N, Tsukamoto A, Nobukawa S, Isozaki R, Yuyama S, Asanuma N. Augmentation of dietary glucosylceramide hydrolysis by the novel bacterium Glucerabacter canisensis NATH-2371 T. Biosci Biotechnol Biochem 2018; 82:2191-2197. [PMID: 30146946 DOI: 10.1080/09168451.2018.1505484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The purpose of this study was to evaluate the effects of intragastrical administration of Glucerabacter canisensis NATH-2371T on glucosylceramide (GluCer) digestion in mice. Although G. canisensis was unable to utilize starch and cellulose, coculture of G. canisensis with mouse fecal bacteria greatly increased GluCer hydrolysis in polysaccharide medium, indicating that G. canisensis grew in competition with other intestinal bacteria. Although most of the administered G. canisensis cells were detected in feces, some cells were present in the colorectum contents, which had GluCer-hydrolyzing activity. These results indicate that G. canisensis can viably transit through the mouse gut. Administration of G. canisensis to mice fed diets supplemented with GluCer or GluCer-containing foods significantly enhanced GluCer hydrolysis. Since G. canisensis did not show acute toxicity, it may be useful as a probiotic to augment GluCer hydrolysis in the large intestine. Abbreviations: GluCer: glucosylceramide; KPi: potassium phosphate buffer; C-M: chloroform-methanol.
Collapse
Affiliation(s)
- Misho Kawata
- a Department of Life Science , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Masato Suzuki
- a Department of Life Science , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Shoko Akutsu
- a Department of Life Science , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Natsuki Kawahara
- a Department of Life Science , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Ami Tsukamoto
- a Department of Life Science , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Shohei Nobukawa
- a Department of Life Science , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Ryohei Isozaki
- a Department of Life Science , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Seika Yuyama
- a Department of Life Science , School of Agriculture, Meiji University , Kawasaki , Japan
| | - Narito Asanuma
- a Department of Life Science , School of Agriculture, Meiji University , Kawasaki , Japan
| |
Collapse
|
12
|
Kawata M, Tsukamoto A, Isozaki R, Nobukawa S, Kawahara N, Akutsu S, Suzuki M, Asanuma N. Glucerabacter canisensis gen. nov., sp. nov., isolated from dog feces and its effect on the hydrolysis of plant glucosylceramide in the intestine of dogs. Arch Microbiol 2017; 200:505-515. [PMID: 29204666 DOI: 10.1007/s00203-017-1463-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 01/14/2023]
Abstract
A Gram-positive, obligately anaerobic, oval-rod shaped, non-spore-forming, and non-pigmented bacterium, designated strain NATH-2371T (= JCM31739T = DSM105698T), was isolated from dog feces. Comparative 16S rRNA gene sequence analysis revealed that strain NATH-2371T belongs to Clostridium cluster XIVa, and the closest strains were Coprococcus comes ATCC 27758T (94.8% 16S rRNA gene sequence similarity) and Clostridium nexile DSM 1787T (94.0%). Strain NATH-2371T produced acetate, formate, and ethanol from glucose. Predominant cellular fatty acids are C16:0 and C16:0 DMA. On the basis of the phenotypic and genotypic differences, strain NATH-2371T represents a novel species in a new genus of the family Lachnospiraceae, for which the name Glucerabacter canisensis gen. nov., sp. nov., is proposed. This strain was found to efficiently hydrolyze plant glucosylceramide (GluCer). The abundance of strain NATH-2371T in dog feces was higher in young dogs than in old dogs. Incubation of dog fecal bacteria showed that GluCer-hydrolyzing activity decreased with the age of dogs. The cell number of strain NATH-2371T in dog feces appeared to be correlated with GluCer hydrolysis. Thus, this bacterium is likely to play a major role in GluCer hydrolysis in the dog intestine.
Collapse
Affiliation(s)
- Misho Kawata
- Department of Life Science, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Ami Tsukamoto
- Department of Life Science, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Ryohei Isozaki
- Department of Life Science, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Shohei Nobukawa
- Department of Life Science, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Natsuki Kawahara
- Department of Life Science, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Shoko Akutsu
- Department of Life Science, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Masato Suzuki
- Department of Life Science, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Narito Asanuma
- Department of Life Science, Meiji University, Higashimita, Tama-ku, Kawasaki, 214-8571, Japan.
| |
Collapse
|
13
|
Tessema EN, Gebre-Mariam T, Lange S, Dobner B, Neubert RH. Potential application of oat-derived ceramides in improving skin barrier function: Part 1. Isolation and structural characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1065-1066:87-95. [DOI: 10.1016/j.jchromb.2017.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023]
|
14
|
Fujii A, Manabe Y, Aida K, Tsuduki T, Hirata T, Sugawara T. Selective Absorption of Dietary Sphingoid Bases from the Intestine via Efflux by P-Glycoprotein in Rats. J Nutr Sci Vitaminol (Tokyo) 2017; 63:44-50. [PMID: 28367925 DOI: 10.3177/jnsv.63.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Various physiological functions of dietary sphingolipids, such as preventing inflammation and improving the skin barrier function, have been recently demonstrated. The sphingolipid most commonly used as a foodstuff is glucosylceramide from plant sources, which is composed of sphingoid bases that are distinctive from those found in mammals. Although the structure of sphingoid bases in higher plants is more complicated than the structure of those in mammals, the fate of dietary sphingolipids of plant origin is still not understood. In the present study, we investigated the absorption of 4,8-sphingadienine that originated from maize glucosylceramide in the rat intestine by using a lipid absorption assay of lymph collected from the thoracic duct. The cumulative recovery of 4,8-sphingadienine in the lymph was lower than that of sphingosine. Verapamil, a P-glycoprotein inhibitor, significantly increased the absorption of 4,8-sphingadienine but did not affect the absorption of sphingosine. Plant-derived sphingoid bases were detected in the ceramide fraction of lymph fluid by using liquid chromatography-mass spectrometry analysis. These results indicate that 4,8-sphingadienine that originates from the glucosylceramide of higher plants is poorly absorbed in the intestine because of efflux by P-glycoprotein and can be incorporated into a ceramide moiety, at least in part, in intestinal endothelial cells.
Collapse
Affiliation(s)
- Aoi Fujii
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | | | | | | | | | | |
Collapse
|
15
|
Tessema EN, Gebre-Mariam T, Neubert RHH, Wohlrab J. Potential Applications of Phyto-Derived Ceramides in Improving Epidermal Barrier Function. Skin Pharmacol Physiol 2017; 30:115-138. [PMID: 28407621 DOI: 10.1159/000464337] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/17/2017] [Indexed: 12/31/2022]
Abstract
The outer most layer of the skin, the stratum corneum, consists of corneocytes which are coated by a cornified envelope and embedded in a lipid matrix of ordered lamellar structure. It is responsible for the skin barrier function. Ceramides (CERs) are the backbone of the intercellular lipid membranes. Skin diseases such as atopic dermatitis and psoriasis and aged skin are characterized by dysfunctional skin barrier and dryness which are associated with reduced levels of CERs. Previously, the effectiveness of supplementation of synthetic and animal-based CERs in replenishing the depleted natural skin CERs and restoring the skin barrier function have been investigated. Recently, however, the barrier function improving effect of plant-derived CERs has attracted much attention. Phyto-derived CERs (phytoCERs) are preferable due to their assumed higher safety as they are mostly isolated from dietary sources. The beneficial effects of phytoCER-based oral dietary supplements for skin hydration and skin barrier reinforcement have been indicated in several studies involving animal models as well as human subjects. Ingestible dietary supplements containing phytoCERs are also widely available on the market. Nonetheless, little effort has been made to investigate the potential cosmetic applications of topically administered phytoCERs. Therefore, summarizing the foregoing investigations and identifying the gap in the scientific data on plant-derived CERs intended for skin-health benefits are of paramount importance. In this review, an attempt is made to synthesize the information available in the literature regarding the effects of phytoCER-based oral dietary supplements on skin hydration and barrier function with the underlying mechanisms.
Collapse
Affiliation(s)
- Efrem N Tessema
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | |
Collapse
|
16
|
Yamashita S, Sakurai R, Hishiki K, Aida K, Kinoshita M. Effects of Dietary Plant-origin Glucosylceramide on Colon Cytokine Contents in DMH-treated Mice. J Oleo Sci 2017; 66:157-160. [PMID: 28154347 DOI: 10.5650/jos.ess16169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, the effects of dietary plant-origin glucosylceramide (GlcCer) on colon cytokine contents were investigated in 1,2-dimethylhydrazine (DMH)-treated mice, a model of colon cancer. DMH treatment induced the formation of aberrant crypt foci (ACF) and the production of inflammatory cytokines and chemokaines. Dietary GlcCer suppressed ACF formation and cytokine production in these mice. In particular, chemokine production was suppressed by dietary GlcCer. These GlcCer-related trends of suppression were similar to those observed in our previous study on dextran sulfate sodium salt (DSS)-treated mice. These results provide further evidence for the suppression of DMH-induced inflammation by dietary GlcCer.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | | | | | | | | |
Collapse
|
17
|
Arai K, Mizobuchi Y, Tokuji Y, Aida K, Yamashita S, Ohnishi M, Kinoshita M. Effects of Dietary Plant-Origin Glucosylceramide on Bowel Inflammation in DSS-Treated Mice. J Oleo Sci 2016; 64:737-42. [PMID: 26136173 DOI: 10.5650/jos.ess15005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of dietary plant-origin glucosylceramide (GlcCer) on symptoms similar to those of inflammatory bowel diseasewere investigated in dextran sulfate sodium salt (DSS)-treated mice. Dietary GlcCer suppressed decreases in body weight due to DSS administration. To determine its effects on the colon, we examined its surface under a microscope following toluidine blue staining. Dietary GlcCer decreased DSS-induced chorionic crypt injury and elevated myeloperoxidase levels. Moreover, dietary GlcCer significantly suppressed the production of cytokines by the intestinal mucosa. These results provide evidence for the suppression of DSS-induced inflammation by dietary GlcCer.
Collapse
Affiliation(s)
- Katsuhito Arai
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine
| | | | | | | | | | | | | |
Collapse
|
18
|
Structure of Sphingolipids From Sea Cucumber Cucumaria frondosa and Structure-Specific Cytotoxicity Against Human HepG2 Cells. Lipids 2016; 51:321-34. [PMID: 26861868 DOI: 10.1007/s11745-016-4128-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
To investigate the relationship between structure and activity, three glucocerebroside series (CFC-1, CFC-2 and CFC-3), ceramides (CF-Cer) and long-chain bases (CF-LCB) of sea cucumber Cucumaria frondosa (C. frondosa) were isolated and evaluated in HepG2 cells. The molecular species of CFC-1, CFC-2 and CFC-3 and CF-Cer were identified using reversed-phase liquid chromatography with heated electrospray ionization coupled to high-resolution mass spectrometry (RPLC-HESI-HRMS), and determined on the basis of chemical and spectroscopic evidence: For the three glucocerebroside series, fatty acids (FA) were mainly saturated (18:0 and 22:0), monounsaturated (22:1, 23:1 and 24:1) and 2-hydroxyl FA (2-HFA) (23:1 h and 24:1 h), the structure of long-chain bases (LCB) were dihydroxy (d17:1, d18:1 and d18:2) and trihydroxy (t16:0 and t17:0), and the glycosylation was glucose; For CF-Cer, FA were primarily saturated (17:0) and monounsaturated (16:1 and 19:1), the structure of LCB were dihydroxy (d17:1 and d18:1), and trihydroxy (t16:0). The results of cell experiment indicated that all of three glucocerebroside series, CF-Cer and CF-LCB exhibited an inhibitory effects on cell proliferation. Moreover, CFC-3 was most effective in three glucocerebrosides to HepG-2 cell viability. The inhibition effect of CF-LCB was the strongest, and the inhibition effect of CF-Cer was much stronger than glucocerebrosides.
Collapse
|
19
|
Ogawa T, Migita H, Shimada S, Ichida J, Osada K. The Structure and Level of Glucosylceramide in Apple Pomace. J JPN SOC FOOD SCI 2014. [DOI: 10.3136/nskkk.61.251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Zhu Y, Soroka DN, Sang S. Structure elucidation and chemical profile of sphingolipids in wheat bran and their cytotoxic effects against human colon cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:866-874. [PMID: 23286461 DOI: 10.1021/jf3047863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sphingolipids are known to have diverse properties and physiological functions. These distinctive lipids have been identified in wheat bran, a food well-known for its chemopreventive activity. However, the complete profile of sphingolipids in wheat bran and their contributions to the cancer preventive effect of wheat bran have not been fully explored until this study. Twelve sphingolipids (1-12) were purified from wheat bran extract and characterized by analyzing their 1D and 2D NMR spectra, and seven sphingolipids (13-19) were characterized based on their tandem mass spectra (MS(n): n = 2-4). To the best of our knowledge, this is the first report of sphingolipids 1, 6-9, 11-14, and 16-19 in wheat bran. In particular, 2-N-(2'-hydroxy-15'-tricosenoyl)-4-hydroxysphinganine (peak 17) is a novel compound. Additionally, compounds 2-4 were reported with complete NMR data for the first time. Sphingolipids (1-12) showed little growth inhibition against human colon cancer cell lines (HCT-116 and HT-29) in vitro.
Collapse
Affiliation(s)
- Yingdong Zhu
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina 28081, United States
| | | | | |
Collapse
|
21
|
Hossain Z, Sugawara T, Hirata T. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5. Oncol Rep 2013; 29:1201-7. [PMID: 23291741 DOI: 10.3892/or.2013.2223] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/02/2012] [Indexed: 11/06/2022] Open
Abstract
Biofunctional marine compounds have recently received substantial attention for their nutraceutical characteristics. In this study, we investigated the apoptosis-inducing effects of sphingoid bases prepared from sea cucumber using human hepatoma HepG2 cells. Apoptotic effects were determined by cell viability assay, DNA fragmentation assay, caspase-3 and caspase-8 activities. The expression levels of apoptosis-inducing death receptor-5 (DR5) and p-AKT were assayed by western blot analysis, and mRNA expression of bax, GADD45 and PPARγ was assayed by quantitative RT-PCR analysis. Sphingoid bases from sea cucumber markedly reduced the cell viability of HepG2 cells. DNA fragmentation indicative of apoptosis was observed in a dose-dependent manner. The expression levels of the apoptosis inducer protein Bax were increased by the sphingoid bases from sea cucumber. GADD45, which plays an important role in apoptosis-inducing pathways, was markedly upregulated by sphingoid bases from sea cucumber. Upregulation of PPARγ mRNA was also observed during apoptosis induced by the sphingoid bases. The expression levels of DR5 and p-AKT proteins were increased and decreased, respectively, as a result of the effects of sphingoid bases from sea cucumber. The results indicate that sphingoid bases from sea cucumber induce apoptosis in HepG2 cells through upregulation of DR5, Bax, GADD45 and PPARγ and downregulation of p-AKT. Our results show for the first time the functional properties of marine sphingoid bases as inducers of apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Zakir Hossain
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
22
|
Miyashita R, Nara M, Kinoshita M, Aida K, Nakatsuka SI, Ochiai K, Ohnishi M. Single-laboratory Validation of HPLC-ELSD Method for Quantitative Analysis of Plant Glucosylceramides. J JPN SOC FOOD SCI 2012. [DOI: 10.3136/nskkk.59.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Influence of growth phase and zeolite clinoptilolite on the concentration of sphingoid bases in Saccharomyces uvarum brewer’s yeast. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Xu J, Duan J, Xue C, Feng T, Dong P, Sugawara T, Hirata T. Analysis and comparison of glucocerebroside species from three edible sea cucumbers using liquid chromatography-ion trap-time-of-flight mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12246-12253. [PMID: 22004409 DOI: 10.1021/jf203556s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sphingolipids constitute a highly diverse and complex class of molecules and exhibit important physiological functions. Glucocerebrosides are anticipated to play a positive role in human nutrition. In this study, complicated glucocerebrosides from three specimens of edible sea cucumbers, specifically, Acaudina molpadioides, Cucumaria frondosa, and Apostichopus japonicus, were rapidly identified using liquid chromatography-ion trap-time-of-flight mass spectrometry (LCMS-IT-TOF), which is a powerful analysis tool. [M + H](+), [M + Na](+), and [M + H - H(2)O](+) in positive electrospray ionization (ESI) mode were used for MS/MS analysis to obtain product ion spectra. Various long-chain bases of glucocerebrosides were found in these sea cucumbers. Two of the most common long-chain bases were 2-amino-1,3-dihydroxy-4-heptadecene (d17:1) and 4,8-sphingadienine (d18:2), which were acylated to form saturated and monounsaturated nonhydroxy and monohydroxy fatty acids with 18-25 carbon atoms. The glucocerebroside molecular species were the most complicated in the sea cucumber C. frondosa and were the simplest in the sea cucumber A. molpadioides.
Collapse
Affiliation(s)
- Jie Xu
- College of Food Science and Engineering, Ocean University of China, No 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Takase K, Kakuta I. [Chemopreventive effects of 5-fluorouracil and lactoferrin on goldfish intestinal carcinogenesis induced by 1,2-dimethylhydrazine]. YAKUGAKU ZASSHI 2011; 131:1473-81. [PMID: 21963975 DOI: 10.1248/yakushi.131.1473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was carried out to examine the chemopreventive effects of 5-fluorouracil (5-FU) and lactoferrin (LF) on goldfish intestinal carcinogenesis induced by 1,2-dimethylhydrazine (DMH). DMH was given to fish by intraperitoneal injection in a dosage of 15 mg/kg body weight once a week for 6 weeks. Eight weeks after the initial DMH injection, fish were randomly divided into 2 groups, control and LF-treated groups. Control fish fed a commercial diet. LF- treated fish fed a commercial diet with bovine lactoferrin (oral administration at 200 mg/kg body weight/day). Ten weeks after the initial DMH injection, each was divided into 2 groups, saline- and 5-FU- treated groups. Physiological saline for freshwater fish (0.75% NaCl solution) in the saline-treated fish and 5-FU dissolved in 0.75% NaCl solution in the 5-FU-treated (75 mg/kg body weight) fish were injected intramuscularly three times every other day, respectively. The mean number of precancer cell foci (PCF) per intestine was 2.7 in DMH treated fish. PCF showed broader distribution in the entire intestine derived from DMH-treated fish. LF-only-treatment has no effect on the number of PCF. Mean number of PCF in 5-FU-only-treated fish decreased in comparison with that of the saline-treated control group, though no statistically significant reduction in PCF was found. But if 5-FU treatment was added to LF pretreatment, a statistically significant reduction in the number of PCF was observed. Pretreatment with LF for 2 weeks also reduced the deleterious side effects of 5-FU.
Collapse
Affiliation(s)
- Kiyomi Takase
- Department of Biological Engineering, Senshu University of Ishinomaki, Miyagi, Japan
| | | |
Collapse
|
26
|
Oral Glucosylceramide Reduces 2,4-Dinitrofluorobenzene Induced Inflammatory Response in Mice by Reducing TNF-Alpha Levels and Leukocyte Infiltration. Lipids 2011; 46:505-12. [DOI: 10.1007/s11745-010-3518-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 12/13/2010] [Indexed: 01/01/2023]
|
27
|
Duan J, Sugawara T, Hirata T. Rapid quantitative analysis of sphingolipids in seafood using HPLC with evaporative light-scattering detection: its application in tissue distribution of sphingolipids in fish. J Oleo Sci 2010; 59:509-13. [PMID: 20720382 DOI: 10.5650/jos.59.509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are ubiquitous in all eukaryotic organisms and known to be essential constituents of cellular membranes. Recently, various physiological functions of dietary sphingolipids, such as preventing cancer, improving skin barrier and contributing to central nervous system myelination have been demonstrated. To characterize the sphingolipids from fish as food components, tissue distribution of sphingomyelin and glycosylceramide (ceramide monohexoside, CMH) in fish were determined in this study. We established a rapid, accurate and effective method for separation, purification and determination of sphingolipids by using high-performance liquid chromatography with evaporative light-scattering detector (ELSD-HPLC). Sphingolipids were extracted and quantified from pacific saury (Cololabis saira). Sphingomyelin in different tissues of Cololabis saira ranged from 2.5 +/- 0.2 mg/g to 27.6 +/- 2.1 mg/g, the content in brain was the highest, followed by eyes, and CMH contents were less than 23.0 +/- 2.4 mg/g in all tissues. These results revealed that fish contained CMH and sphingomyelin as same levels as most of the terrestrial organisms and suggested marine organisms could be used as a potential source of precious and useful complex lipids.
Collapse
Affiliation(s)
- Jingjing Duan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, Japan
| | | | | |
Collapse
|
28
|
Yunoki K, Renaguli M, Kinoshita M, Matsuyama H, Mawatari S, Fujino T, Kodama Y, Sugiyama M, Ohnishi M. Dietary sphingolipids ameliorate disorders of lipid metabolism in Zucker fatty rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7030-7035. [PMID: 20443604 DOI: 10.1021/jf100722f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dietary sphingolipids (SL) inhibit colon carcinogenesis, reduce serum cholesterol, and improve skin barrier function and are considered to be "functional lipids". For comparative determination of the effects of SL with different chemical compositions on lipid metabolism and its related hepatic gene expression, Zucker fatty rats were fed pure sphingomyelin (SM) of animal origin and glucosylceramide (GC) of plant origin. After 45 days, the SM and GC diets led to significant reductions in hepatic lipid and plasma non-HDL cholesterol. Both SM and GC diets decreased plasma insulin levels, whereas only the GC diet increased the plasma adiponectin level. Hepatic gene expression analysis revealed increased expression of adiponectin receptor 2 (Adipor2), peroxisome proliferator-activated receptor alpha (PPARalpha), and pyruvate dehydrogenase kinase 4 (Pdk4). However, expression of stearoyl CoA desaturase (Scd1) was significantly decreased. These results suggest that dietary SL, even of different origins and chemical compositions, may prevent fatty liver and hypercholesterolemia through improvement of adiponectin signaling and consequent increases in insulin sensitivity.
Collapse
Affiliation(s)
- Keita Yunoki
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sugawara T, Duan J, Aida K, Tsuduki T, Hirata T. Identification of Glucosylceramides Containing Sphingatrienine in Maize and Rice Using Ion Trap Mass Spectrometry. Lipids 2010; 45:451-5. [DOI: 10.1007/s11745-010-3417-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/12/2010] [Indexed: 12/01/2022]
|
30
|
Ono J, Kinoshita M, Aida K, Tamura M, Ohnishi M. Effects of dietary glucosylceramide on dermatitis in atopic dermatitis model mice. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Sugawara T, Tsuduki T, Yano S, Hirose M, Duan J, Aida K, Ikeda I, Hirata T. Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 2010; 51:1761-9. [PMID: 20211933 DOI: 10.1194/jlr.m002204] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sphingolipids are ubiquitous in all eukaryotic organisms. Various physiological functions of dietary sphingolipids, such as preventing colon cancer and improving the skin barrier function, have been recently reported. One of the common sphingolipids used as a foodstuff is glucosylceramide from plant sources, which is composed of sphingoid bases distinct from those of mammals. However, the fate of dietary sphingolipids derived from plants is still not understood. In this study, we investigated the absorption of maize glucosylceramide in the rat intestine using a lipid absorption assay of lymph from the thoracic duct. The free and complex forms of trans-4,cis-8-sphingadienine, the predominant sphingoid base of maize glucosylceramide, were found in the lymph after administration of maize glucosylceramide. This plant type of sphingoid base was detected in the ceramide fraction and N-palmitoyl-4,8-sphingadienine (C16:0-d18:2) and N-tricosanoyl-4,8-sphingadienine (C23:0-d18:2) were identified by LC-MS/MS. The cumulative recovery of 4t,8c-sphingadienine in the lymph was very low. These results indicate that dietary glucosylceramide originating from higher plants is slightly absorbed in the intestine and is incorporated into ceramide structures in the intestinal cells. However, it appears that the intact form of sphingoid bases is not reutilized well in the tissues.
Collapse
Affiliation(s)
- Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sugawara T, Aida K, Duan J, Hirata T. Analysis of Glucosylceramides from Various Sources by Liquid Chromatography-Ion Trap Mass Spectrometry. J Oleo Sci 2010; 59:387-94. [DOI: 10.5650/jos.59.387] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
KINOSHITA MIKIO, AIDA KAZUHIKO, TOKUJI YOSHIHIKO, SUGAWARA TATSUYA, OHNISHI MASAO. EFFECTS OF DIETARY PLANT CEREBROSIDE ON GENE EXPRESSION IN THE LARGE INTESTINE OF 1,2-DIMETHYLHYDRAZINE (DMH)-TREATED MICE DETERMINED BY DNA MICROARRAY ANALYSIS. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1745-4522.2009.01141.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Ikeda Y, Inagaki M, Yamada K, Miyamoto T, Higuchi R, Shibata O. Langmur monolayers of cerebroside with different head groups originated from sea cucumber: binary systems with dipalmitoylphosphatidylcholine (DPPC). Colloids Surf B Biointerfaces 2009; 72:272-83. [PMID: 19464155 DOI: 10.1016/j.colsurfb.2009.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 04/19/2009] [Indexed: 11/27/2022]
Abstract
Surface properties (Langmuir monolayer) of two different cerebrosides which are extracted from the sea cucumber (Bohadschia argus) were investigated. A main difference in chemical structure of cerebroside between BAC-2a and BAC-4 is their head groups (glucose and galactose, respectively). Furthermore, miscibility and interaction between dipalmitoylphosphatidylcholine (DPPC) and cerebrosides (BAC-2a and BAC-4) in the monolayer have been systematically examined. The surface pressure (pi)-area (A), the surface potential (Delta V)-A, and the dipole moment (mu(perpendicular))-A isotherms for monolayers of DPPC, cerebrosides, and their binary combinations have been measured using the Wilhelmy method and the ionizing electrode method. BAC-4 forms a stable liquid-expanded (LE) monolayer, whereas BAC-2a has a first-order phase transition from the LE phase to the liquid-condensed (LC) state on 0.15 M NaCl at 298.2 K. The fundamental properties for each cerebroside monolayer were elucidated in terms of the surface dipole moment based on the three-layer model [R.J. Demchak, T. Fort Jr., J. Colloid Interface Sci. 46 (1974) 191-202] for both cerebrosides and the apparent molar quantity change (Delta s(gamma), Delta h(gamma), and Delta u(gamma)) for BAC-2a. In addition, their miscibility with DPPC was examined by the variation of the molecular areas and the surface potentials as a function of cerebroside mole fractions, the additivity rule. The miscibility was also confirmed by constructing the two-dimensional phase diagrams. The phase diagrams for the both binary systems were of negative azeotropic type. That is, the two-component DPPC/BAC-2a and DPPC/BAC-4 monolayers are miscible. Furthermore, the Joos equation for the analysis of the collapse pressure of binary monolayers allowed calculation of the interaction parameter and the interaction energy between the DPPC and cerebroside monolayers. The miscibility in the monolayer state was also confirmed by the morphological observation with Brewster angle microscopy (BAM), fluorescence microscopy (FM), and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Yuriko Ikeda
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Kinoshita M, Yunoki K, Tokuji Y, Kawahara M, Ohba K, Hironaka K, Ohnishi M. Effect of Dietary Chinese Yam (D. opposita Thunb.) and Leaf Juice (Aojiru) on Aberrant Crypt Foci Formation in 1,2-Dimethylhydrazine-treated Mice. J JPN SOC FOOD SCI 2009. [DOI: 10.3136/nskkk.56.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Kinoshita M, Yunoki K, Tokuji Y, Kawahara M, Ohba K, Hironaka K, Ohnishi M. Prevention of Aberrant Crypt Foci Formation by Dietary Chinese Yam (D. opposita THUNB.) in 1,2-Dimethylhydrazine-treated Mice. J JPN SOC FOOD SCI 2008. [DOI: 10.3136/nskkk.55.270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Sugawara T. Studies on Intestinal Absorption and Nutritional Functions of Glycolipids. ACTA ACUST UNITED AC 2007. [DOI: 10.4327/jsnfs.60.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Kinoshita M, Hori N, Aida K, Sugawara T, Ohnishi M. Prevention of Melanin Formation by Yeast Cerebroside in B16 Mouse Melanoma Cells. J Oleo Sci 2007; 56:645-8. [DOI: 10.5650/jos.56.645] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Tamura M, Kimura K, Yunoki K, Matsumoto O, Takakuwa N, Oda Y, Ohnishi M. Simultaneous production of sphingolipids and ethanol byKluyveromyces thermotolerans. Folia Microbiol (Praha) 2006; 51:191-5. [PMID: 17004649 DOI: 10.1007/bf02932121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Kluyveromyces thermotolerans strain NBRC 1674 was selected for the simultaneous production of sphingolipids and ethanol from beet molasses. The strain gradually synthesized ethanol with fermentation periods and attained a level slightly higher than that of the strain of Saccharomyces cerevisiae usually used for ethanol production. The sphingolipids accumulated in the cells were composed of almost equal amounts of free ceramides and glucosylceramides. The sphingoid bases and fatty acids of the two sphingolipids differed from each other and changed under aerobic and anaerobic growth conditions. Oxygen limitation may cause accumulation of sphinganine by inhibiting sphingolipid desaturases and enhance its proportion in both the sphingolipids.
Collapse
Affiliation(s)
- M Tamura
- Shimizu Bio-Plants, Nippon Beet Sugar Manufacturing Co. Ltd., Shimizu, Kamikawa, Hokkaido 089-0103, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Maruta T, Hoda K, Inagaki M, Higuchi R, Shibata O. Langmuir monolayers of cerebroside originated from Linckia laevigata: binary systems of cerebrosides and phospholipid. Colloids Surf B Biointerfaces 2005; 44:123-42. [PMID: 16051475 DOI: 10.1016/j.colsurfb.2005.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 05/31/2005] [Accepted: 06/18/2005] [Indexed: 11/21/2022]
Abstract
The surface pressure (pi)-area (A), the surface potential (DeltaV)-A and the dipole moment (mu( perpendicular))-A isotherms were obtained for six cerebrosides of LLC-2, LLC-2-1, LLC-2-8, LLC-2-10, LLC-2-12, and LLC-2-15, which were isolated from Linckia laevigata, and two-component monolayers of two different cerebrosides (LLC-2 and LLC-2-8) with phospholipid of dipalmitoylphosphatidylcholine (DPPC) on a subphase of 0.15 M sodium chloride solution as a function of cerebroside compositions in the two-component systems by employing the Wilhelmy method, the ionizing electrode method, and the fluorescence microscopy. The new finding was that LLC-2 showed a stable and liquid expanded type film. Four of them (LLC-2-8, -10, -12, and -15) had the phase transition from the liquid-expanded (LE) to the liquid-condensed (LC) states at 298.2 K. The apparent molar quantity changes (Deltas(gamma), Deltah(gamma), and Deltau(gamma)) on their phase transition on 0.15M at 298.2 K were calculated. The miscibility of cerebroside and phospholipid in the two-component monolayers was examined by plotting the variation of the molecular area and the surface potential as a function of the cerebroside molar fraction (X(cerebroside)), using the additivity rule. From the A-X(cerebroside) and DeltaV(m)-X(phospholipid) plots, a partial molecular surface area (PMA) and an apparent partial molecular surface potential (APSP) were determined at the discrete surface pressure. The PMA and APSP with the mole fraction were extensively discussed for the miscible systems. Judging from the two-dimensional phase diagrams, these were found to be one type, a positive azeotropic type; all the cerebrosides were miscible with DPPC. Furthermore, assuming a regular surface mixture, the Joos equation for the analysis of the collapse pressure of two-component monolayers allowed calculation of the interaction parameter (xi) and the interaction energy (-Deltavarepsilon) between the cerebrosides and DPPC. The miscibility of cerebroside and phospholipid components in the monolayer state was also supported by fluorescence microscopy.
Collapse
Affiliation(s)
- Tomoki Maruta
- Division of Biointerfacial Science, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
41
|
Tamura M, Matsumoto O, Takakuwa N, Oda Y, Ohnishi M. Production of Cerebroside from Beet Molasses by the YeastSaccharomyces kluyveri. FOOD BIOTECHNOL 2005. [DOI: 10.1081/fbt-200063426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
TAKAKUWA N, OHNISHI M, ODA Y. Selection of Salt-tolerant Yeast Strains Accumulating Glucosylceramide. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2005. [DOI: 10.3136/fstr.11.184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|