1
|
Ali Z, Al-Ghouti MA, Abou-Saleh H, Rahman MM. Unraveling the Omega-3 Puzzle: Navigating Challenges and Innovations for Bone Health and Healthy Aging. Mar Drugs 2024; 22:446. [PMID: 39452854 PMCID: PMC11509197 DOI: 10.3390/md22100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs, n-3 PUFAs), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA), are essential polyunsaturated fats primarily obtained from fatty fish and plant-based sources. Compelling evidence from preclinical and epidemiological studies consistently suggests beneficial effects of ω-3 PUFAs on bone health and healthy aging processes. However, clinical trials have yielded mixed results, with some failing to replicate these benefits seen in preclinical models. This contraindication is mainly due to challenges such as low bioavailability, potential adverse effects with higher doses, and susceptibility to oxidation of ω-3 fatty acids, hindering their clinical effectiveness. This review comprehensively discusses recent findings from a clinical perspective, along with preclinical and epidemiological studies, emphasizing the role of ω-3 PUFAs in promoting bone health and supporting healthy aging. Additionally, it explores strategies to improve ω-3 PUFA efficacy, including nanoparticle encapsulation and incorporation of specialized pro-resolving mediators (SPM) derived from DHA and EPA, to mitigate oxidation and enhance solubility, thereby improving therapeutic potential. By consolidating evidence from various studies, this review underscores current insights and future directions in leveraging ω-3 PUFAs for therapeutic applications.
Collapse
Affiliation(s)
- Zayana Ali
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mohammad Ahmed Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Haissam Abou-Saleh
- Biomedical Sciences Department, College of Health Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
2
|
Longarzo ML, Vázquez RF, Bellini MJ, Zamora RA, Redondo-Morata L, Giannotti MI, Oliveira Jr ON, Fanani ML, Maté SM. Understanding the effects of omega-3 fatty acid supplementation on the physical properties of brain lipid membranes. iScience 2024; 27:110362. [PMID: 39071883 PMCID: PMC11277689 DOI: 10.1016/j.isci.2024.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/24/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
A deficiency in omega-3 fatty acids (ω3 FAs) in the brain has been correlated with cognitive impairment, learning deficiencies, and behavioral changes. In this study, we provided ω3 FAs as a supplement to spontaneously hypertensive rats (SHR+ ω3). Our focus was on examining the impact of dietary supplementation on the physicochemical properties of the brain-cell membranes. Significant increases in ω3 levels in the cerebral cortex of SHR+ ω3 were observed, leading to alterations in brain lipid membranes molecular packing, elasticity, and lipid miscibility, resulting in an augmented phase disparity. Results from synthetic lipid mixtures confirmed the disordering effect introduced by ω3 lipids, showing its consequences on the hydration levels of the monolayers and the organization of the membrane domains. These findings suggest that dietary ω3 FAs influence the organization of brain membranes, providing insight into a potential mechanism for the broad effects of dietary fat on brain health and disease.
Collapse
Affiliation(s)
- María L. Longarzo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - Romina F. Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - María J. Bellini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| | - Ricardo A. Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Instituto de Investigación Interdisciplinaria (I³), Vicerrectoría Académica, and Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Lircay, Talca 3460000, Chile
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017, CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Marina I. Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- CIBER-BBN, ISCIII, 08028 Barcelona, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Osvaldo N. Oliveira Jr
- São Carlos Institute of Physics (IFSC-USP), University of São Paulo, 13566-590 São Carlos, São Paulo, Brazil
| | - María L. Fanani
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Cordoba, Argentina
- Departamento de Química Biológica Raquel Caputto, Facultad de Cs. Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | - Sabina M. Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, (1900), La Plata, Argentina
| |
Collapse
|
3
|
Schuchardt JP, Beinhorn P, Hu XF, Chan HM, Roke K, Bernasconi A, Hahn A, Sala-Vila A, Stark KD, Harris WS. Omega-3 world map: 2024 update. Prog Lipid Res 2024; 95:101286. [PMID: 38879135 DOI: 10.1016/j.plipres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
In 2016, the first worldwide n3 PUFA status map was published using the Omega-3 Index (O3I) as standard biomarker. The O3I is defined as the percentage of EPA + DHA in red blood cell (RBC) membrane FAs. The purpose of the present study was to update the 2016 map with new data. In order to be included, studies had to report O3I and/or blood EPA + DHA levels in metrics convertible into an estimated O3I, in samples drawn after 1999. To convert the non-RBC-based EPA + DHA metrics into RBC we used newly developed equations. Baseline data from clinical trials and observational studies were acceptable. A literature search identified 328 studies meeting inclusion criteria encompassing 342,864 subjects from 48 countries/regions. Weighted mean country O3I levels were categorized into very low ≤4%, low >4-6%, moderate >6-8%, and desirable >8%. We found that the O3I in most countries was low to very low. Notable differences between the current and 2016 map were 1) USA, Canada, Italy, Turkey, UK, Ireland and Greece (moving from the very low to low category); 2) France, Spain and New Zealand (low to moderate); and 3) Finland and Iceland (moderate to desirable). Countries such as Iran, Egypt, and India exhibited particularly poor O3I levels.
Collapse
Affiliation(s)
- Jan Philipp Schuchardt
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany.
| | - Philine Beinhorn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Xue Feng Hu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Kaitlin Roke
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Aldo Bernasconi
- Global Organization for EPA and DHA Omega-3s (GOED), 222 South Main Street, Suite 500, Salt Lake City, UT 84101, United States
| | - Andreas Hahn
- Institute of Food and One Health, Leibniz University Hannover, Am kleinen Felde 30, 30167 Hannover, Germany
| | - Aleix Sala-Vila
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Hospital del Mar Medical Research Institute, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ken D Stark
- Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - William S Harris
- The Fatty Acid Research Institute, 5009 W. 12(th) St. Ste 5, Sioux Falls, SD 57106, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, 1400 W. 22nd St., Sioux Falls, SD 57105, United States
| |
Collapse
|
4
|
Suh SW, Lim E, Burm SY, Lee H, Bae JB, Han JW, Kim KW. The influence of n-3 polyunsaturated fatty acids on cognitive function in individuals without dementia: a systematic review and dose-response meta-analysis. BMC Med 2024; 22:109. [PMID: 38468309 PMCID: PMC10929146 DOI: 10.1186/s12916-024-03296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been suggested as a cognitive enhancing agent, though their effect is doubtful. We aimed to examine the effect of n-3 PUFA on the cognitive function of middle-aged or older adults without dementia. METHODS We reviewed randomized controlled trials of individuals aged 40 years or older. We systematically searched PubMed/MEDLINE, EMBASE, CINAHL, PsycINFO, and Cochrane Library databases. We used the restricted cubic splines model for non-linear dose-response meta-analysis in terms of the standardized mean difference with 95% confidence intervals. RESULTS The current meta-analysis on 24 studies (n 9660; follow-up 3 to 36 months) found that the beneficial effect on executive function demonstrates an upward trend within the initial 12 months of intervention. This effect is prominently observed with a daily intake surpassing 500 mg of n-3 PUFA and up to 420 mg of eicosapentaenoic acid (EPA). Furthermore, these trends exhibit heightened significance in regions where the levels of blood docosahexaenoic acid (DHA) + EPA are not very low. CONCLUSIONS Supplementation of n-3 PUFA may confer potential benefits to executive function among the middle-aged and elderly demographic, particularly in individuals whose dietary DHA + EPA level is not substantially diminished.
Collapse
Affiliation(s)
| | - Eunji Lim
- Department of Psychiatry, Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Suh-Yuhn Burm
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyungji Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jong Bin Bae
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Won Han
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea.
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul, South Korea.
- Department of Brain and Cognitive Sciences, Seoul National University, College of Natural Sciences, Seoul, South Korea.
| |
Collapse
|
5
|
Welty FK, Daher R, Garelnabi M. Fish and Omega-3 Fatty Acids: Sex and Racial Differences in Cardiovascular Outcomes and Cognitive Function. Arterioscler Thromb Vasc Biol 2024; 44:89-107. [PMID: 37916414 PMCID: PMC10794037 DOI: 10.1161/atvbaha.122.318125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Both cardiovascular disease (CVD) and cognitive decline are common features of aging. One in 5 deaths is cardiac for both men and women in the United States, and an estimated 50 million are currently living with dementia worldwide. In this review, we summarize sex and racial differences in the role of fish and its very long chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in preventing CVD events and cognitive decline. In prospective studies, women with higher nonfried and fatty fish intake and women and Black individuals with higher plasma levels of EPA and DHA had a lower risk of CVD. In randomized controlled trials of EPA and DHA supplementation in primary CVD prevention, Black subjects benefited in a secondary outcome. In secondary CVD prevention, both men and women benefited, and Asians benefited as a prespecified subgroup. Fish and omega-3 polyunsaturated fatty acids are associated with prevention of cognitive decline in prospective studies. In randomized controlled trials of EPA and DHA supplementation, women have cognitive benefit. DHA seems more beneficial than EPA, and supplementation is more beneficial when started before cognitive decline. Although studies in women and racial groups are limited, life-long intake of nonfried and fatty fish lowers the risk of CVD and cognitive decline, and randomized controlled trials also show the benefit of EPA and DHA supplementation. These findings should be factored into recommendations for future research and clinical recommendations as dietary modalities could be cost-effective for disease prevention.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston (F.K.W.)
| | - Ralph Daher
- Department of Internal Medicine, Cooper University Healthcare, Camden, NJ (R.D.)
| | - Mahdi Garelnabi
- Department of Biomedical and Nutritional Sciences, U Mass Lowell Center for Population Health, University of Massachusetts (M.G.)
| |
Collapse
|
6
|
He X, Yu H, Fang J, Qi Z, Pei S, Yan B, Liu R, Wang Q, Szeto IMY, Liu B, Chen L, Li D. The effect of n-3 polyunsaturated fatty acid supplementation on cognitive function outcomes in the elderly depends on the baseline omega-3 index. Food Funct 2023; 14:9506-9517. [PMID: 37840364 DOI: 10.1039/d3fo02959j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Both epidemiological and preclinical studies have shown the benefits of n-3 polyunsaturated fatty acid (n-3 PUFA) on dementia and cognitive impairment, yet the results of clinical randomized controlled trials (RCTs) performed to date are conflicting. The difference in the baseline omega-3 index (O3i) of subjects is a potential cause for this disparity, yet this is usually ignored. The present meta-analysis aimed to evaluate the effect of n-3 polyunsaturated fatty acid (n-3 PUFA) on cognitive function in the elderly and the role of baseline O3i. A systematic literature search was conducted in PubMed, Embase, Cochrane Library, and Web of Science up to June 27th, 2023. The mean changes in the mini-mental state examination (MMSE) score were calculated as weighted mean differences by using a fixed-effects model. Fifteen random controlled trials were included in the meta-analysis. Pooled analysis showed that n-3 PUFA supplementation did not significantly improve the MMSE score (WMD = 0.04, [-0.08, 0.16]; Z = 0.62, P = 0.53; I2 = 0.00%, P(I2) = 0.49). Out of the 15 studies included in the meta-analysis, only 7 reported O3i at baseline and outcome, so only these 7 articles were used for subgroup analysis. Subgroup analysis showed that the MMSE score was significantly improved in the higher baseline O3i subgroup (WMD = 0.553, [0.01, 1.095]; I2 = 0.00%, P(I2) = 0.556) and higher O3i increment subgroup (WMD = 0.525, [0.023, 1.026]; I2 = 0.00%, P(I2) = 0.545). The overall effect demonstrated that n-3 PUFA supplementation exerted no improvement on global cognitive function. However, a higher baseline O3i and higher O3i increment were associated with an improvement in cognitive function in the elderly.
Collapse
Affiliation(s)
- Xin He
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
| | - Hongzhuan Yu
- Weifang Traditional Chinese Hospital, Weifang, China
| | - Jiacheng Fang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Zhongshi Qi
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Shengjie Pei
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Bei Yan
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Run Liu
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Qiuzhen Wang
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | | | - Biao Liu
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Lei Chen
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China.
- Department of Food Science and Nutrition, Zhejiang University, China
- Department of Nutrition, Dietetics and Food, Monash University, Australia
| |
Collapse
|
7
|
Gao J, Xie C, Yang J, Tian C, Zhang M, Lu Z, Meng X, Cai J, Guo X, Gao T. The Effects of n-3 PUFA Supplementation on Bone Metabolism Markers and Body Bone Mineral Density in Adults: A Systematic Review and Meta-Analysis of RCTs. Nutrients 2023; 15:2806. [PMID: 37375709 DOI: 10.3390/nu15122806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Supplemental n-3 polyunsaturated fatty acids (PUFA) on bone metabolism have yielded inconsistent results. This study aimed to examine the effects of n-3 PUFA supplementation on bone metabolism markers and bone mineral density through a meta-analysis of randomized controlled trials. A systematic literature search was conducted using the PubMed, Web of Science, and EBSCO databases, updated to 1 March 2023. The intervention effects were measured as standard mean differences (SMD) and mean differences (MD). Additionally, n-3 PUFA with the untreated control, placebo control, or lower-dose n-3 PUFA supplements were compared, respectively. Further, 19 randomized controlled trials (RCTs) (22 comparisons, n = 2546) showed that n-3 PUFA supplementation significantly increased blood n-3 PUFA (SMD: 2.612; 95% CI: 1.649 to 3.575). However, no significant effects were found on BMD, CTx-1, NTx-1, BAP, serum calcium, 25(OH)D, PTH, CRP, and IL-6. Subgroup analyses showed significant increases in femoral neck BMD in females (0.01, 95% CI: 0.01 to 0.02), people aged <60 years (0.01, 95% CI: 0.01 to 0.01), and those people in Eastern countries (0.02, 95% CI: 0.02 to 0.03), and for 25(OH)D in people aged ≥60 years (0.43, 95% CI: 0.11 to 0.74), treated with n-3 PUFA only (0.36, 95% CI: 0.06 to 0.66), and in studies lasting ≤6 months (0.29, 95% CI: 0.11 to 0.47). NTx-1 decreased in both genders (-9.66, 95% CI: -15.60 to -3.71), and serum calcium reduction was found in studies lasting >6 months (-0.19, 95% CI: -0.37 to -0.01). The present study demonstrated that n-3 PUFA supplementation might not have a significant effect on bone mineral density or bone metabolism markers, but have some potential benefits for younger postmenopausal subjects in the short term. Therefore, additional high-quality, long-term randomized controlled trials (RCTs) are warranted to fully elucidate the potential benefits of n-3 PUFA supplementation, as well as the combined supplementation of n-3 PUFA, on bone health.
Collapse
Affiliation(s)
- Jie Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Chenqi Xie
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Jie Yang
- Health Service Center of Xuejiadao Community, Qingdao 266520, China
| | - Chunyan Tian
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Mai Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhenquan Lu
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiangyuan Meng
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Cai
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Xiaofei Guo
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
8
|
Otoki Y, Yu D, Shen Q, Sahlas DJ, Ramirez J, Gao F, Masellis M, Swartz RH, Chan PC, Pettersen JA, Kato S, Nakagawa K, Black SE, Swardfager W, Taha AY. Quantitative Lipidomic Analysis of Serum Phospholipids Reveals Dissociable Markers of Alzheimer's Disease and Subcortical Cerebrovascular Disease. J Alzheimers Dis 2023; 93:665-682. [PMID: 37092220 DOI: 10.3233/jad-220795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Circulating phospholipid species have been shown to predict Alzheimer's disease (AD) prognosis but the link between phospholipid disturbances and subcortical small vessel cerebrovascular disease (CeVD) common in AD patients is not known. OBJECTIVE This study used quantitative lipidomics to measure serum diacyl, alkenyl (ether), alkyl, and lyso phospholipid species in individuals with extensive CeVD (n = 29), AD with minimal CeVD (n = 16), and AD with extensive CeVD (n = 14), and compared them to age-matched controls (n = 27). Memory was assessed using the California Verbal Learning Test. 3.0T MRI was used to assess hippocampal volume, atrophy, and white matter hyperintensity (WMH) volumes as manifestations of CeVD. RESULTS AD was associated with significantly higher concentrations of choline plasmalogen 18:0_18:1 and alkyl-phosphocholine 18:1. CeVD was associated with significantly lower lysophospholipids containing 16:0. Phospholipids containing arachidonic acid (AA) were associated with poorer memory in controls, whereas docosahexaenoic acid (DHA)-containing phospholipids were associated with better memory in individuals with AD+CeVD. In controls, DHA-containing phospholipids were associated with more atrophy and phospholipids containing linoleic acid and AA were associated with less atrophy. Lysophospholipids containing 16:0, 18:0, and 18:1 were correlated with less atrophy in controls, and of these, alkyl-phosphocholine 18:1 was correlated with smaller WMH volumes. Conversely, 16:0_18:1 choline plasmalogen was correlated with greater WMH volumes in controls. CONCLUSION This study demonstrates discernable differences in circulating phospholipids in individuals with AD and CeVD, as well as new associations between phospholipid species with memory and brain structure that were specific to contexts of commonly comorbid vascular and neurodegenerative pathologies.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Di Yu
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada
| | - Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Demetrios J Sahlas
- Department of Medicine (Neurology Division), McMaster University, Hamilton, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medicine (Neurology Division) and the Northern Medical Program, University of British Columbia, Vancouver, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Pak Cheung Chan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jacqueline A Pettersen
- Department of Medicine (Neurology Division) and the Northern Medical Program, University of British Columbia, Vancouver, Canada
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada
- Department of Medicine (Neurology Division), University of Toronto, Toronto, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada
- University Health Network Toronto Rehabilitation Institute, Toronto, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- West Coast Metabolomics Center, Genome Center, University of California - Davis, Davis, CA, USA
- Center for Neuroscience, University of California - Davis, Davis, CA, USA
| |
Collapse
|
9
|
Yamagata K. Docosahexaenoic acid inhibits ischemic stroke to reduce vascular dementia and Alzheimer’s disease. Prostaglandins Other Lipid Mediat 2023; 167:106733. [PMID: 37028469 DOI: 10.1016/j.prostaglandins.2023.106733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Stroke and dementia are global leading causes of neurological disability and death. The pathology of these diseases is interrelated and they share common, modifiable risk factors. It is suggested that docosahexaenoic acid (DHA) prevents neurological and vascular disorders induced by ischemic stroke and also prevent dementia. The purpose of this study was to review the potential preventative role of DHA against ischemic stroke-induced vascular dementia and Alzheimer's disease. In this review, I analyzed studies on stroke-induced dementia from the PubMed, ScienceDirect, and Web of Science databases as well as studies on the effects of DHA on stroke-induced dementia. As per the results of interventional studies, DHA intake can potentially ameliorate dementia and cognitive function. In particular, DHA derived from foods such as fish oil enters the blood and then migrates to the brain by binding to fatty acid binding protein 5 that is present in cerebral vascular endothelial cells. At this point, the esterified form of DHA produced by lysophosphatidylcholine is preferentially absorbed into the brain instead of free DHA. DHA accumulates in nerve cell membrane and is involved in the prevention of dementia. The antioxidative and anti-inflammatory properties of DHA and DHA metabolites as well as their ability to decrease amyloid beta (Aβ) 42 production were implicated in the improvement of cognitive function. The antioxidant effect of DHA, the inhibition of neuronal cell death by Aβ peptide, improvement in learning ability, and enhancement of synaptic plasticity may contribute to the prevention of dementia induced by ischemic stroke.
Collapse
|
10
|
Andriambelo B, Stiffel M, Roke K, Plourde M. New perspectives on randomized controlled trials with omega-3 fatty acid supplements and cognition: A scoping review. Ageing Res Rev 2023; 85:101835. [PMID: 36603691 DOI: 10.1016/j.arr.2022.101835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Long chain polyunsaturated omega-3 fatty acids (n-3 FA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to be important components in a healthy diet and contribute to healthy functioning of the heart and the brain, among other organs. Although there are epidemiological studies on the strong relationship between fish or n-3 FA consumption and lower risk of cognitive decline, results from randomized controlled trials (RCTs) are less consistent. Here, we performed a scoping review on RCTs with n-3 FA supplementation where cognition was evaluated. Seventy-eight RCTs published before April 2022 were included in this review. Among these RCTs, 43.6% reported a positive cognitive outcome after the consumption of n-3 FA compared to the placebo. However, there was a large diversity of populations studied (age ranges and health status), wide range of doses of EPA + DHA supplemented (79 mg/day - 5200 mg/day) and a multitude of tests evaluating cognition, mainly diagnostic tests, that were used to assess cognitive scores and overall cognitive status. RCTs were thereafter categorized into non-cognitively impaired middle-aged adults (n = 24), non-cognitively impaired older adults (n = 24), adults with subjective memory complaints (n = 14), adults with mild cognitive impairments (MCI, n = 9) and people with diagnosed dementia or other cognitive changes (n = 7). Among these categories, 66.7% of RCTs conducted with MCI adults reported a positive cognitive outcome when supplemented with n-3 FA vs. the placebo. Therefore, this scoping review provides rationale and questions to a) strengthen the design of future RCTs with n-3 FA for cognitive outcomes, and b) generate more informative data to support clinicians in their practice in assessing cognition before and after a nutritional intervention.
Collapse
Affiliation(s)
- B Andriambelo
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - M Stiffel
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada
| | - K Roke
- GOED- Global Organization for EPA and DHA Omega-3, Salt Lake City, UT, United States
| | - M Plourde
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada, Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie-CHUS, Sherbrooke, QC, Canada; Institut de la nutrition et des aliments fonctionnels, Université Laval, QC, Canada.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW The aim is to provide an update on omega-3 polyunsaturated fatty acids (n-3 PUFA) in preventing cognitive decline and dementia. RECENT FINDINGS Prospective studies and three new meta-analyses suggest that fish or n-3 PUFA intake are associated with a reduction in development of mild cognitive decline and Alzheimer's disease. Supplementation with docosahexaenoic acid (DHA) in randomized controlled trials (RCTs) in those with mild cognitive impairment showed benefit on cognitive decline, whereas there was no benefit in Alzheimer's disease. In cognitively healthy individuals with clinical coronary artery disease (CAD), 3.36 g EPA and DHA daily slowed cognitive ageing by 2.5 years. Of 15 RCTs in cognitively healthy individuals age more than 55 years, seven reported benefit, whereas eight did not. Potential mechanisms for differences in outcomes include dose, trial duration, apolipoproteinE genotype, sex, stage and rate of cognitive decline, cognitive testing employed and individual characteristics. The downstream product of DHA, neuroprotectin D1, may be involved in beneficial effects. SUMMARY Patients with early memory complaints or a family history of dementia and those with CAD should be counselled on the potential benefits of fish intake and supplementation with n-3 PUFA. ApolipoproteinE4 carriers may especially benefit from DHA supplementation prior to development of cognitive decline.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Matsuzaki K, Hossain S, Wakatsuki H, Tanabe Y, Ohno M, Kato S, Shido O, Hashimoto M. Perilla seed oil improves bone health by inhibiting bone resorption in healthy Japanese adults: A 12-month, randomized, double-blind, placebo-controlled trial. Phytother Res 2023. [PMID: 36637040 DOI: 10.1002/ptr.7728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023]
Abstract
Accumulating evidence suggests the beneficial effect of omega-3 polyunsaturated fatty acids (PUFAs) on bone mineral density (BMD). However, the effects of perilla (Perilla frutescens) seed oil (PO), a rich source of α-linoleic acid (LNA), on human bone have not yet been elucidated. This randomized, double-blind, placebo-controlled trial investigated the effects of long-term PO intake on bone health in Japanese adults. After screening for eligibility, 52 participants (mean age 54.2 ± 6.4 years) were randomly assigned to placebo (n = 25) and PO (n = 27) groups, which received 7.0 ml of olive oil and PO daily, respectively. At baseline and 12-month, quantitative ultrasound of the right calcaneus was measured with an ultrasound bone densitometer and percentage of the Young Adult Mean (%YAM) was calculated. Serum levels of tartrate-resistant acid phosphatase 5b (TRACP-5b), and bone alkaline phosphatase (BALP) were evaluated. In addition, PUFA levels in the erythrocyte plasma membrane (RBC-PM), serum biological antioxidant potential (BAP), and diacron reactive oxygen metabolites (d-ROM) were evaluated. Compared with the placebo group, %YAM levels increased and serum TRACP-5b levels decreased significantly in the PO group at 12-month, while serum BALP levels remained unchanged. Moreover, RBC-PM LNA levels and BAP/d-ROM ratios increased significantly in the PO compared with the placebo group. These results suggest that long-term PO intake may improve age-related BMD decline by suppressing bone resorption and increasing LNA levels.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Shahdat Hossain
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.,Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Bangladesh
| | - Harumi Wakatsuki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Yoko Tanabe
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Miho Ohno
- Kato Hospital, Jinjukai Healthcare Corporation, Kawamoto, Japan
| | - Setsushi Kato
- Kato Hospital, Jinjukai Healthcare Corporation, Kawamoto, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
13
|
Hashimoto M, Matsuzaki K, Maruyama K, Sumiyoshi E, Hossain S, Wakatsuki H, Kato S, Ohno M, Tanabe Y, Kuroda Y, Yamaguchi S, Kajima K, Ohizumi Y, Shido O. Perilla frutescens seed oil combined with Anredera cordifolia leaf powder attenuates age-related cognitive decline by reducing serum triglyceride and glucose levels in healthy elderly Japanese individuals: a possible supplement for brain health. Food Funct 2022; 13:7226-7239. [PMID: 35722977 DOI: 10.1039/d2fo00723a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have shown that Anredera cordifolia extract improves learning and memory in a senescence-accelerated mouse model, and that α-linolenic acid (ALA)-rich Perilla frutescens seed oil (PO) improves brain function in healthy Japanese adults and elderly individuals. Herein, we present a 12-month, randomised, double-blind, parallel-armed intervention trial examining the effects of PO supplementation alone or in combination with A. cordifolia leaf powder on brain function in healthy elderly Japanese individuals. Participants were randomly divided into two groups: the PO group received 1.47 mL PO (0.88 g ALA) daily via soft gelatine capsules, and the POAC group received 1.47 mL PO and 1.12 g A. cordifolia leaf powder (1.46 mg vitexin and 1.12 mg adenosine) daily. After 12 months of intervention, the POAC group showed generally higher cognitive index scores than the PO group. The beneficial effects of combined supplementation on cognitive function were associated with increased ALA and eicosapentaenoic acid levels in red blood cell plasma membranes, increased serum biological antioxidant potential, and decreased serum triglyceride, glucose, and N-(epsilon)-carboxymethyl-lysine (CML), an advanced glycation end-product and biochemical marker of oxidative stress levels. The effects of combined supplementation on cognitive function also showed a significant negative correlation with serum CML levels after 12 months of intervention. Our findings suggest that combined long-term supplementation with PO and A. cordifolia more effectively ameliorates age-related cognitive decline than PO alone. These findings may serve as a basis for the development of new supplements for brain health. Clinical Trial Registry, UMIN000040863.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.
| | | | - Eri Sumiyoshi
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.
| | - Shahdat Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Harumi Wakatsuki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.
| | - Setsushi Kato
- Kato Hospital, Jinjukai Healthcare Corporation, Kawamoto, Shimane, Japan
| | - Miho Ohno
- Kato Hospital, Jinjukai Healthcare Corporation, Kawamoto, Shimane, Japan
| | - Yoko Tanabe
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.
| | - Yoko Kuroda
- Department of Internal Medicine III, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | | | - Koji Kajima
- Sankyo Holdings Co., Ltd, Fuji, Shizuoka, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai, Miyagi, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan.
| |
Collapse
|
14
|
Jiwani R, Robbins R, Neri A, Renero J, Lopez E, Serra MC. Effect of Dietary Intake Through Whole Foods on Cognitive Function: Review of Randomized Controlled Trials. Curr Nutr Rep 2022; 11:146-160. [PMID: 35334104 PMCID: PMC11110908 DOI: 10.1007/s13668-022-00412-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW This review evaluated recent randomized controlled trials (RCTs) examining the chronic intake of whole foods associated with the Mediterranean, Dietary Approaches to Stop Hypertension (DASH), Mediterranean-DASH Intervention for Neurogenerative Delay (MIND), and ketogenic (KETO) diets on cognitive function. RECENT FINDINGS We identified RCTs related to olive oil (N = 3), nuts (N = 7), fatty fish (N = 1), lean meats (N = 4), fruits and vegetables (N = 9), legumes (N = 1), and low-fat dairy (N = 4), with 26/29 reporting positive results on at least one measure of cognition. We also identified 6 RCTs related to whole food-induced KETO diets, with half reporting positive effects on cognition. Variations in study design (i.e., generally the studies are < 6 months and include middle-aged and older, cognitively intact participants) and small sample sizes make it difficult to draw conclusions across studies; however, the current evidence from RCTs generally supports individual component intakes of these dietary patterns as an effective, nonpharmacological approach to improve cognitive health in adults.
Collapse
Affiliation(s)
- Rozmin Jiwani
- School of Nursing, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA.
| | - Ronna Robbins
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Alfonso Neri
- School of Nursing, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jose Renero
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Emme Lopez
- Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Monica C Serra
- Geriatric Research, Education & Clinical Center (GRECC), South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
15
|
A Narrative Review of the Effects of Citrus Peels and Extracts on Human Brain Health and Metabolism. Nutrients 2022; 14:nu14091847. [PMID: 35565814 PMCID: PMC9103913 DOI: 10.3390/nu14091847] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
As life expectancy increases, age-associated diseases such as Alzheimer's disease (AD) become a major health problem. The onset of AD involves neurological dysfunction due to amyloid-β accumulation, tau hyperphosphorylation, oxidative stress, and neuroinflammation in the brain. In addition, lifestyle-related diseases-such as dyslipidemia, diabetes, obesity, and vascular dysfunction-increase the risk of developing dementia. The world population ages, prompting the development of new strategies to maintain brain health and prevent the onset of dementia in older and preclinical patients. Citrus fruits are abundant polymethoxylated flavone and flavanone sources. Preclinical studies reported that these compounds have neuroprotective effects in models of dementia such as AD. Interestingly, clinical and epidemiological studies appear to support preclinical evidence and show improved cognitive function and reduced associated disease risk in healthy individuals and/or patients. This review summarizes the recent evidence of the beneficial effects of citrus peels and extracts on human cognition and related functions.
Collapse
|
16
|
Hashimoto M, Matsuzaki K, Maruyama K, Hossain S, Sumiyoshi E, Wakatsuki H, Kato S, Ohno M, Tanabe Y, Kuroda Y, Yamaguchi S, Kajima K, Ohizumi Y, Shido O. Perilla seed oil in combination with the nobiletin-rich ponkan powder enhances cognitive function in healthy elderly Japanese individuals: Possible supplement for brain health in the elderly. Food Funct 2022; 13:2768-2781. [DOI: 10.1039/d1fo03508h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Perilla (Perilla frutescens) seed oil (PO), rich in α-linolenic acid (ALA), can improve cognitive function in healthy elderly Japanese people. Here, supplements containing either PO alone or PO with nobiletin-rich...
Collapse
|