1
|
Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. A Comprehensive Review of the Contribution of Mitochondrial DNA Mutations and Dysfunction in Polycystic Ovary Syndrome, Supported by Secondary Database Analysis. Int J Mol Sci 2025; 26:1172. [PMID: 39940939 PMCID: PMC11818232 DOI: 10.3390/ijms26031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age characterized by a spectrum of clinical, metabolic, reproductive, and psychological abnormalities. This syndrome is associated with significant long-term health risks, necessitating elucidation of its pathophysiology, early diagnosis, and comprehensive management strategies. Several contributory factors in PCOS, including androgen excess and insulin resistance, collectively enhance oxidative stress, which subsequently leads to mitochondrial dysfunction. However, the precise mechanisms through which oxidative stress induces mitochondrial dysfunction remain incompletely understood. Comprehensive searches of electronic databases were conducted to identify relevant studies published up to 30 September 2024. Mitochondria, the primary sites of reactive oxygen species (ROS) generation, play critical roles in energy metabolism and cellular homeostasis. Oxidative stress can inflict damage on components, including lipids, proteins, and DNA. Damage to mitochondrial DNA (mtDNA), which lacks efficient repair mechanisms, may result in mutations that impair mitochondrial function. Dysfunctional mitochondrial activity further amplifies ROS production, thereby perpetuating oxidative stress. These disruptions are implicated in the complications associated with the syndrome. Advances in genetic analysis technologies, including next-generation sequencing, have identified point mutations and deletions in mtDNA, drawing significant attention to their association with oxidative stress. Emerging data from mtDNA mutation analyses challenge conventional paradigms and provide new insights into the role of oxidative stress in mitochondrial dysfunction. We are rethinking the pathogenesis of PCOS based on these database analyses. In conclusion, this review explores the intricate relationship between oxidative stress, mtDNA mutations, and mitochondrial dysfunction, offers an updated perspective on the pathophysiology of PCOS, and outlines directions for future research.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Medicine, Kei Oushin Clinic, 5-2-6 Naruo-cho, Nishinomiya 663-8184, Japan
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara 630-8581, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara 634-0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan;
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara 634-8522, Japan; (S.M.); (C.Y.); (H.S.)
| |
Collapse
|
2
|
Kobayashi H, Imanaka S. Exploring potential pathways from oxidative stress to ovarian aging. J Obstet Gynaecol Res 2025; 51:e16166. [PMID: 39572911 DOI: 10.1111/jog.16166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024]
Abstract
AIM In developed nations, women have increasingly deferred childbearing, leading to a rise in demand for infertility treatments and the widespread use of assisted reproductive technologies. However, despite advancements in in vitro fertilization (IVF), live birth rates among women over 40 remain suboptimal. Mitochondrial dysfunction is widely recognized as a key factor in the processes driving the age-related deterioration in both the quantity and quality of oocytes. We aim to summarize current insights into ovarian aging, with a particular focus on pathways that impair mitochondrial function, and explore directions for future research. METHODS Electronic databases were searched for articles published up to June 30, 2024. RESULTS Ongoing ovulation, luteolysis, and menstruation trigger exogenous reactive oxygen species (ROS)-mediated oxidative stress that damages mitochondrial DNA. This, in turn, reduces nuclear gene expression, compromises mitochondrial oxidative phosphorylation, and diminishes adenosine 5' triphosphate production. Persistent endogenous ROS further exacerbate mitochondrial DNA damage and aneuploidy, ultimately causing irreversible chromosomal abnormalities, leading to oocyte aging. CONCLUSIONS We have delineated the pathway from oxidative stress to ovarian aging. Early detection and management of ovarian aging present challenges and opportunities to enhance IVF treatment strategies.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, Kashihara, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
3
|
Hao X, Zhao J, Rodriguez-Wallberg KA. Comprehensive atlas of mitochondrial distribution and dynamics during oocyte maturation in mouse models. Biomark Res 2024; 12:125. [PMID: 39415247 PMCID: PMC11484396 DOI: 10.1186/s40364-024-00672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Oocytes, the largest cells in mammals, harbor numerous mitochondria within their cytoplasm. These highly dynamic organelles are crucial for providing energy resources and serving as central regulators during oogenesis. Mitochondrial dynamics ensure proper energy distribution for various cellular processes involved in oocyte maturation. Previous studies have used alterations in mitochondrial distribution as a biomarker to assess the oocyte health. However, there are discrepancies between studies regarding mitochondrial distribution profiles in healthy oocytes. Consequently, a comprehensive mitochondrial distribution profile in oocytes during maturation has not been fully characterized. Additionally, there is a lack of objective, quantitative methods to evaluate alterations in mitochondrial distribution profiles in oocytes. METHODS This study aims to provide an in-depth overview of mitochondrial distribution profiles in mouse oocytes at different maturation stages: germinal vesicle (GV) stage, metaphase I (MI), and mature metaphase II (MII). Freshly collected mouse GV, MI and MII oocytes were stained with MitoTracker Red. Confocal microscopy was used to obtain images of mitochondrial distribution profiles in these oocytes. Using the Imaris software, we reconstructed three-dimensional (3D) surface renderings of each oocyte and quantitatively illustrated the mitochondrial distribution profiles. RESULTS At the GV stage, mitochondria in oocytes were evenly distributed throughout the ooplasm. As oocytes progressed to MI and MII stages, mitochondria aggregated and formed clusters, the mean size of mitochondrial clusters and the proportions of clustered mitochondria increased along with the maturation of oocytes. CONCLUSIONS Our findings reveal that mitochondria in mouse oocytes are highly dynamic, undergoing significant reorganizations during oocyte maturation. We for the first time provided comprehensive mitochondrial distribution profiles in mouse oocytes at the GV, MI and MII stages. These mitochondrial distribution profiles were further quantitatively evaluated. Our methods provide an objective and standardized approach for evaluating alterations in mitochondrial dynamics, which can be used as biomarkers to monitor oocyte conditions during maturation.
Collapse
Affiliation(s)
- Xia Hao
- Department of Oncology-Pathology, Laboratory of Translational Fertility Preservation, Karolinska Institutet, Stockholm, Sweden
| | - Jian Zhao
- Department of Oncology-Pathology, Laboratory of Translational Fertility Preservation, Karolinska Institutet, Stockholm, Sweden.
| | - Kenny A Rodriguez-Wallberg
- Department of Oncology-Pathology, Laboratory of Translational Fertility Preservation, Karolinska Institutet, Stockholm, Sweden.
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Madreiter-Sokolowski CT, Hiden U, Krstic J, Panzitt K, Wagner M, Enzinger C, Khalil M, Abdellatif M, Malle E, Madl T, Osto E, Schosserer M, Binder CJ, Olschewski A. Targeting organ-specific mitochondrial dysfunction to improve biological aging. Pharmacol Ther 2024; 262:108710. [PMID: 39179117 DOI: 10.1016/j.pharmthera.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
In an aging society, unveiling new anti-aging strategies to prevent and combat aging-related diseases is of utmost importance. Mitochondria are the primary ATP production sites and key regulators of programmed cell death. Consequently, these highly dynamic organelles play a central role in maintaining tissue function, and mitochondrial dysfunction is a pivotal factor in the progressive age-related decline in cellular homeostasis and organ function. The current review examines recent advances in understanding the interplay between mitochondrial dysfunction and organ-specific aging. Thereby, we dissect molecular mechanisms underlying mitochondrial impairment associated with the deterioration of organ function, exploring the role of mitochondrial DNA, reactive oxygen species homeostasis, metabolic activity, damage-associated molecular patterns, biogenesis, turnover, and dynamics. We also highlight emerging therapeutic strategies in preclinical and clinical tests that are supposed to rejuvenate mitochondrial function, such as antioxidants, mitochondrial biogenesis stimulators, and modulators of mitochondrial turnover and dynamics. Furthermore, we discuss potential benefits and challenges associated with the use of these interventions, emphasizing the need for organ-specific approaches given the unique mitochondrial characteristics of different tissues. In conclusion, this review highlights the therapeutic potential of addressing mitochondrial dysfunction to mitigate organ-specific aging, focusing on the skin, liver, lung, brain, skeletal muscle, and lung, as well as on the reproductive, immune, and cardiovascular systems. Based on a comprehensive understanding of the multifaceted roles of mitochondria, innovative therapeutic strategies may be developed and optimized to combat biological aging and promote healthy aging across diverse organ systems.
Collapse
Affiliation(s)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Research Unit of Early Life Determinants, Medical University of Graz, Austria
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Katrin Panzitt
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Martin Wagner
- Division of Gastroenterology and Hepatology, Medical University of Graz, Austria
| | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Medical University of Graz, BioTechMed-Graz, Austria
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Medical University of Graz, BioTechMed-Graz, Austria
| | - Elena Osto
- Division of Physiology and Pathophysiology, Medical University of Graz
| | - Markus Schosserer
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Austria; Christian Doppler Laboratory for Skin Multimodal Imaging of Aging and Senescence, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Andrea Olschewski
- Department of Anesthesiology and Intensive Care Medicine, LBI for Lung Vascular Research, Medical University of Graz, Austria.
| |
Collapse
|
5
|
An Z, Xie C, Lu H, Wang S, Zhang X, Yu W, Guo X, Liu Z, Shang D, Wang X. Mitochondrial Morphology and Function Abnormality in Ovarian Granulosa Cells of Patients with Diminished Ovarian Reserve. Reprod Sci 2024; 31:2009-2020. [PMID: 38294667 DOI: 10.1007/s43032-024-01459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
In this study, we examined the changes in the mitochondrial structure and function in cumulus granulosa cells of patients with diminished ovarian reserve (DOR) to explore the causes and mechanisms of decreased mitochondrial quality. The mitochondrial ultrastructure was observed by transmission electron microscope, and the function was determined by detecting the ATP content, reactive oxygen species (ROS) levels, the number of mitochondria, and the mitochondrial membrane potential. The expression of ATP synthases in relation to mitochondrial function was analyzed. Additionally, protein immunoblotting was used to compare the expression levels of mitochondrial kinetic protein, the related channel protein in the two groups. Patients with DOR had abnormal granulosa cell morphology, increased mitochondrial abnormalities, decreased mitochondrial function, and disturbed mitochondrial dynamics. Additionally, the silent information regulator 1 (SIRT1)/phospho-AMP-activated protein kinase (P-AMPK)-peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) pathway expression was decreased, which was speculated to be associated with the decreased mitochondrial mass in the DOR group. The mitochondrial mass was decreased in granulosa cells of patients in the DOR group. The mitochondrial dysfunction observed in granulosa cells of patients in the DOR group may be associated with dysregulation of the SIRT1/P-AMPK-PGC-1α-mitochondrial transcription factor A (TFAM) pathway.
Collapse
Affiliation(s)
- Zhuo An
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
- Hebei Medical University, No. 361 Zhongshan Road, Chang'An District, Shijiazhuang, 050017, China
| | - Congcong Xie
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Hui Lu
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Shusong Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Xiujia Zhang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Wenbo Yu
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Xiaoli Guo
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China
| | - Zehao Liu
- Hebei Children's Hospital, Shijiazhuang, 050031, China
| | - Dandan Shang
- Hebei Medical University, No. 361 Zhongshan Road, Chang'An District, Shijiazhuang, 050017, China.
| | - Xueying Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Hebei Institute of Reproductive Health Science and Technology, No. 480 Heping Road, Xinhua District, Shijiazhuang, 050071, China.
| |
Collapse
|
6
|
Yildirim RM, Seli E. The role of mitochondrial dynamics in oocyte and early embryo development. Semin Cell Dev Biol 2024; 159-160:52-61. [PMID: 38330625 DOI: 10.1016/j.semcdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Mitochondrial dysfunction is widely implicated in various human diseases, through mechanisms that go beyond mitochondria's well-established role in energy generation. These dynamic organelles exert vital control over numerous cellular processes, including calcium regulation, phospholipid synthesis, innate immunity, and apoptosis. While mitochondria's importance is acknowledged in all cell types, research has revealed the exceptionally dynamic nature of the mitochondrial network in oocytes and embryos, finely tuned to meet unique needs during gamete and pre-implantation embryo development. Within oocytes, both the quantity and morphology of mitochondria can significantly change during maturation and post-fertilization. These changes are orchestrated by fusion and fission processes (collectively known as mitochondrial dynamics), crucial for energy production, content exchange, and quality control as mitochondria adjust to the shifting energy demands of oocytes and embryos. The roles of proteins that regulate mitochondrial dynamics in reproductive processes have been primarily elucidated through targeted deletion studies in animal models. Notably, impaired mitochondrial dynamics have been linked to female reproductive health, affecting oocyte quality, fertilization, and embryo development. Dysfunctional mitochondria can lead to fertility problems and can have an impact on the success of pregnancy, particularly in older reproductive age women.
Collapse
Affiliation(s)
- Raziye Melike Yildirim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|