1
|
Weidmann AE, Proppé GB, Matthíasdóttir R, Tadić I, Gunnarsson PS, Jónsdóttir F. Medication-induced causes of delirium in patients with and without dementia: a systematic review of published neurology guidelines. Int J Clin Pharm 2025:10.1007/s11096-024-01861-4. [PMID: 39969659 DOI: 10.1007/s11096-024-01861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025]
Abstract
BACKGROUND While medication is a recognized risk factor of delirium, there is currently a lack of detailed information on managing and preventing medication-induced cases. AIM This review summarizes the information provided in neurology guidelines on medication-induced delirium in patients with and without dementia to inform guidance on prevention and management strategies. METHOD A systematic literature review was conducted across 114 neurological and medical organisations, Guideline Central and PubMed. Guidelines, consensus guidelines, white papers, frameworks, protocols, standard procedures, action plans and strategic documents detailing the prevention and management of medication-induced delirium in adults with or without dementia were included. Title and full-text screening was completed independently by two reviewers using PICOS. AGREE II was used to assess reporting quality. A data extraction tool was designed based on the Cochrane Effective Practice and Organization of Care Review Group (EPOC) checklist and a mixed methods approach to synthesis adopted. The systematic review protocol was registered with International Prospective Register of Systematic Reviews (PROSPERO) [ID: CRD42022366025]. RESULTS Out of 143 guidelines identified, 30 were included. Information for 140 individual medications was extracted. Medications most frequently cited included sedatives (n = 24/80%), opioids (n = 22/73,3%), psychoactive drugs (n = 21/70%) + anti-convulsants (n = 14/46,7%), anti-cholinergic agents (n = 20/66,7%), antihistamines (n = 18/60%), and steroids (n = 16/53,3%). Despite a consistently high-quality rating (n = 19, 63,3%), the detail provided often lacks specificity about pharmacological mechanisms, individual risk, dosing instructions, associated symptoms, therapeutic alternatives and avoidable drug-drug combinations. In relation to dementia, detailed information on the use of antipsychotics, cholinesterase inhibitors and benzodiazepines was extracted. No papers were excluded based on their quality. CONCLUSION No single guideline contains enough information on the risk, prevention, and management of medication-induced delirium to sufficiently support clinical decision making.
Collapse
Affiliation(s)
- Anita Elaine Weidmann
- Institute of Pharmacy, Department of Clinical Pharmacy, Innsbruck University, Innrain 80, 6020, Innsbruck, Austria.
| | - Guðný Björk Proppé
- Faculty of Pharmaceutical Sciences, University of Iceland, Saemundargata 2; 102, Reykjavík, Iceland
| | - Rut Matthíasdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Saemundargata 2; 102, Reykjavík, Iceland
| | - Ivana Tadić
- Institute of Pharmacy, Department of Clinical Pharmacy, Innsbruck University, Innrain 80, 6020, Innsbruck, Austria
| | | | - Freyja Jónsdóttir
- Faculty of Pharmaceutical Sciences, University of Iceland, Saemundargata 2; 102, Reykjavík, Iceland
| |
Collapse
|
2
|
Keenan RJ, Daykin H, Metha J, Cornthwaite-Duncan L, Wright DK, Clarke K, Oberrauch S, Brian M, Stephenson S, Nowell CJ, Allocca G, Barnham KJ, Hoyer D, Jacobson LH. Orexin 2 receptor antagonism sex-dependently improves sleep/wakefulness and cognitive performance in tau transgenic mice. Br J Pharmacol 2024; 181:87-106. [PMID: 37553894 DOI: 10.1111/bph.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.
Collapse
Affiliation(s)
- Ryan J Keenan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Heather Daykin
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Finance, Faculty of Business and Economics, The University of Melbourne, Parkville, Victoria, Australia
| | - Linda Cornthwaite-Duncan
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kyra Clarke
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Sara Oberrauch
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Maddison Brian
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah Stephenson
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Giancarlo Allocca
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Somnivore Inc. Ltd Pty, Bacchus Marsh, Victoria, Australia
| | - Kevin J Barnham
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Martinez JD, Brancaleone WP, Peterson KG, Wilson LG, Aton SJ. Atypical hypnotic compound ML297 restores sleep architecture immediately following emotionally valenced learning, to promote memory consolidation and hippocampal network activation during recall. Sleep 2023; 46:zsac301. [PMID: 36510822 PMCID: PMC9995787 DOI: 10.1093/sleep/zsac301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
Sleep plays a critical role in consolidating many forms of hippocampus-dependent memory. While various classes of hypnotic drugs have been developed in recent years, it remains unknown whether, or how, some of them affect sleep-dependent memory consolidation mechanisms. We find that ML297, a recently developed candidate hypnotic agent targeting a new mechanism (activating GIRK1/2-subunit containing G-protein coupled inwardly rectifying potassium [GIRK] channels), alters sleep architecture in mice over the first 6 hr following a single-trial learning event. Following contextual fear conditioning (CFC), ML297 reversed post-CFC reductions in NREM sleep spindle power and REM sleep amounts and architecture, renormalizing sleep features to what was observed at baseline, prior to CFC. Renormalization of post-CFC REM sleep latency, REM sleep amounts, and NREM spindle power were all associated with improved contextual fear memory (CFM) consolidation. We find that improvements in CFM consolidation due to ML297 are sleep-dependent, and are associated with increased numbers of highly activated dentate gyrus (DG), CA1, and CA3 neurons during CFM recall. Together our findings suggest that GIRK1/2 channel activation restores normal sleep architecture- including REM sleep, which is normally suppressed following CFC-and increases the number of hippocampal neurons incorporated into the CFM engram during memory consolidation.
Collapse
Affiliation(s)
- Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William P Brancaleone
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kathryn G Peterson
- Undergraduate Program in Neuroscience, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lydia G Wilson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Owen NE, Barker RA, Voysey ZJ. Sleep Dysfunction in Huntington's Disease: Impacts of Current Medications and Prospects for Treatment. J Huntingtons Dis 2023; 12:149-161. [PMID: 37248911 PMCID: PMC10473096 DOI: 10.3233/jhd-230567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
Sleep dysfunction is highly prevalent in Huntington's disease (HD). Increasing evidence suggests that such dysfunction not only impairs quality of life and exacerbates symptoms but may even accelerate the underlying disease process. Despite this, current HD treatment approaches neither consider the impact of commonly used medications on sleep, nor directly tackle sleep dysfunction. In this review, we discuss approaches to these two areas, evaluating not only literature from clinical studies in HD, but also that from parallel neurodegenerative conditions and preclinical models of HD. We conclude by summarizing a hierarchical framework of current medications with regard to their impact on sleep, and by outlining key emerging sleep therapies.
Collapse
Affiliation(s)
- Natalia E. Owen
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Roger A. Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Zanna J. Voysey
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Palagini L, Bianchini C. Pharmacotherapeutic management of insomnia and effects on sleep processes, neural plasticity, and brain systems modulating stress: A narrative review. Front Neurosci 2022; 16:893015. [PMID: 35968380 PMCID: PMC9374363 DOI: 10.3389/fnins.2022.893015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionInsomnia is a stress-related sleep disorder, may favor a state of allostatic overload impairing brain neuroplasticity, stress immune and endocrine pathways, and may contribute to mental and physical disorders. In this framework, assessing and targeting insomnia is of importance.AimSince maladaptive neuroplasticity and allostatic overload are hypothesized to be related to GABAergic alterations, compounds targeting GABA may play a key role. Accordingly, the aim of this review was to discuss the effect of GABAA receptor agonists, short-medium acting hypnotic benzodiazepines and the so called Z-drugs, at a molecular level.MethodLiterature searches were done according to PRISMA guidelines. Several combinations of terms were used such as “hypnotic benzodiazepines” or “brotizolam,” or “lormetazepam” or “temazepam” or “triazolam” or “zolpidem” or “zopiclone” or “zaleplon” or “eszopiclone” and “insomnia” and “effects on sleep” and “effect on brain plasticity” and “effect on stress system”. Given the complexity and heterogeneity of existing literature, we ended up with a narrative review.ResultsAmong short-medium acting compounds, triazolam has been the most studied and may regulate the stress system at central and peripheral levels. Among Z-drugs eszopiclone may regulate the stress system. Some compounds may produce more “physiological” sleep such as brotizolam, triazolam, and eszopiclone and probably may not impair sleep processes and related neural plasticity. In particular, triazolam, eszopiclone, and zaleplon studied in vivo in animal models did not alter neuroplasticity.ConclusionCurrent models of insomnia may lead us to revise the way in which we use hypnotic compounds in clinical practice. Specifically, compounds should target sleep processes, the stress system, and sustain neural plasticity. In this framework, among the short/medium acting hypnotic benzodiazepines, triazolam has been the most studied compound while among the Z-drugs eszopiclone has demonstrated interesting effects. Both offer potential new insight for treating insomnia.
Collapse
Affiliation(s)
- Laura Palagini
- Psychiatry Division, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Laura Palagini,
| | | |
Collapse
|
6
|
Sahu M, Tripathi R, Jha NK, Jha SK, Ambasta RK, Kumar P. Cross talk mechanism of disturbed sleep patterns in neurological and psychological disorders. Neurosci Biobehav Rev 2022; 140:104767. [PMID: 35811007 DOI: 10.1016/j.neubiorev.2022.104767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022]
Abstract
The incidence and prevalence of sleep disorders continue to increase in the elderly populace, particularly those suffering from neurodegenerative and neuropsychiatric disorders. This not only affects the quality of life but also accelerates the progression of the disease. There are many reasons behind sleep disturbances in such patients, for instance, medication use, nocturia, obesity, environmental factors, nocturnal motor disturbances and depressive symptoms. This review focuses on the mechanism and effects of sleep dysfunction in neurodegenerative and neuropsychiatric disorders. Wherein we discuss disturbed circadian rhythm, signaling cascade and regulation of genes during sleep deprivation. Moreover, we explain the perturbation in brainwaves during disturbed sleep and the ocular perspective of neurodegenerative and neuropsychiatric manifestations in sleep disorders. Further, as the pharmacological approach is often futile and carries side effects, therefore, the non-pharmacological approach opens newer possibilities to treat these disorders and widens the landscape of treatment options for patients.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET) Sharda University, UP, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET) Sharda University, UP, India.
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
| |
Collapse
|
7
|
Simon KC, Whitehurst LN, Zhang J, Mednick SC. Zolpidem Maintains Memories for Negative Emotions Across a Night of Sleep. AFFECTIVE SCIENCE 2022; 3:389-399. [PMID: 35791418 PMCID: PMC9249708 DOI: 10.1007/s42761-021-00079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
Zolpidem, a common medication for sleep complaints, also shows secondary, unexpected memory benefits. We previously found that zolpidem prior to a nap enhanced negative, highly arousing picture memory. As zolpidem is typically administered at night, how it affects overnight emotional memory processing is relevant. We used a double-blind, placebo-controlled, within-subject, cross-over design to investigate if zolpidem boosted negative compared to neutral picture memory. Subjects learned both pictures sets in the morning. That evening, subjects were administered zolpidem or placebo and slept in the lab. Recognition was tested that evening and the following morning. We found that zolpidem maintained negative picture memory compared to forgetting in the placebo condition. Furthermore, zolpidem increased slow-wave sleep time, decreased rapid eye movement sleep time, and increased the fast spindle range in NREM. Our results suggest that zolpidem may enhance negative memory longevity and salience. These findings raise concerns for zolpidem administration to certain clinical populations.
Collapse
Affiliation(s)
- Katharine C. Simon
- Department of Cognitive Science, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway, Irvine, CA 92697 USA
| | | | - Jing Zhang
- Department of Cognitive Science, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway, Irvine, CA 92697 USA
| | - Sara C. Mednick
- Department of Cognitive Science, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway, Irvine, CA 92697 USA
| |
Collapse
|
8
|
Palagini L, Hertenstein E, Riemann D, Nissen C. Sleep, insomnia and mental health. J Sleep Res 2022; 31:e13628. [PMID: 35506356 DOI: 10.1111/jsr.13628] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/23/2023]
Abstract
While sleep serves important regulatory functions for mental health, sleep disturbances, in particular insomnia, may favour a state of allostatic overload impairing brain neuroplasticity and stress immune pathways, hence contributing to mental disorders. In this framework, the aim of this work was to link current understanding about insomnia mechanisms with current knowledge about mental health dysregulatory mechanisms. The focus of the present work was on mood, anxiety, and psychotic disorders, which represent important challenges in clinical practice. Literature searches were conducted on clinical, neurobiological, and therapeutic implications for insomnia comorbid with these mental disorders. Given the complexity and heterogeneity of the existing literature, we ended up with a narrative review. Insomnia may play an important role as a risk factor, a comorbid condition and transdiagnostic symptom for many mental disorders including mood/anxiety disorders and schizophrenia. Insomnia may also play a role as a marker of disrupted neuroplasticity contributing to dysregulation of different neurobiological mechanisms involved in these different mental conditions. In this framework, insomnia treatment may not only foster normal sleep processes but also the stress system, neuroinflammation and brain plasticity. Insomnia treatment may play an important preventive and neuroprotective role with cognitive behavioural therapy for insomnia being the treatment with important new evidence of efficacy for insomnia, psychopathology, and indices of disrupted neuroplasticity. On the other hand, pharmacological pathways for insomnia treatment in these mental conditions are still not well defined. Therapeutic options acting on melatonergic systems and new therapeutic options acting on orexinergic systems may represents interesting pathways of interventions that may open new windows on insomnia treatment in mental disorders.
Collapse
Affiliation(s)
- Laura Palagini
- Psychiatry Division, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Hauptstraße, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Nissen
- Department of Psychiatry, Psychiatric Specialties Division, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
9
|
Zhang J, Yetton B, Whitehurst LN, Naji M, Mednick SC. The effect of zolpidem on memory consolidation over a night of sleep. Sleep 2021; 43:5824815. [PMID: 32330272 DOI: 10.1093/sleep/zsaa084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Nonrapid eye movement sleep boosts hippocampus-dependent, long-term memory formation more so than wake. Studies have pointed to several electrophysiological events that likely play a role in this process, including thalamocortical sleep spindles (12-15 Hz). However, interventional studies that directly probe the causal role of spindles in consolidation are scarce. Previous studies have used zolpidem, a GABA-A agonist, to increase sleep spindles during a daytime nap and promote hippocampal-dependent episodic memory. The current study investigated the effect of zolpidem on nighttime sleep and overnight improvement of episodic memories. METHODS We used a double-blind, placebo-controlled within-subject design to test the a priori hypothesis that zolpidem would lead to increased memory performance on a word-paired associates task by boosting spindle activity. We also explored the impact of zolpidem across a range of other spectral sleep features, including slow oscillations (0-1 Hz), delta (1-4 Hz), theta (4-8 Hz), sigma (12-15 Hz), as well as spindle-SO coupling. RESULTS We showed greater memory improvement after a night of sleep with zolpidem, compared to placebo, replicating a prior nap study. Additionally, zolpidem increased sigma power, decreased theta and delta power, and altered the phase angle of spindle-SO coupling, compared to placebo. Spindle density, theta power, and spindle-SO coupling were associated with next-day memory performance. CONCLUSIONS These results are consistent with the hypothesis that sleep, specifically the timing and amount of sleep spindles, plays a causal role in the long-term formation of episodic memories. Furthermore, our results emphasize the role of nonrapid eye movement theta activity in human memory consolidation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cognitive Sciences, University of California, Irvine
| | - Ben Yetton
- Department of Cognitive Sciences, University of California, Irvine
| | | | - Mohsen Naji
- Department of Medicine, University of California, San Diego
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine
| |
Collapse
|
10
|
Geiser T, Hertenstein E, Fehér K, Maier JG, Schneider CL, Züst MA, Wunderlin M, Mikutta C, Klöppel S, Nissen C. Targeting Arousal and Sleep through Noninvasive Brain Stimulation to Improve Mental Health. Neuropsychobiology 2021; 79:284-292. [PMID: 32408296 DOI: 10.1159/000507372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/14/2020] [Indexed: 01/29/2023]
Abstract
Arousal and sleep represent fundamental physiological domains, and alterations in the form of insomnia (difficulty falling or staying asleep) or hypersomnia (increased propensity for falling asleep or increased sleep duration) are prevalent clinical problems. Current first-line treatments include psychotherapy and pharmacotherapy. Despite significant success, a number of patients do not benefit sufficiently. Progress is limited by an incomplete understanding of the -neurobiology of insomnia and hypersomnia. This work summarizes current concepts of the regulation of arousal and sleep and its modulation through noninvasive brain stimulation (NIBS), including transcranial magnetic, current, and auditory stimulation. Particularly, we suggest: (1) characterization of patients with sleep problems - across diagnostic entities of mental disorders - based on specific alterations of sleep, including alterations of sleep slow waves, sleep spindles, cross-frequency coupling of brain oscillations, local sleep-wake regulation, and REM sleep and (2) targeting these with specific NIBS techniques. While evidence is accumulating that the modulation of specific alterations of sleep through NIBS is feasible, it remains to be tested whether this translates to clinically relevant effects and new treatment developments.
Collapse
Affiliation(s)
- Tim Geiser
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Kristoffer Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jonathan G Maier
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.,Privatklinik Meiringen, Meiringen, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland,
| |
Collapse
|
11
|
Dokkedal-Silva V, Oliveira MGM, Galduróz JCF, Tufik S, Andersen ML. The effect of sleep medications on prospective and retrospective memory: a population-based study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110043. [PMID: 32682875 DOI: 10.1016/j.pnpbp.2020.110043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Sleep medications, especially benzodiazepines, are known to cause motor and cognitive impairments as side-effects from their use. However, an evaluation of the effects of sleep medications in general on prospective and retrospective memory remains to be seen. Thus, the effects of the different types of sleep medicines were assessed using the total score and the 8 subscales of the Prospective and Retrospective Memory Questionnaire (PRMQ) in a representative sample from the Municipality of São Paulo. The effects of each type of medication on these same parameters were evaluated afterwards. Each analysis was performed controlling for different covariates to observe their degree of interference on the observed results. Impairment due to use of sleep aid medication was observed in 6 of the 8 subscales, as well in the overall score of the PRMQ when compared to non-users. Prospective subscales were particularly affected, even when controlling for highly interfering covariates such as depression and anxiety, and objective sleep variables related to sleep architecture and wakefulness in the night. Few effects were detected between the various types of medication even when controlling for covariates, suggesting that a sample with higher power is necessary to conduct a more detailed analysis. Using pharmacological aids to improve sleep may impair prospective and (to some extent) retrospective memory. Therefore, the relationship between sleep impairment, memory deficits and medication use must be considered by physicians.
Collapse
Affiliation(s)
- Vinícius Dokkedal-Silva
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo, SP 04024-002, Brazil
| | - Maria Gabriela Menezes Oliveira
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo, SP 04024-002, Brazil
| | - José Carlos Fernandes Galduróz
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo, SP 04024-002, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo, SP 04024-002, Brazil
| | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, São Paulo, SP 04024-002, Brazil.
| |
Collapse
|
12
|
Voysey ZJ, Barker RA, Lazar AS. The Treatment of Sleep Dysfunction in Neurodegenerative Disorders. Neurotherapeutics 2021; 18:202-216. [PMID: 33179197 PMCID: PMC8116411 DOI: 10.1007/s13311-020-00959-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sleep dysfunction is highly prevalent across the spectrum of neurodegenerative conditions and is a key determinant of quality of life for both patients and their families. Mounting recent evidence also suggests that such dysfunction exacerbates cognitive and affective clinical features of neurodegeneration, as well as disease progression through acceleration of pathogenic processes. Effective assessment and treatment of sleep dysfunction in neurodegeneration is therefore of paramount importance; yet robust therapeutic guidelines are lacking, owing in part to a historical paucity of effective treatments and trials. Here, we review the common sleep abnormalities evident in neurodegenerative disease states and evaluate the latest evidence for traditional and emerging interventions, both pharmacological and nonpharmacological. Interventions considered include conservative measures, targeted treatments of specific clinical sleep pathologies, established sedating and alerting agents, melatonin, and orexin antagonists, as well as bright light therapy, behavioral measures, and slow-wave sleep augmentation techniques. We conclude by providing a suggested framework for treatment based on contemporary evidence and highlight areas that may emerge as major therapeutic advances in the near future.
Collapse
Affiliation(s)
- Zanna J Voysey
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Alpar S Lazar
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
13
|
Gamble MC, Katsuki F, McCoy JG, Strecker RE, McKenna JT. The dual orexinergic receptor antagonist DORA-22 improves the sleep disruption and memory impairment produced by a rodent insomnia model. Sleep 2019; 43:5583907. [PMID: 31595304 DOI: 10.1093/sleep/zsz241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
AbstractInsomnia-related sleep disruption can contribute to impaired learning and memory. Treatment of insomnia should ideally improve the sleep profile while minimally affecting mnemonic function, yet many hypnotic drugs (e.g. benzodiazepines) are known to impair memory. Here, we used a rat model of insomnia to determine whether the novel hypnotic drug DORA-22, a dual orexin receptor antagonist, improves mild stress-induced insomnia with minimal effect on memory. Animals were first trained to remember the location of a hidden platform (acquisition) in the Morris Water Maze and then administered DORA-22 (10, 30, or 100 mg/kg doses) or vehicle control. Animals were then subjected to a rodent insomnia model involving two exposures to dirty cages over a 6-hr time period (at time points 0 and 3 hr), followed immediately by a probe trial in which memory of the water maze platform location was evaluated. DORA-22 treatment improved the insomnia-related sleep disruption—wake was attenuated and NREM sleep was normalized. REM sleep amounts were enhanced compared with vehicle treatment for one dose (30 mg/kg). In the first hour of insomnia model exposure, DORA-22 promoted the number and average duration of NREM sleep spindles, which have been previously proposed to play a role in memory consolidation (all doses). Water maze measures revealed probe trial performance improvement for select doses of DORA-22, including increased time spent in the platform quadrant (10 and 30 mg/kg) and time spent in platform location and number of platform crossings (10 mg/kg only). In conclusion, DORA-22 treatment improved insomnia-related sleep disruption and memory consolidation deficits.
Collapse
Affiliation(s)
- Mackenzie C Gamble
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
| | - Fumi Katsuki
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - John G McCoy
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
- Neuroscience Program, Stonehill College, Easton, MA
| | - Robert E Strecker
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| | - James Timothy McKenna
- Boston VA Research Institute, Inc., Jamaica Plain, MA
- VA Boston Healthcare System, West Roxbury, MA
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA
| |
Collapse
|
14
|
Abstract
Sleep is a highly conserved phenomenon in endotherms, and therefore it must serve at least one basic function across this wide range of species. What that function is remains one of the biggest mysteries in neurobiology. By using the word neurobiology, we do not mean to exclude possible non-neural functions of sleep, but it is difficult to imagine why the brain must be taken offline if the basic function of sleep did not involve the nervous system. In this chapter we discuss several current hypotheses about sleep function. We divide these hypotheses into two categories: ones that propose higher-order cognitive functions and ones that focus on housekeeping or restorative processes. We also pose four aspects of sleep that any successful functional hypothesis has to account for: why do the properties of sleep change across the life span? Why and how is sleep homeostatically regulated? Why must the brain be taken offline to accomplish the proposed function? And, why are there two radically different stages of sleep?The higher-order cognitive function hypotheses we discuss are essential mechanisms of learning and memory and synaptic plasticity. These are not mutually exclusive hypotheses. Each focuses on specific mechanistic aspects of sleep, and higher-order cognitive processes are likely to involve components of all of these mechanisms. The restorative hypotheses are maintenance of brain energy metabolism, macromolecular biosynthesis, and removal of metabolic waste. Although these three hypotheses seem more different than those related to higher cognitive function, they may each contribute important components to a basic sleep function. Any sleep function will involve specific gene expression and macromolecular biosynthesis, and as we explain there may be important connections between brain energy metabolism and the need to remove metabolic wastes.A deeper understanding of sleep functions in endotherms will enable us to answer whether or not rest behaviors in species other than endotherms are homologous with mammalian and avian sleep. Currently comparisons across the animal kingdom depend on superficial and phenomenological features of rest states and sleep, but investigations of sleep functions would provide more insight into the evolutionary relationships between EEG-defined sleep in endotherms and rest states in ectotherms.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA
| | - H Craig Heller
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
Akeju O, Hobbs LE, Gao L, Burns SM, Pavone KJ, Plummer GS, Walsh EC, Houle TT, Kim SE, Bianchi MT, Ellenbogen JM, Brown EN. Dexmedetomidine promotes biomimetic non-rapid eye movement stage 3 sleep in humans: A pilot study. Clin Neurophysiol 2017; 129:69-78. [PMID: 29154132 DOI: 10.1016/j.clinph.2017.10.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Sleep, which comprises of rapid eye movement (REM) and non-REM stages 1-3 (N1-N3), is a natural occurring state of decreased arousal that is crucial for normal cardiovascular, immune and cognitive function. The principal sedative drugs produce electroencephalogram beta oscillations, which have been associated with neurocognitive dysfunction. Pharmacological induction of altered arousal states that neurophysiologically approximate natural sleep, termed biomimetic sleep, may eliminate drug-induced neurocognitive dysfunction. METHODS We performed a prospective, single-site, three-arm, randomized-controlled, crossover polysomnography pilot study (n = 10) comparing natural, intravenous dexmedetomidine- (1-μg/kg over 10 min [n = 7] or 0.5-μg/kg over 10 min [n = 3]), and zolpidem-induced sleep in healthy volunteers. Sleep quality and psychomotor performance were assessed with polysomnography and the psychomotor vigilance test, respectively. Sleep quality questionnaires were also administered. RESULTS We found that dexmedetomidine promoted N3 sleep in a dose dependent manner, and did not impair performance on the psychomotor vigilance test. In contrast, zolpidem extended release was associated with decreased theta (∼5-8 Hz; N2 and N3) and increased beta oscillations (∼13-25 Hz; N2 and REM). Zolpidem extended release was also associated with increased lapses on the psychomotor vigilance test. No serious adverse events occurred. CONCLUSIONS Pharmacological induction of biomimetic N3 sleep with psychomotor sparing benefits is feasible. SIGNIFICANCE These results suggest that α2a adrenergic agonists may be developed as a new class of sleep enhancing medications with neurocognitive sparing benefits.
Collapse
Affiliation(s)
- Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lauren E Hobbs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lei Gao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara M Burns
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kara J Pavone
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - George S Plummer
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa C Walsh
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tim T Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Seong-Eun Kim
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electronics and Control Engineering, Hanbat National University, Daejon, Republic of Korea
| | - Matt T Bianchi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
16
|
Promoting Sleep Oscillations and Their Functional Coupling by Transcranial Stimulation Enhances Memory Consolidation in Mild Cognitive Impairment. J Neurosci 2017. [PMID: 28637840 DOI: 10.1523/jneurosci.0260-17.2017] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) not only involves loss of memory functions, but also prominent deterioration of sleep physiology, which is already evident at the stage of mild cognitive impairment (MCI). Cortical slow oscillations (SO; 0.5-1 Hz) and thalamocortical spindle activity (12-15 Hz) during sleep, and their temporal coordination, are considered critical for memory formation. We investigated the potential of slow oscillatory transcranial direct current stimulation (so-tDCS), applied during a daytime nap in a sleep-state-dependent manner, to modulate these activity patterns and sleep-related memory consolidation in nine male and seven female human patients with MCI. Stimulation significantly increased overall SO and spindle power, amplified spindle power during SO up-phases, and led to stronger synchronization between SO and spindle power fluctuations in EEG recordings. Moreover, visual declarative memory was improved by so-tDCS compared with sham stimulation and was associated with stronger synchronization. These findings indicate a well-tolerated therapeutic approach for disordered sleep physiology and memory deficits in MCI patients and advance our understanding of offline memory consolidation.SIGNIFICANCE STATEMENT In the light of increasing evidence that sleep disruption is crucially involved in the progression of Alzheimer's disease (AD), sleep appears as a promising treatment target in this pathology, particularly to counteract memory decline. This study demonstrates the potential of a noninvasive brain stimulation method during sleep in patients with mild cognitive impairment (MCI), a precursor of AD, and advances our understanding of its mechanism. We provide first time evidence that slow oscillatory transcranial stimulation amplifies the functional cross-frequency coupling between memory-relevant brain oscillations and improves visual memory consolidation in patients with MCI.
Collapse
|
17
|
Mander BA, Winer JR, Walker MP. Sleep and Human Aging. Neuron 2017; 94:19-36. [PMID: 28384471 PMCID: PMC5810920 DOI: 10.1016/j.neuron.2017.02.004] [Citation(s) in RCA: 688] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022]
Abstract
Older adults do not sleep as well as younger adults. Why? What alterations in sleep quantity and quality occur as we age, and are there functional consequences? What are the underlying neural mechanisms that explain age-related sleep disruption? This review tackles these questions. First, we describe canonical changes in human sleep quantity and quality in cognitively normal older adults. Second, we explore the underlying neurobiological mechanisms that may account for these human sleep alterations. Third, we consider the functional consequences of age-related sleep disruption, focusing on memory impairment as an exemplar. We conclude with a discussion of a still-debated question: do older adults simply need less sleep, or rather, are they unable to generate the sleep that they still need?
Collapse
Affiliation(s)
- Bryce A Mander
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
| | - Joseph R Winer
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
18
|
Schreiner T, Rasch B. The beneficial role of memory reactivation for language learning during sleep: A review. BRAIN AND LANGUAGE 2017; 167:94-105. [PMID: 27036946 DOI: 10.1016/j.bandl.2016.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/19/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Sleep is essential for diverse aspects of language learning. According to a prominent concept these beneficial effects of sleep rely on spontaneous reactivation processes. A series of recent studies demonstrated that inducing such reactivation processes by re-exposure to memory cues during sleep enhances foreign vocabulary learning. Building upon these findings, the present article reviews recent models and empirical findings concerning the beneficial effects of sleep on language learning. Consequently, the memory function of sleep, its neural underpinnings and the role of the sleeping brain in language learning will be summarized. Finally, we will propose a working model concerning the oscillatory requirements for successful reactivation processes and future research questions to advance our understanding of the role of sleep on language learning and memory processes in general.
Collapse
Affiliation(s)
- Thomas Schreiner
- University of Fribourg, Department of Psychology, Fribourg, Switzerland; Zurich Center for Interdisciplinary Sleep Research (ZiS), Zurich, Switzerland.
| | - Björn Rasch
- University of Fribourg, Department of Psychology, Fribourg, Switzerland; Zurich Center for Interdisciplinary Sleep Research (ZiS), Zurich, Switzerland.
| |
Collapse
|
19
|
Sleep-Related Interventions to Improve Psychotherapy. COGNITIVE NEUROSCIENCE OF MEMORY CONSOLIDATION 2017. [DOI: 10.1007/978-3-319-45066-7_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
20
|
Weigenand A, Mölle M, Werner F, Martinetz T, Marshall L. Timing matters: open-loop stimulation does not improve overnight consolidation of word pairs in humans. Eur J Neurosci 2016; 44:2357-68. [PMID: 27422437 PMCID: PMC5113809 DOI: 10.1111/ejn.13334] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 11/29/2022]
Abstract
The application of auditory clicks during non‐rapid eye movement (NREM) sleep phase‐locked to the up state of the slow oscillation (closed‐loop stimulation) has previously been shown to enhance the consolidation of declarative memories. We designed and applied sequences of three clicks during deep NREM sleep to achieve a quasi‐phase‐dependent open‐loop stimulation. This stimulation was successful in eliciting slow oscillation power in the stimulation period. Although fast and slow spindle power were markedly decreased during the stimulation period, memory consolidation did not differ from control. During putative up states fast spindle power remained, however, at control levels. We conclude that concurrence of slow oscillations and fast spindles suffices to maintain memory consolidation at control levels despite an overall decreased spindle activity.
Collapse
Affiliation(s)
- Arne Weigenand
- Institute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany. .,Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck, Germany.
| | - Matthias Mölle
- Center for Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Friederike Werner
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck, Germany
| | - Lisa Marshall
- Graduate School for Computing in Medicine and Life Science, University of Lübeck, Lübeck, Germany. .,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
21
|
Mander BA, Winer JR, Jagust WJ, Walker MP. Sleep: A Novel Mechanistic Pathway, Biomarker, and Treatment Target in the Pathology of Alzheimer's Disease? Trends Neurosci 2016; 39:552-566. [PMID: 27325209 PMCID: PMC4967375 DOI: 10.1016/j.tins.2016.05.002] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/13/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022]
Abstract
Sleep disruption appears to be a core component of Alzheimer's disease (AD) and its pathophysiology. Signature abnormalities of sleep emerge before clinical onset of AD. Moreover, insufficient sleep facilitates accumulation of amyloid-β (Aβ), potentially triggering earlier cognitive decline and conversion to AD. Building on such findings, this review has four goals: evaluating (i) associations and plausible mechanisms linking non-rapid-eye-movement (NREM) sleep disruption, Aβ, and AD; (ii) a role for NREM sleep disruption as a novel factor linking cortical Aβ to impaired hippocampus-dependent memory consolidation; (iii) the potential diagnostic utility of NREM sleep disruption as a new biomarker of AD; and (iv) the possibility of sleep as a new treatment target in aging, affording preventative and therapeutic benefits.
Collapse
Affiliation(s)
- Bryce A Mander
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA.
| | - Joseph R Winer
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1650, USA; Molecular Biophysics and Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew P Walker
- Sleep and Neuroimaging Laboratory University of California, Berkeley, CA 94720-1650, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
22
|
Feld GB, Diekelmann S. Sleep smart-optimizing sleep for declarative learning and memory. Front Psychol 2015; 6:622. [PMID: 26029150 PMCID: PMC4428077 DOI: 10.3389/fpsyg.2015.00622] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/27/2015] [Indexed: 02/05/2023] Open
Abstract
The last decade has witnessed a spurt of new publications documenting sleep's essential contribution to the brains ability to form lasting memories. For the declarative memory domain, slow wave sleep (the deepest sleep stage) has the greatest beneficial effect on the consolidation of memories acquired during preceding wakefulness. The finding that newly encoded memories become reactivated during subsequent sleep fostered the idea that reactivation leads to the strengthening and transformation of the memory trace. According to the active system consolidation account, trace reactivation leads to the redistribution of the transient memory representations from the hippocampus to the long-lasting knowledge networks of the cortex. Apart from consolidating previously learned information, sleep also facilitates the encoding of new memories after sleep, which probably relies on the renormalization of synaptic weights during sleep as suggested by the synaptic homeostasis theory. During wakefulness overshooting potentiation causes an imbalance in synaptic weights that is countered by synaptic downscaling during subsequent sleep. This review briefly introduces the basic concepts and central findings of the research on sleep and memory, and discusses implications of this lab-based work for everyday applications to make the best possible use of sleep's beneficial effect on learning and memory.
Collapse
Affiliation(s)
- Gordon B Feld
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| | - Susanne Diekelmann
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen Tübingen, Germany
| |
Collapse
|
23
|
Scullin MK, Bliwise DL. Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 10:97-137. [PMID: 25620997 PMCID: PMC4302758 DOI: 10.1177/1745691614556680] [Citation(s) in RCA: 322] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sleep is implicated in cognitive functioning in young adults. With increasing age, there are substantial changes to sleep quantity and quality, including changes to slow-wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half century of research across seven diverse correlational and experimental domains that historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects in healthy older adults (including correlations in the unexpected, negative direction) indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines.
Collapse
Affiliation(s)
- Michael K Scullin
- Department of Psychology and Neuroscience, Baylor University Department of Neurology, Emory University School of Medicine
| | | |
Collapse
|
24
|
Gotter AL, Garson SL, Stevens J, Munden RL, Fox SV, Tannenbaum PL, Yao L, Kuduk SD, McDonald T, Uslaner JM, Tye SJ, Coleman PJ, Winrow CJ, Renger JJ. Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators. BMC Neurosci 2014; 15:109. [PMID: 25242351 PMCID: PMC4261741 DOI: 10.1186/1471-2202-15-109] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current standard of care for insomnia includes gamma-aminobutyric acid receptor A (GABAA) activators, which promote sleep as well as general central nervous system depression. Dual orexin receptor antagonists (DORAs) represent an alternative mechanism for insomnia treatment that induces somnolence by blocking the wake-promoting effects of orexin neuropeptides. The current study compares the role and interdependence of these two mechanisms on their ability to influence sleep architecture and quantitative electroencephalography (qEEG) spectral profiles across preclinical species. RESULTS Active-phase dosing of DORA-22 induced consistent effects on sleep architecture in mice, rats, dogs, and rhesus monkeys; attenuation of active wake was accompanied by increases in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Eszopiclone, a representative GABAA receptor modulator, promoted sleep in rats and rhesus monkeys that was marked by REM sleep suppression, but had inconsistent effects in mice and paradoxically promoted wakefulness in dogs. Active-phase treatment of rats with DORA-12 similarly promoted NREM and REM sleep to magnitudes nearly identical to those seen during normal resting-phase sleep following vehicle treatment, whereas eszopiclone suppressed REM even to levels below those seen during the active phase. The qEEG changes induced by DORA-12 in rats also resembled normal resting-phase patterns, whereas eszopiclone induced changes distinct from normal active- or inactive-phase spectra. Co-dosing experiments, as well as studies in transgenic rats lacking orexin neurons, indicated partial overlap in the mechanism of sleep promotion by orexin and GABA modulation with the exception of the REM suppression exclusive to GABAA receptor modulation. Following REM deprivation in mice, eszopiclone further suppressed REM sleep while DORA-22 facilitated recovery including increased REM sleep. CONCLUSION DORAs promote NREM and importantly REM sleep that is similar in proportion and magnitude to that seen during the normal resting phase across mammalian animal models. While limited overlap exists between therapeutic mechanisms, orexin signaling does not appear involved in the REM suppression exhibited by GABAA receptor modulators. The ability of DORAs to promote proportional NREM and REM sleep following sleep deprivation suggests that this mechanism may be effective in alleviating recovery from sleep disturbance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, 770 Sumneytown Pike, PO Box 4, West Point, PA 19486-0004, USA.
| |
Collapse
|
25
|
Abstract
Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications.
Collapse
Affiliation(s)
- Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, University Tübingen Tübingen, Germany
| |
Collapse
|