1
|
Qin QZ, Wu R, Zhang C. Daytime naps consolidate Cantonese tone learning through promoting cross-talker perception: The role of prior knowledge. BRAIN AND LANGUAGE 2025; 265:105568. [PMID: 40086423 DOI: 10.1016/j.bandl.2025.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
This study investigates whether daytime naps facilitate perceptual learning of Cantonese tones and how prior knowledge mediates the consolidation effect. Ninety Mandarin native speakers were pseudo-randomly assigned to either a nap group, who napped for 1.5 h with brain activities recorded, or the non-nap group, who rested for 1.5 h. They were trained with Cantonese contour-level tonal contrasts and level-level tonal contrasts, followed by a tone identification task (trained talker) before the nap manipulation, and were re-tested (trained and novel talkers) after the nap. The results showed that naps facilitated Cantonese tone learning, with the nap group outperforming the non-nap group in the cross-talker perception. The cross-talker perception effect was specific to contour-level tonal contrasts (consistent with prior knowledge) and was associated with increased sleep spindles and slow oscillations. The findings suggest that prior knowledge plays an important role in prioritizing contour-level tonal contrasts for memory consolidation.
Collapse
Affiliation(s)
- Quentin Zhen Qin
- Speech, Learning, and the Brain (SLaB) Lab, Division of Humanities, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Ruofan Wu
- Speech, Learning, and the Brain (SLaB) Lab, Division of Humanities, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Neurocognition of Language, Music and Learning (NLML) Lab, Research Centre for Language, Cognition and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Yuk Choi Road, Hung Hom, Hong Kong.
| | - Caicai Zhang
- Neurocognition of Language, Music and Learning (NLML) Lab, Research Centre for Language, Cognition and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Yuk Choi Road, Hung Hom, Hong Kong.
| |
Collapse
|
2
|
Cross N, O'Byrne J, Weiner O, Giraud J, Perrault A, Dang‐Vu T. Phase-Amplitude Coupling of NREM Sleep Oscillations Shows Between-Night Stability and is Related to Overnight Memory Gains. Eur J Neurosci 2025; 61:e70108. [PMID: 40214027 PMCID: PMC11987483 DOI: 10.1111/ejn.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
There is growing evidence in humans linking the temporal coupling between spindles and slow oscillations during NREM sleep with the overnight stabilization of memories encoded from daytime experiences in humans. However, whether the type and strength of learning influence that relationship is still unknown. Here we tested whether the amount or type of verbal word-pair learning prior to sleep affects subsequent phase-amplitude coupling (PAC) between spindles and slow oscillations (SO). We measured the strength and preferred timing of such coupling in the EEG of 41 healthy human participants over a post-learning and control night to compare intra-individual changes with inter-individual differences. We leveraged learning paradigms of varying word-pair (WP) load: 40 WP learned to a minimum criterion of 60% correct (n = 11); 40 WP presented twice (n = 15); 120 WP presented twice (n = 15). There were no significant differences in the preferred phase or strength between the control and post-learning nights, in all learning conditions. We observed an overnight consolidation effect (improved performance at delayed recall) for the criterion learning condition only, and only in this condition was the overnight change in memory performance significantly positively correlated with the phase of SO-spindle coupling. These results suggest that the coupling of brain oscillations during human NREM sleep is stable traits that are not modulated by the amount of pre-sleep learning, yet are implicated in the sleep-dependent consolidation of memory-especially when overnight gains in memory are observed.
Collapse
Affiliation(s)
- Nathan Cross
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
- School of PsychologyThe University of SydneyCamperdownAustralia
| | - Jordan O'Byrne
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- Department of PsychologyUniversité de MontréalMontrealQCCanada
| | - Oren M. Weiner
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
- Department of PsychologyConcordia UniversityMontrealQCCanada
| | - Julia Giraud
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- Department of PsychologyConcordia UniversityMontrealQCCanada
- Department of NeurosciencesUniversité de MontréalMontrealQCCanada
| | - Aurore A. Perrault
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
| | - Thien Thanh Dang‐Vu
- Department of Health, Kinesiology and Applied PhysiologyConcordia UniversityMontrealQCCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontrealQCCanada
- PERFORM Centre and Centre for Studies in Behavioral NeurobiologyConcordia UniversityMontrealQCCanada
- Department of PsychologyConcordia UniversityMontrealQCCanada
| |
Collapse
|
3
|
Diamond NB, Simpson S, Baena D, Murray B, Fogel S, Levine B. Sleep selectively and durably enhances memory for the sequence of real-world experiences. Nat Hum Behav 2025; 9:746-757. [PMID: 40069368 DOI: 10.1038/s41562-025-02117-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/16/2025] [Indexed: 04/25/2025]
Abstract
Sleep is thought to play a critical role in the retention of memory for past experiences (episodic memory), reducing the rate of forgetting compared with wakefulness. Yet it remains unclear whether and how sleep actively transforms the way we remember multidimensional real-world experiences, and how such memory transformation unfolds over the days, months and years that follow. In an exception to the law of forgetting, we show that sleep actively and selectively improves the accuracy of memory for a one-time, real-world experience (an art tour)-specifically boosting memory for the order of tour items (sequential associations) versus perceptual details from the tour (featural associations). This above-baseline boost in sequence memory was not evident after a matched period of wakefulness. Moreover, the preferential retention of sequence relative to featural memory observed after a night's sleep grew over time up to 1 year post-encoding. Finally, overnight polysomnography showed that sleep-related memory enhancement was associated with the duration and neurophysiological hallmarks of slow-wave sleep previously linked to sequential neural replay, particularly spindle-slow wave coupling. These results suggest that sleep serves a crucial and selective role in enhancing sequential organization in our memory for past events at the expense of perceptual details, linking sleep-related neural mechanisms to the days-to-years-long transformation of memory for complex real-life experiences.
Collapse
Affiliation(s)
- N B Diamond
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - S Simpson
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - D Baena
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Sleep Research Unit, The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - B Murray
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - S Fogel
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Sleep Research Unit, The Royal's Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - B Levine
- Rotman Research Institute at Baycrest Academy for Research and Education, Toronto, Ontario, Canada.
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Filchenko I, Eberhard-Moscicka AK, Picard JL, Schmidt MH, Aktan Süzgün M, Wiest R, Bernasconi C, Gutierrez Herrera C, Bassetti CLA. Thalamic Stroke and Sleep Study: Sleep-Wake, Autonomic Regulation, and Cognition. Stroke 2025. [PMID: 40135332 DOI: 10.1161/strokeaha.124.049156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/17/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Thalamic stroke (TS) often presents with complex clinical manifestations, including sleep-wake disturbances, cognitive deficits, and autonomic dysregulation, yet the interaction between these functional alterations remains poorly understood. We aimed to investigate these interactions in a case-control lesion study. METHODS Patients with acute TS and no-stroke controls were included prospectively in this study. The data were collected from June 2020 to September 2022 at the stroke unit or sleep laboratory of the Inselspital (Bern). Sleep-wake variables (questionnaires, actigraphy, polysomnography including electroencephalography-based sleep macroarchitecture and microarchitecture, and analysis of electroencephalography spectral power), nocturnal heart rate variability, and cognition (5 tests: processing speed, attention, working memory, visual memory, and verbal memory) were assessed at study inclusion (within 5 days poststroke for patients with stroke). RESULTS Data from 16 patients with TS and 32 control volunteers were analyzed. All patients with stroke had lesions of the ventral nuclei, while 9 of 16 patients with stroke also had lesions in the mediodorsal nucleus (1 bilateral). TS was characterized by long sleep duration and high nocturnal heart rate variability with parasympathetic dominance. The alterations in sleep electroencephalography included a decrease in cyclic alternating pattern index, slow spindle density, the quantity of isolated sawtooth wave segments, and electroencephalography spectral power predominantly affecting the alpha band. The mediodorsal lesions were associated with a decrease in sleep spindle amplitude and slow wave amplitude and with an increase in phasic rapid eye movement sleep. Furthermore, patients with TS had deficits in processing speed, working memory, and verbal memory, mostly pronounced in patients with mediodorsal lesions. In a combined data set, multiple correlations were observed between sleep-wake, autonomic, and cognitive parameters, many of which depended on the presence of a TS. CONCLUSIONS These findings emphasize the role of the thalamus in the regulation of sleep-wake, autonomic, and cognitive functions and their interactions and provide the theoretical basis for the therapies targeting the thalamus.
Collapse
Affiliation(s)
- Irina Filchenko
- Department of Neurology, Bern University Hospital (Inselspital) and University of Bern, Switzerland.(I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
- Interdisciplinary Sleep-Wake-Epilepsy Center, Bern University Hospital (Inselspital) and University of Bern, Switzerland. (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
- Graduate School for Health Sciences, University of Bern, Switzerland. (I.F.)
| | - Aleksandra Katarzyna Eberhard-Moscicka
- Department of Neurology, Bern University Hospital (Inselspital) and University of Bern, Switzerland.(I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
- Department of Psychology, University of Bern, Switzerland. (A.K.E.-M.)
| | - Jasmine Lea Picard
- Department of Neurology, Bern University Hospital (Inselspital) and University of Bern, Switzerland.(I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
- Interdisciplinary Sleep-Wake-Epilepsy Center, Bern University Hospital (Inselspital) and University of Bern, Switzerland. (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
| | - Markus Helmut Schmidt
- Department of Neurology, Bern University Hospital (Inselspital) and University of Bern, Switzerland.(I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
- Interdisciplinary Sleep-Wake-Epilepsy Center, Bern University Hospital (Inselspital) and University of Bern, Switzerland. (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
| | - Merve Aktan Süzgün
- Department of Neurology, Bern University Hospital (Inselspital) and University of Bern, Switzerland.(I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
- Interdisciplinary Sleep-Wake-Epilepsy Center, Bern University Hospital (Inselspital) and University of Bern, Switzerland. (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
- Cerrahpasa Medical Faculty, Neurology Department, Istanbul University-Cerrahpasa, Turkey (M.A.S.)
| | - Roland Wiest
- Department of Neuroradiology, Bern University Hospital (Inselspital) and University of Bern, Switzerland. (R.W.)
| | - Corrado Bernasconi
- Department of Neurology, Bern University Hospital (Inselspital) and University of Bern, Switzerland.(I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
- Interdisciplinary Sleep-Wake-Epilepsy Center, Bern University Hospital (Inselspital) and University of Bern, Switzerland. (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
| | - Carolina Gutierrez Herrera
- Center of Experimental Neurology, Bern University Hospital, University of Bern, Switzerland. (C.G.H.)
- Department of Biomedical Research, Bern University Hospital, University of Bern, Switzerland. (C.G.H.)
| | - Claudio Lino Alberto Bassetti
- Department of Neurology, Bern University Hospital (Inselspital) and University of Bern, Switzerland.(I.F., A.K.E.-M., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
- Interdisciplinary Sleep-Wake-Epilepsy Center, Bern University Hospital (Inselspital) and University of Bern, Switzerland. (I.F., J.L.P., M.H.S., M.A.S., C.B., C.L.A.B.)
| |
Collapse
|
5
|
Schiller K, von Ellenrieder N, Mansilla D, Abdallah C, Jaber K, Garcia-Asensi A, Thomas J, Minato E, Gotman J, Frauscher B. Widespread decoupling of spindles and slow waves in temporal lobe epilepsy. Epilepsia 2025. [PMID: 40085127 DOI: 10.1111/epi.18359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE Memory impairment is common in people with temporal lobe epilepsy (TLE). Recent studies in healthy subjects showed a positive correlation between sleep spindles coupled to slow waves (SWs) and memory performance. We aimed to determine differences in spindle-SW coupling in TLE patients compared to healthy controls using combined high-density electroencephalography and polysomnography. METHODS The study population consisted of 20 patients (12 female, 36.5 ± 9.9 years old) with unilateral drug-resistant TLE (10 left temporal) and 20 age- and sex-matched controls (12 female, 31.2 ± 6.3 years old). Spindles (10-16 Hz, .5-3 s) and SWs (.5-4 Hz) were automatically detected during all N2 and N3 epochs using validated detectors. Coupling of spindles with SWs was defined as overlap between both detected events. RESULTS Coupled spindle-SW rates (per minute) were globally reduced in patients with TLE compared to healthy controls (median = .18 [interquartile range (IQR) = .08-.36] vs. .35 [IQR = .24-.46], p = .014, d = -.46). This reduction was also found for coupled fast spindle (12-16 Hz)-SW (.06 [IQR = .02-.13] vs. .18 [IQR = .07-.25], p = .013, d = -.46) and slow spindle (10-12 Hz)-SW rates (.11 [IQR = .04-.23] vs. .19 [IQR = .13-.27], p = .034, d = -.40). Within TLE patients, there was no local difference between the coupling rates in the lobe with the epileptic focus compared to the contralateral side (.09 [IQR = .02-.13] vs. .07 [IQR = .02-.13], p = .18). The effect size of the reduction was stronger in early than late sleep for both N2 and N3 sleep (early N2 d = -.50 vs. late N2 d = -.39; early N3 d = -.53 vs. late N3 d = -.47). SIGNIFICANCE Despite a focal epileptic generator, patients with unilateral TLE showed a widespread decoupling between sleep spindles and SWs that was most prominent in early sleep. As coupling was shown to be associated with neuropsychological performance in healthy people, this global decoupling may constitute one potential mechanism of poor memory performance in people with TLE.
Collapse
Affiliation(s)
- Katharina Schiller
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Hospital Group Ostallgaeu-Kaufbeuren, Kaufbeuren, Germany
- Department of Pediatric Neurology, University Hospital Augsburg, Augsburg, Germany
| | | | - Daniel Mansilla
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Chifaou Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Kassem Jaber
- Analytical Neurophysiology Lab, Department of Neurology, Duke University, Durham, North Carolina, USA
| | - Alfonso Garcia-Asensi
- Analytical Neurophysiology Lab, Department of Neurology, Duke University, Durham, North Carolina, USA
| | - John Thomas
- Analytical Neurophysiology Lab, Department of Neurology, Duke University, Durham, North Carolina, USA
| | - Erica Minato
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jean Gotman
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Hassan U, Okyere P, Masouleh MA, Zrenner C, Ziemann U, Bergmann TO. Pulsed inhibition of corticospinal excitability by the thalamocortical sleep spindle. Brain Stimul 2025; 18:265-275. [PMID: 39986374 DOI: 10.1016/j.brs.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Thalamocortical sleep spindles, i.e., oscillatory bursts at ∼12-15 Hz of waxing and waning amplitude, are a hallmark feature of non-rapid eye movement (NREM) sleep and believed to play a key role in memory reactivation and consolidation. Generated in the thalamus and projecting to neocortex and hippocampus, they are phasically modulated by neocortical slow oscillations (<1 Hz) and in turn phasically modulate hippocampal sharp-wave ripples (>80 Hz). This hierarchical cross-frequency nesting, where slower oscillations group faster ones into certain excitability phases, may enable phase-dependent plasticity in the neocortex, and spindles have thus been considered windows of plasticity in the sleeping brain. However, the assumed phasic excitability modulation had not yet been demonstrated for spindles. Utilizing a recently developed real-time spindle detection algorithm, we applied spindle phase-triggered transcranial magnetic stimulation (TMS) to the primary motor cortex (M1) hand area to characterize the corticospinal excitability profile of spindles via motor evoked potentials (MEP). MEPs showed net suppression during spindles, driven by a "pulse of inhibition" during its falling flank with no inhibition or facilitation during its peak, rising flank, or trough. This unidirectional ("asymmetric") modulation occurred on top of the general sleep-related inhibition during spindle-free NREM sleep and did not extend into the refractory post-spindle periods. We conclude that spindles exert "asymmetric pulsed inhibition" on corticospinal excitability. These findings and the developed real-time spindle targeting methods enable future studies to investigate the causal role of spindles in phase-dependent synaptic plasticity and systems memory consolidation during sleep by repetitively targeting relevant spindle phases.
Collapse
Affiliation(s)
- Umair Hassan
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, USA; Wu-Tsai Neurosciences Institute, Stanford University, USA.
| | - Prince Okyere
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; School of Psychology, University of Surrey, Guildford, UK
| | - Milad Amini Masouleh
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, Dortmund, Germany; Psychology Department, Ruhr University Bochum, Bochum, Germany
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, And Institute for Biomedical Engineering, And Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| |
Collapse
|
7
|
Ventura S, Mathieson SR, O'Toole JM, Livingstone V, Murray DM, Boylan GB. Infant sleep EEG features at 4 months as biomarkers of neurodevelopment at 18 months. Pediatr Res 2025:10.1038/s41390-025-03893-6. [PMID: 39979586 DOI: 10.1038/s41390-025-03893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Sleep parameters evolve in parallel with neurodevelopment. Sleep participates in synaptic homeostasis and memory consolidation and infant sleep parameters correlate with later aspects of early childhood cognition. METHODS Typically developing, term-born infants had a diurnal sleep-EEG at 4 months and Griffiths III developmental assessment at 18 months. EEG analysis included sleep macrostructure (i.e. durations of total sleep and sleep stages, and latencies to sleep and REM), sleep spindle features, and quantitative EEG features (qEEG): interhemispheric connectivity and spectral power. We assessed the correlations between these EEG features and Griffiths III quotients. RESULTS Sleep recordings from 92 infants were analyzed. Sleep latency was positively associated with the Griffiths III Foundations of Learning subscale and N3 sleep duration was positively correlated with the Personal-Social-Emotional subscale. Sleep spindle synchrony was negatively associated with Eye and Hand Coordination, Personal-Social-Emotional, Gross Motor, and General Development quotients. Sleep spindle duration was negatively associated with the Personal-Social-Emotional and Gross Motor subscales. In some sleep states, delta 1 and 2 EEG spectral power and interhemispheric coherence measures were correlated with subscale quotients. CONCLUSION Certain sleep features in the EEG of 4-month-old infants are associated with neurodevelopment at 18 months and may be useful early biomarkers of neurodevelopment. IMPACT This study shows that the EEG during infant sleep may provide insights into later neurodevelopmental outcomes. We have examined novel EEG sleep spindle features and shown that spindle duration and synchrony may help predict neurodevelopmental outcomes. Sleep macrostructure elements such as latency to sleep, N3 duration, and qEEG features such as interhemispheric coherence and spectral power measures at 4 months may be useful for the assessment of future neurodevelopmental outcomes. Due to exceptional neuroplasticity in infancy, EEG biomarkers of neurodevelopment may support early and targeted intervention to optimize outcomes.
Collapse
Affiliation(s)
- Soraia Ventura
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Sean R Mathieson
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - John M O'Toole
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Vicki Livingstone
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Geraldine B Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland.
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Páez A, Gillman SO, Dogaheh SB, Carnes A, Dakterzada F, Barbé F, Dang‐Vu TT, Ripoll GP. Sleep spindles and slow oscillations predict cognition and biomarkers of neurodegeneration in mild to moderate Alzheimer's disease. Alzheimers Dement 2025; 21:e14424. [PMID: 39878233 PMCID: PMC11848347 DOI: 10.1002/alz.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 01/31/2025]
Abstract
INTRODUCTION Changes in sleep physiology can predate cognitive symptoms by decades in persons with Alzheimer's disease (AD), but it remains unclear which sleep characteristics predict cognitive and neurodegenerative changes after AD onset. METHODS Using data from a prospective cohort of mild to moderate AD (n = 60), we analyzed non-rapid eye movement sleep spindles and slow oscillations (SOs) at baseline and their associations with baseline amyloid beta (Aβ) and tau and with cognition from baseline to 3-year follow-up. RESULTS Higher spindle and SO activity predicted significant changes in Aβ and tau at baseline, lower Alzheimer's Disease Assessment Scale Cognitive Subscale (better cognitive performance) score, and higher Mini-Mental State Examination score from baseline to 36 months. Spindles and SOs mediated the effect of phosphorylated tau 181 (pTau181)/Aβ42 on cognition, while pTau181/aβ42 moderated the effect of spindles and SOs on cognition. DISCUSSION Our findings demonstrate that spindle and SO activity during sleep constitute predictive and non-invasive biomarkers of neurodegeneration and cognition in AD patients. HIGHLIGHTS Sleep spindles predict long-term cognitive performance in AD. Sleep spindle and SOs can be predictive, non-invasive biomarkers for AD. Sleep may be one of the most important modifiable risk factors for AD progression. Sleep microarchitecture is a novel therapeutic target for preserving brain heath. Sleep physiology can provide novel therapeutic targets to slow AD progression.
Collapse
Affiliation(s)
- Arsenio Páez
- Sleep, Cognition and Neuroimaging LaboratoryConcordia UniversityMontrealCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM)Montréal (Québec)Canada
- Nuffield Department for Primary Care Health SciencesUniversity of OxfordOxfordUK
| | - Sam O. Gillman
- Sleep, Cognition and Neuroimaging LaboratoryConcordia UniversityMontrealCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM)Montréal (Québec)Canada
| | | | - Anna Carnes
- Unitat de Trastorns CognitiusCognition and Behavior Study GroupHospital Universitari Santa Maria Universitat de LleidaLleidaSpain
| | - Faride Dakterzada
- Unitat de Trastorns CognitiusCognition and Behavior Study GroupHospital Universitari Santa Maria Universitat de LleidaLleidaSpain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine (TRRM)Hospital Universitari Arnau de Vilanova‐Santa MariaBiomedical Research Institute of Lleida (IRBLleida)LleidaSpain
| | - Thien Thanh Dang‐Vu
- Sleep, Cognition and Neuroimaging LaboratoryConcordia UniversityMontrealCanada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM)Montréal (Québec)Canada
| | - Gerard Piñol Ripoll
- Unitat de Trastorns CognitiusCognition and Behavior Study GroupHospital Universitari Santa Maria Universitat de LleidaLleidaSpain
- Alzheimer's Disease and Other Cognitive Disorders UnitNeurology ServiceHospital Clínic de BarcelonaFundació de Recerca Clínic ‐ Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| |
Collapse
|
9
|
E Said S, Miyamoto D. Multi-region processing during sleep for memory and cognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:107-128. [PMID: 40074337 DOI: 10.2183/pjab.101.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Over the past decades, the understanding of sleep has evolved to be a fundamental physiological mechanism integral to the processing of different types of memory rather than just being a passive brain state. The cyclic sleep substates, namely, rapid eye movement (REM) sleep and non-REM (NREM) sleep, exhibit distinct yet complementary oscillatory patterns that form inter-regional networks between different brain regions crucial to learning, memory consolidation, and memory retrieval. Technical advancements in imaging and manipulation approaches have provided deeper understanding of memory formation processes on multi-scales including brain-wide, synaptic, and molecular levels. The present review provides a short background and outlines the current state of research and future perspectives in understanding the role of sleep and its substates in memory processing from both humans and rodents, with a focus on cross-regional brain communication, oscillation coupling, offline reactivations, and engram studies. Moreover, we briefly discuss how sleep contributes to other higher-order cognitive functions.
Collapse
Affiliation(s)
- Salma E Said
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Daisuke Miyamoto
- Laboratory for Sleeping-Brain Dynamics, Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
10
|
Sheriff A, Zhou G, Sagar V, Morgenthaler JB, Cyr C, Hauner KK, Omidbeigi M, Rosenow JM, Schuele SU, Lane G, Zelano C. Breathing orchestrates synchronization of sleep oscillations in the human hippocampus. Proc Natl Acad Sci U S A 2024; 121:e2405395121. [PMID: 39680758 PMCID: PMC11670218 DOI: 10.1073/pnas.2405395121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Nested sleep oscillations, emerging from asynchronous states in coordinated bursts, are critical for memory consolidation. Whether these bursts emerge intrinsically or from an underlying rhythm is unknown. Here, we show a previously undescribed respiratory-driven oscillation in the human hippocampus that couples with cardinal sleep oscillations. Further, breathing promotes nesting of ripples in slow oscillations, together suggesting that respiration acts as an intrinsic rhythm to coordinate synchronization of sleep oscillations, providing a unique framework to characterize sleep-related respiratory and memory processes.
Collapse
Affiliation(s)
- Andrew Sheriff
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Vivek Sagar
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Justin B. Morgenthaler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Christopher Cyr
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Katherina K. Hauner
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Mahmoud Omidbeigi
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Joshua M. Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Stephan U. Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
11
|
Kurz EM, Bastian L, Mölle M, Born J, Friedrich M. Development of slow oscillation-spindle coupling from infancy to toddlerhood. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae084. [PMID: 39660110 PMCID: PMC11630081 DOI: 10.1093/sleepadvances/zpae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Indexed: 12/12/2024]
Abstract
Sleep has been demonstrated to support memory formation from early life on. The precise temporal coupling of slow oscillations (SOs) with spindles has been suggested as a mechanism facilitating this consolidation process in thalamocortical networks. Here, we investigated the development of sleep spindles and SOs and their coordinate interplay by comparing frontal, central, and parietal electroencephalogram recordings during a nap between infants aged 2-3 months (n = 31) and toddlers aged 14-17 months (n = 49). Spindles and SOs showed quite different maturational patterns between age groups, as to topography, amplitude, and density. Notably, spindle-SO co-occurrence in the infants did not exceed chance levels and was increased to significant levels only in the toddlers. In the infants, the slow SO upstate over frontocortical regions was even associated with a significant decrease in spindles, contrasting with the adult-like increase in spindles seen in toddlers. These results point to an immature processing in thalamocortical networks during sleep in early infancy, possibly diminishing the efficacy of sleep-dependent memory formation at this age.
Collapse
Affiliation(s)
- Eva-Maria Kurz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Lisa Bastian
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Max Planck School of Cognition, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), site Tübingen, Germany
| | - Manuela Friedrich
- Department of Psychology, Humboldt-University, Berlin, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
12
|
Baena D, Gabitov E, Ray LB, Doyon J, Fogel SM. Motor learning promotes regionally-specific spindle-slow wave coupled cerebral memory reactivation. Commun Biol 2024; 7:1492. [PMID: 39533111 PMCID: PMC11557691 DOI: 10.1038/s42003-024-07197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning. Utilizing simultaneous EEG-fMRI during sleep, our findings revealed that memory reactivation occured time-locked to coupled SW-SP complexes, and specifically in areas critical for motor sequence learning. Notably, these reactivations were confined to the hemisphere actively involved in learning the task. This regional specificity highlights a precise and targeted neural mechanism, underscoring the crucial role of SW-SP coupling. In addition, we observed double-dissociation whereby primary sensory areas were recruited time-locked to uncoupled spindles; suggesting a role for uncoupled spindles in sleep maintenance. These findings advance our understanding the functional significance of SW-SP coupling for enhancing memory in a regionally-specific manner, that is functionally dissociable from uncoupled spindles.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Laura B Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stuart M Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada.
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain & Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Klaassen AL, Rasch B. Difficulty in artificial word learning impacts targeted memory reactivation and its underlying neural signatures. eLife 2024; 12:RP90930. [PMID: 39495109 PMCID: PMC11534334 DOI: 10.7554/elife.90930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Sleep associated memory consolidation and reactivation play an important role in language acquisition and learning of new words. However, it is unclear to what extent properties of word learning difficulty impact sleep associated memory reactivation. To address this gap, we investigated in 22 young healthy adults the effectiveness of auditory targeted memory reactivation (TMR) during non-rapid eye movement sleep of artificial words with easy and difficult to learn phonotactical properties. Here, we found that TMR of the easy words improved their overnight memory performance, whereas TMR of the difficult words had no effect. By comparing EEG activities after TMR presentations, we found an increase in slow wave density independent of word difficulty, whereas the spindle-band power nested during the slow wave up-states - as an assumed underlying activity of memory reactivation - was significantly higher in the easy/effective compared to the difficult/ineffective condition. Our findings indicate that word learning difficulty by phonotactics impacts the effectiveness of TMR and further emphasize the critical role of prior encoding depth in sleep associated memory reactivation.
Collapse
Affiliation(s)
- Arndt-Lukas Klaassen
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of FribourgFribourgSwitzerland
- Department of Anesthesiology & Pain Medicine, Inselspital, Bern University Hospital, University of BernBernSwitzerland
| | - Björn Rasch
- Department of Psychology, Division of Cognitive Biopsychology and Methods, University of FribourgFribourgSwitzerland
| |
Collapse
|
14
|
Villamar-Flores CI, Rodríguez-Violante M, Abundes-Corona A, Alatriste-Booth V, Valencia-Flores M, Rodríguez-Agudelo Y, Cervantes-Arriaga A, Solís-Vivanco R. Association between alterations in sleep spindles and cognitive decline in persons with Parkinson's disease. Neurosci Lett 2024; 842:138006. [PMID: 39362461 DOI: 10.1016/j.neulet.2024.138006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Sleep macro and microstructural features have a relevant role for cognition. Although alterations in sleep macrostructure have been reported in persons with neurodegenerative disorders, including Parkinson's disease (PD), it is unknown whether there is a relationship between alterations in microstructure (sleep spindles) and global cognitive deficits in this disease. OBJECTIVE To explore the association between the macro and microstructure of sleep (sleep spindles) and the general cognitive state in persons with PD. METHODS Thirty-three patients with idiopathic PD underwent a one-night polysomnography (PSG) and a global cognitive assessment using the Montreal Cognitive Assessment (MoCA) test. PSG-based macrostructural sleep values and quantification and spectral estimation of sleep spindles were obtained. RESULTS We found increases in total sleep time, latency to rapid eye movement (REM) sleep, and percentage of N1 stage, as well as a decrease in percentage of REM sleep and sleep efficiency compared to values reported in healthy adults. Compared to expected values, a decrease in the number of sleep spindles was found at frontal regions. Participants with cognitive impairment showed an even lower count of sleep spindles, as well as an increase in the amplitude of underlying sigma (12-16 Hz) waves (fast spindles). When exploring MoCA subdomains, we found a consistent relationship between the number and amplitude of sleep spindles and attention capacity. CONCLUSIONS Decreased number and increased amplitude of sleep spindles are linked to cognitive impairment in persons with PD, especially in attention capacity. Therefore, sleep spindles characteristics could serve as prognostic indicators of cognitive deterioration in PD.
Collapse
Affiliation(s)
- Christopher I Villamar-Flores
- Laboratory of Cognitive and Clinical Neurophysiology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico; Faculty of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico; Faculty of High Studies Zaragoza (FESZ), Universidad Nacional Autónoma de México (UNAM), Mexico
| | | | | | | | - Matilde Valencia-Flores
- Faculty of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico; Sleep Clinic, Neurology and Psychiatry Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico
| | | | | | - Rodolfo Solís-Vivanco
- Laboratory of Cognitive and Clinical Neurophysiology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico; Faculty of Psychology, Universidad Nacional Autónoma de México (UNAM), Mexico.
| |
Collapse
|
15
|
Jourde HR, Coffey EBJ. Auditory processing up to cortex is maintained during sleep spindles. PNAS NEXUS 2024; 3:pgae479. [PMID: 39588317 PMCID: PMC11586671 DOI: 10.1093/pnasnexus/pgae479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/13/2024] [Indexed: 11/27/2024]
Abstract
Sleep spindles are transient 11-16 Hz brain oscillations generated by thalamocortical circuits. Their role in memory consolidation is well established, but how they play a role in sleep continuity and protection of memory consolidation against interference is unclear. One theory posits that spindles or a neural refractory period following their offset act as a gating mechanism, blocking sensory information en route to the cortex at the level of the thalamus. An alternative model posits that spindles do not participate in the suppression of neural responses to sound, although they can be produced in response to sound. We present evidence from three experiments using electroencephalography and magnetoencephalography in humans that examine different evoked responses in the presence of and following sleep spindles. The results provide convergent empirical evidence suggesting that auditory processing up to cortex is maintained during sleep spindles, and their refractory periods.
Collapse
Affiliation(s)
- Hugo R Jourde
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Réseau de bio-imagerie du Québec (RBIQ), Sherbrooke, Quebec, Canada
| | - Emily B J Coffey
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music, and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Réseau de bio-imagerie du Québec (RBIQ), Sherbrooke, Quebec, Canada
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Tabarak S, Zhu X, Li P, Weber FD, Shi L, Gong Y, Yuan K, Bao Y, Fan T, Li S, Shi J, Lu L, Deng J. Temporal dynamics of negative emotional memory reprocessing during sleep. Transl Psychiatry 2024; 14:434. [PMID: 39397004 PMCID: PMC11471876 DOI: 10.1038/s41398-024-03146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024] Open
Abstract
Memory reprocessing during sleep is a well-established phenomenon in numerous studies. However, it is unclear whether the intensity of memory reprocessing is consistently maintained throughout the night or exhibits dynamic changes. This study investigates the temporal dynamics of negative emotional memory reprocessing during sleep, with a specific focus on slow oscillation (SO)-spindle coupling and its role in memory reprocessing. In the first experiment (N = 40, mean age = 22.5 years), we detected the negative emotional memory reprocessing strength in each sleep cycle, we found that the 2nd sleep cycle after negative emotional memory learning constitute the most sensitive window for memory reprocessing, furthermore, SO-spindle coupling signals in this window plays a role in stabilizing negative emotional memory. To verify the role of SO-spindle coupling in negative emotional memory reprocessing, we utilized transcranial alternating current stimulation (tACS) to disrupt SO-spindle coupling during the 2nd sleep cycle (N = 21, mean age = 19.3 years). Notably, the outcomes of the tACS intervention demonstrated a significant reduction in the recognition of negative emotional memories. These findings offer new insights into the mechanisms that regulate emotional memory consolidation during sleep and may have implications for addressing psychiatric disorders associated with pathological emotional memory.
Collapse
Affiliation(s)
- Serik Tabarak
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Burkle-de-la-Camp Place 1, 44789, Bochum, Germany
| | - Ximei Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Peng Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Frederik D Weber
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Centre, 6525 EN, Nijmegen, The Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Yimiao Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, 100191, Beijing, China
| | - Tengteng Fan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Suxia Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, 100191, Beijing, China
| | - Jie Shi
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Lin Lu
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, 100191, Beijing, China.
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
| |
Collapse
|
17
|
Pastor J, Garrido Zabala P, Vega-Zelaya L. Structure of Spectral Composition and Synchronization in Human Sleep on the Whole Scalp: A Pilot Study. Brain Sci 2024; 14:1007. [PMID: 39452021 PMCID: PMC11505715 DOI: 10.3390/brainsci14101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
We used numerical methods to define the normative structure of the different stages of sleep and wake (W) in a pilot study of 19 participants without pathology (18-64 years old) using a double-banana bipolar montage. Artefact-free 120-240 s epoch lengths were visually identified and divided into 1 s windows with a 10% overlap. Differential channels were grouped into frontal, parieto-occipital, and temporal lobes. For every channel, the power spectrum (PS) was calculated via fast Fourier transform and used to compute the areas for the delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) bands, which were log-transformed. Furthermore, Pearson's correlation coefficient and coherence by bands were computed. Differences in logPS and synchronization from the whole scalp were observed between the sexes for specific stages. However, these differences vanished when specific lobes were considered. Considering the location and stages, the logPS and synchronization vary highly and specifically in a complex manner. Furthermore, the average spectra for every channel and stage were very well defined, with phase-specific features (e.g., the sigma band during N2 and N3, or the occipital alpha component during wakefulness), although the slow alpha component (8.0-8.5 Hz) persisted during NREM and REM sleep. The average spectra were symmetric between hemispheres. The properties of K-complexes and the sigma band (mainly due to sleep spindles-SSs) were deeply analyzed during the NREM N2 stage. The properties of the sigma band are directly related to the density of SSs. The average frequency of SSs in the frontal lobe was lower than that in the occipital lobe. In approximately 30% of the participants, SSs showed bimodal components in the anterior regions. qEEG can be easily and reliably used to study sleep in healthy participants and patients.
Collapse
Affiliation(s)
- Jesús Pastor
- Clinical Neurophysiology and Instituto de Investigación Biomédica, Hospital Universitario de La Princesa, C/Diego de León 62, 28006 Madrid, Spain;
| | - Paula Garrido Zabala
- Facultad de Ciencias de la Salud, Universidad Camilo José Cela, C/Castillo de Alarcón 49, Villafranca del Castillo, 28692 Madrid, Spain;
| | - Lorena Vega-Zelaya
- Clinical Neurophysiology and Instituto de Investigación Biomédica, Hospital Universitario de La Princesa, C/Diego de León 62, 28006 Madrid, Spain;
| |
Collapse
|
18
|
Schmidig FJ, Geva-Sagiv M, Falach R, Yakim S, Gat Y, Sharon O, Fried I, Nir Y. A visual paired associate learning (vPAL) paradigm to study memory consolidation during sleep. J Sleep Res 2024; 33:e14151. [PMID: 38286437 DOI: 10.1111/jsr.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Sleep improves the consolidation and long-term stability of newly formed memories and associations. Most research on human declarative memory and its consolidation during sleep uses word-pair associations requiring exhaustive learning. In the present study, we present the visual paired association learning (vPAL) paradigm, in which participants learn new associations between images of celebrities and animals. The vPAL is based on a one-shot exposure that resembles learning in natural conditions. We tested if vPAL can reveal a role for sleep in memory consolidation by assessing the specificity of memory recognition, and the cued recall performance, before and after sleep. We found that a daytime nap improved the stability of recognition memory and discrimination abilities compared to identical intervals of wakefulness. By contrast, cued recall of associations did not exhibit significant sleep-dependent effects. High-density electroencephalography during naps further revealed an association between sleep spindle density and stability of recognition memory. Thus, the vPAL paradigm opens new avenues for future research on sleep and memory consolidation across ages and heterogeneous populations in health and disease.
Collapse
Affiliation(s)
- Flavio Jean Schmidig
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Geva-Sagiv
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Rotem Falach
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Yakim
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
| | - Yael Gat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Sharon
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
19
|
Li Z, Wang J, Tang C, Wang P, Ren P, Li S, Yi L, Liu Q, Sun L, Li K, Ding W, Bao H, Yao L, Na M, Luan G, Liang X. Coordinated NREM sleep oscillations among hippocampal subfields modulate synaptic plasticity in humans. Commun Biol 2024; 7:1236. [PMID: 39354050 PMCID: PMC11445409 DOI: 10.1038/s42003-024-06941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
The integration of hippocampal oscillations during non-rapid eye movement (NREM) sleep is crucial for memory consolidation. However, how cardinal sleep oscillations bind across various subfields of the human hippocampus to promote information transfer and synaptic plasticity remains unclear. Using human intracranial recordings from 25 epilepsy patients, we find that hippocampal subfields, including DG/CA3, CA1, and SUB, all exhibit significant delta and spindle power during NREM sleep. The DG/CA3 displays strong coupling between delta and ripple oscillations with all the other hippocampal subfields. In contrast, the regions of CA1 and SUB exhibit more precise coordination, characterized by event-level triple coupling between delta, spindle, and ripple oscillations. Furthermore, we demonstrate that the synaptic plasticity within the hippocampal circuit, as indexed by delta-wave slope, is linearly modulated by spindle power. In contrast, ripples act as a binary switch that triggers a sudden increase in delta-wave slope. Overall, these results suggest that different subfields of the hippocampus regulate one another through diverse layers of sleep oscillation synchronization, collectively facilitating information processing and synaptic plasticity during NREM sleep.
Collapse
Affiliation(s)
- Zhipeng Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Wang
- Department of Neurology, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Peng Wang
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Peng Ren
- Institute of Science and Technology for Brain-Inspired Intelligence and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyang Li
- Zhejiang Lab, Hangzhou, Zhejiang, 311100, China
| | - Liye Yi
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuyi Liu
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Lili Sun
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaizhou Li
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
| | - Wencai Ding
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hongbo Bao
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, 150081, Harbin, China
- Department of Neurosurgery, BeijingTiantan Hospital, Capital Medical University, 100070, Beijing, China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, 100093, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| | - Xia Liang
- School of Life Science and Technology, HIT Faculty of Life Science and Medicine, Harbin Institute of Technology, Harbin, 150001, China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China.
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin, 150001, China.
- Research Center for Social Computing and Information Retrieval, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
20
|
Solano A, Lerner G, Griffa G, Deleglise A, Caffaro P, Riquelme L, Perez-Chada D, Della-Maggiore V. Sleep Consolidation Potentiates Sensorimotor Adaptation. J Neurosci 2024; 44:e0325242024. [PMID: 39074983 PMCID: PMC11376339 DOI: 10.1523/jneurosci.0325-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 07/31/2024] Open
Abstract
Contrary to its well-established role in declarative learning, the impact of sleep on motor memory consolidation remains a subject of debate. Current literature suggests that while motor skill learning benefits from sleep, consolidation of sensorimotor adaptation (SMA) depends solely on the passage of time. This has led to the proposal that SMA may be an exception to other types of memories. Here, we addressed this ongoing controversy in humans through three comprehensive experiments using the visuomotor adaptation paradigm (N = 290, 150 females). In Experiment 1, we investigated the impact of sleep on memory retention when the temporal gap between training and sleep was not controlled. In line with the previous literature, we found that memory consolidates with the passage of time. In Experiment 2, we used an anterograde interference protocol to determine the time window during which SMA memory is most fragile and, thus, potentially most sensitive to sleep intervention. Our results show that memory is most vulnerable during the initial hour post-training. Building on this insight, in Experiment 3, we investigated the impact of sleep when it coincided with the critical first hour of memory consolidation. This manipulation unveiled a benefit of sleep (30% memory enhancement) alongside an increase in spindle density and spindle-SO coupling during NREM sleep, two well-established neural markers of sleep consolidation. Our findings reconcile seemingly conflicting perspectives on the active role of sleep in motor learning and point to common mechanisms at the basis of memory formation.
Collapse
Affiliation(s)
- Agustin Solano
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Gonzalo Lerner
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Guillermina Griffa
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Alvaro Deleglise
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Pedro Caffaro
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Luis Riquelme
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
| | - Daniel Perez-Chada
- Departamento de Medicina Interna, Servicio de Medicina Pulmonar y Sueño, Hospital Universitario Austral, Pilar, Buenos Aires B1629AHJ, Argentina
| | - Valeria Della-Maggiore
- Universidad de Buenos Aires-CONICET. Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Facultad de Medicina, Departamento de Ciencias Fisiológicas, Ciudad de Buenos Aires C1121ABG, Argentina
- Department of Neurology and Neurosurgery, McGill University Montreal, Quebec H3A2B4, Canada
- Escuela de Ciencia y Tecnología (ECyT), Universidad Nacional de San Martin, San Martin, Buenos Aires, CP 1650, Argentina
| |
Collapse
|
21
|
Rehel S, Duivon M, Doidy F, Champetier P, Clochon P, Grellard JM, Segura-Djezzar C, Geffrelot J, Emile G, Allouache D, Levy C, Viader F, Eustache F, Joly F, Giffard B, Perrier J. Sleep oscillations related to memory consolidation during aromatases inhibitors for breast cancer. Sleep Med 2024; 121:210-218. [PMID: 39004011 DOI: 10.1016/j.sleep.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Aromatase inhibitors (AIs) are associated with sleep difficulties in breast cancer (BC) patients. Sleep is known to favor memory consolidation through the occurrence of specific oscillations, i.e., slow waves (SW) and sleep spindles, allowing a dialogue between prefrontal cortex and the hippocampus. Interestingly, neuroimaging studies in BC patients have consistently shown structural and functional modifications in these two brain regions. With the aim to evaluate sleep oscillations related to memory consolidation during AIs, we collected polysomnography data in BC patients treated (AI+, n = 17) or not (AI-, n = 17) with AIs compared to healthy controls (HC, n = 21). None of the patients had received chemotherapy and radiotherapy was finished since at least 6 months, that limit the confounding effects of other treatments than AIs. Fast and slow spindles were detected during sleep stage 2 at centro-parietal and frontal electrodes respectively. SW were detected at frontal electrodes during stage 3. Here, we show lower frontal SW densities in AI + patients compared to HC. These results concord with previous reports about frontal cortical alterations in cancer following AIs administration. Moreover, AI + patients tended to have lower spindle density at C4 electrode. Regression analyses showed that, in both patient groups, spindle density at C4 electrode explained a large variance of memory performances. Slow spindle characteristics did not differ between groups and sleep oscillations characteristics of AI- patients did not differ significantly from those of both AI + patients and HC. Overall, our results add to the compelling evidence of the systemic effects of AIs previously reported in animals, with deleterious effects on cortical activity during sleep and associated memory consolidation in the current study. There is thus a need to further investigate sleep modifications during AIs administration. Longitudinal studies are needed to confirm these findings and investigation in other cancers on this topic should be conducted.
Collapse
Affiliation(s)
- S Rehel
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France.
| | - M Duivon
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Doidy
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - P Champetier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - P Clochon
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - J M Grellard
- Clinical Research Department, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - C Segura-Djezzar
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - J Geffrelot
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - G Emile
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - D Allouache
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - C Levy
- Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France
| | - F Viader
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France
| | - F Joly
- Clinical Research Department, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France; Institut Normand Du Sein, Centre François Baclesse, Caen, France; Department of Medical Oncology, Centre François Baclesse, 3 Avenue Du Général Harris, Caen, France; INSERM, Normandie Univ, UNICAEN, U1086 ANTICIPE, Caen, France; Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14076, Caen, France
| | - B Giffard
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France; Cancer and Cognition Platform, Ligue Nationale Contre le Cancer, 14076, Caen, France
| | - J Perrier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de La Mémoire Humaine, 14000, Caen, France.
| |
Collapse
|
22
|
Brown A, Gervais NJ, Gravelsins L, O'Byrne J, Calvo N, Ramana S, Shao Z, Bernardini M, Jacobson M, Rajah MN, Einstein G. Effects of early midlife ovarian removal on sleep: Polysomnography-measured cortical arousal, homeostatic drive, and spindle characteristics. Horm Behav 2024; 165:105619. [PMID: 39178647 DOI: 10.1016/j.yhbeh.2024.105619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) prior to age 48 is associated with elevated risk for both Alzheimer's disease (AD) and sleep disorders such as insomnia and sleep apnea. In early midlife, individuals with BSO show reduced hippocampal volume, function, and hippocampal-dependent verbal episodic memory performance associated with changes in sleep. It is unknown whether BSO affects fine-grained sleep measurements (sleep microarchitecture) and how these changes might relate to hippocampal-dependent memory. We recruited thirty-six early midlife participants with BSO. Seventeen of these participants were taking 17β-estradiol therapy (BSO+ET) and 19 had never taken ET (BSO). Twenty age-matched control participants with intact ovaries (AMC) were also included. Overnight at-home polysomnography recordings were collected, along with subjective sleep quality and hot flash frequency. Multivariate Partial Least Squares (PLS) analysis was used to assess how sleep varied between groups. Compared to AMC, BSO without ET was associated with significantly decreased time spent in non-rapid eye movement (NREM) stage 2 sleep as well as increased NREM stage 2 and 3 beta power, NREM stage 2 delta power, and spindle power and maximum amplitude. Increased spindle maximum amplitude was negatively correlated with verbal episodic memory performance. Decreased sleep latency, increased sleep efficiency, and increased time spent in rapid eye movement sleep were observed for BSO+ET. Findings suggest there is an association between ovarian hormone loss and sleep microarchitecture, which may contribute to poorer cognitive outcomes and be ameliorated by ET.
Collapse
Affiliation(s)
- Alana Brown
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Nicole J Gervais
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9712 CP, the Netherlands.
| | - Laura Gravelsins
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Jordan O'Byrne
- Psychology Department, University of Montreal, Montreal H3T 1J4, Canada; Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal H3G 1M8, Canada.
| | - Noelia Calvo
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Shreeyaa Ramana
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada.
| | - Zhuo Shao
- Genetics Program, North York General Hospital, Toronto M2K 1E1, Canada; Department of Pediatrics, University of Toronto, Toronto M5G 1X8, Canada.
| | | | - Michelle Jacobson
- Princess Margaret Hospital, Toronto M5G 2C4, Canada; Women's College Hospital, Toronto M5S 1B2, Canada.
| | - M Natasha Rajah
- Department of Psychology, Toronto Metropolitan University, Toronto M5B 2K3, Canada.
| | - Gillian Einstein
- Department of Psychology, University of Toronto, Toronto M5S 3G3, Canada; Baycrest Academy of Research and Education, Baycrest Health Sciences, Toronto M6A 2E1, Canada; Tema Genus, Linköping University, Linköping 581 83, Sweden.
| |
Collapse
|
23
|
Ng T, Noh E, Spencer RMC. Does slow oscillation-spindle coupling contribute to sleep-dependent memory consolidation? A Bayesian meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610060. [PMID: 39257832 PMCID: PMC11383665 DOI: 10.1101/2024.08.28.610060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The active system consolidation theory suggests that information transfer between the hippocampus and cortex during sleep underlies memory consolidation. Neural oscillations during sleep, including the temporal coupling between slow oscillations (SO) and sleep spindles (SP), may play a mechanistic role in memory consolidation. However, differences in analytical approaches and the presence of physiological and behavioral moderators have led to inconsistent conclusions. This meta-analysis, comprising 23 studies and 297 effect sizes, focused on four standard phase-amplitude coupling measures including coupling phase, strength, percentage, and SP amplitude, and their relationship with memory retention. We developed a standardized approach to incorporate non-normal circular-linear correlations. We found strong evidence supporting that precise and strong SO-fast SP coupling in the frontal lobe predicts memory consolidation. The strength of this association is mediated by memory type, aging, and dynamic spatio-temporal features, including SP frequency and cortical topography. In conclusion, SO-SP coupling should be considered as a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Thea Ng
- Neuroscience & Behavior Program, Mount Holyoke College
- Department of Mathematics & Statistics, Mount Holyoke College
| | - Eunsol Noh
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
| | - Rebecca M. C. Spencer
- Neuroscience & Behavior Program, University of Massachusetts, Amherst
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst
- Institute of Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
24
|
van der Heijden AC, van der Werf YD, van den Heuvel OA, Talamini LM, van Marle HJF. Targeted memory reactivation to augment treatment in post-traumatic stress disorder. Curr Biol 2024; 34:3735-3746.e5. [PMID: 39116885 DOI: 10.1016/j.cub.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/30/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder with traumatic memories at its core. Post-treatment sleep may offer a unique time window to increase therapeutic efficacy through consolidation of therapeutically modified traumatic memories. Targeted memory reactivation (TMR) enhances memory consolidation by presenting reminder cues (e.g., sounds associated with a memory) during sleep. Here, we applied TMR in PTSD patients to strengthen therapeutic memories during sleep after one treatment session with eye movement desensitization and reprocessing (EMDR). PTSD patients received either slow oscillation (SO) phase-targeted TMR, using modeling-based closed-loop neurostimulation (M-CLNS) with EMDR clicks as a reactivation cue (n = 17), or sham stimulation (n = 16). Effects of TMR on sleep were assessed through high-density polysomnography. Effects on treatment outcome were assessed through subjective, autonomic, and fMRI responses to script-driven imagery (SDI) of the targeted traumatic memory and overall PTSD symptom level. Compared to sham stimulation, TMR led to stimulus-locked increases in SO and spindle dynamics, which correlated positively with PTSD symptom reduction in the TMR group. Given the role of SOs and spindles in memory consolidation, these findings suggest that TMR may have strengthened the consolidation of the EMDR-treatment memory. Clinically, TMR vs. sham stimulation resulted in a larger reduction of avoidance level during SDI. TMR did not disturb sleep or trigger nightmares. Together, these data provide first proof of principle that TMR may be a safe and viable future treatment augmentation strategy for PTSD. The required follow-up studies may implement multi-night TMR or TMR during REM sleep to further establish the clinical effect of TMR for traumatic memories.
Collapse
Affiliation(s)
- Anna C van der Heijden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department Anatomy & Neuroscience, Boelelaan 1081 HV Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention, Boelelaan 1081 HV Amsterdam, the Netherlands
| | - Lucia M Talamini
- University of Amsterdam, Department of Psychology, Brain & Cognition, Nieuwe Achtergracht 1018 WS Amsterdam, the Netherlands; University of Amsterdam, Amsterdam Brain and Cognition, Nieuwe Achtergracht 1001 NK Amsterdam, the Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, Vrije Universiteit Amsterdam, Psychiatry, Oldenaller 1081 HJ Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Boelelaan 1081 HV Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Oldenaller 1081 HJ Amsterdam, the Netherlands; ARQ National Psychotrauma Center, Nienoord 1112 XE Diemen, the Netherlands.
| |
Collapse
|
25
|
Schiller K, Thomas J, Avigdor T, Mansilla D, Kortas A, Unterholzner G, Rauchenzauner M, Frauscher B. Pulsatile corticoid therapy reduces interictal epileptic activity burden in children with genetic drug-resistant epilepsy. Epilepsia Open 2024; 9:1265-1276. [PMID: 38831631 PMCID: PMC11296103 DOI: 10.1002/epi4.12947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
OBJECTIVE Corticosteroids and adrenocorticotropic hormone (ACTH) are the therapy of choice to treat infantile spasms. However, systematic studies about their use in other types of childhood epilepsies remain rare and ACTH can have serious side effects. This study compares the interictal epileptic activity (IEA) burden (% of electroencephalography (EEG) time with IEDs) in children with genetic drug-resistant epilepsy before and after a standardized treatment with pulsatile corticoid therapy (PCT). METHODS Children with drug-resistant epilepsy underwent a standardized protocol for PCT with cycles of high-dose dexamethasone (20 mg/m2 body surface) intravenously. Patients were hospitalized for 3 days per PCT cycle and EEGs were obtained before initiation of treatment (baseline) and during the hospitalization around the time of every second cycle. EEG recordings during sleep and wakefulness were obtained. IEA burden was compared before and after PCT. Secondary outcome measures included the sleep spindle rate, the seizure frequency and subjective evaluation in a standardized interview. RESULTS In the cohort of 24 children (10 female, 6.2 ± 3.4 years), IEA burden was lower in the EEG after PCT compared to the baseline (baseline: 5.4% [0.7-97.3] vs. after PCT: 1.5% [0-96.9], p = 0.001, d = -0.41). Sleep physiology expressed by sleep spindles improved after PCT with enhanced fast spindle rates (0.8/min [0-2.2] vs. 1.5/min [0.2-3.4], p = 0.045, d = 0.36). Seizure frequency was decreased in 17 of the 24 patients (70.8%) with one patient achieving seizure freedom. The majority of patients improved in quality of life (79.2%), and sleep (81.3%). No serious adverse effects were documented. SIGNIFICANCE This study systematically assessed the effect of PCT in children with genetic / suspected genetic drug-resistant epilepsy. PCT was found to not only reduce the IEA burden but also increase sleep spindle rates, which are important for cognitive functioning. PLAIN LANGUAGE SUMMARY In this study, children with a form of epilepsy, which is resistant against antiseizure medication, received a systematic treatment with corticosteroids over multiple cycles in the hospital. It was found that not only the epileptic activity was reduced but also the sleep of the patients was improved after the treatment. These findings could provide the basis for extending the use of corticosteroids in children with epilepsy.
Collapse
Affiliation(s)
- Katharina Schiller
- Analytical Neurophysiology Lab, Department of Neurology and NeurosurgeryMontreal Neurological Hospital and InstituteMontrealQuebecCanada
- Department of NeurologyChildren's Hospital KaufbeurenKaufbeurenBavariaGermany
- Department of PeadiatricsMedical University InnsbruckInnsbruckAustria
| | - John Thomas
- Analytical Neurophysiology Lab, Department of Neurology and NeurosurgeryMontreal Neurological Hospital and InstituteMontrealQuebecCanada
| | - Tamir Avigdor
- Analytical Neurophysiology Lab, Department of Neurology and NeurosurgeryMontreal Neurological Hospital and InstituteMontrealQuebecCanada
| | - Daniel Mansilla
- Analytical Neurophysiology Lab, Department of Neurology and NeurosurgeryMontreal Neurological Hospital and InstituteMontrealQuebecCanada
| | - Aline Kortas
- Department of NeurologyChildren's Hospital KaufbeurenKaufbeurenBavariaGermany
| | | | - Markus Rauchenzauner
- Department of NeurologyChildren's Hospital KaufbeurenKaufbeurenBavariaGermany
- Department of PeadiatricsMedical University InnsbruckInnsbruckAustria
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Department of Neurology and NeurosurgeryMontreal Neurological Hospital and InstituteMontrealQuebecCanada
- Department of NeurologyDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Biomedical EngineeringDuke Pratt School of EngineeringDurhamNorth CarolinaUSA
| |
Collapse
|
26
|
Yao Z, Xia T, Wei J, Zhang Z, Lin X, Zhang D, Qin P, Ma Y, Hu X. Reactivating cue approached positive personality traits during sleep promotes positive self-referential processing. iScience 2024; 27:110341. [PMID: 39055925 PMCID: PMC11269284 DOI: 10.1016/j.isci.2024.110341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
People preferentially endorse positive personality traits as more self-descriptive than negative ones, a positivity self-referential bias. Here, we investigated how to enhance positive self-referential processing, integrating wakeful cue-approach training task (CAT) and sleep-based targeted memory reactivation (TMR). In the CAT, participants gave speeded motor responses to cued positive personality traits. In a subsequent nap, we unobtrusively re-played half of the trained positive traits during slow-wave sleep (TMR). Upon awakening, CAT+TMR facilitated participants' speed in endorsing positive traits in immediate tests, and rendered participants endorse more positive traits as self-descriptive after one week. Notably, these enhancements were associated with the directionality of cue-related 1-4 Hz slow traveling waves (STW) that propagate across brain regions. Specifically, anterior-to-posterior backward STW was positively associated with these benefits, whereas forward STW showed negative associations. These findings demonstrate the potential benefits of integrated wakeful cue-approach training and sleep-based memory reactivation in strengthening positive self-referential processing.
Collapse
Affiliation(s)
- Ziqing Yao
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Tao Xia
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jinwen Wei
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiguo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen 518055, China
| | - Xuanyi Lin
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Center for Sleep & Circadian Biology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
- Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Xiaoqing Hu
- Department of Psychology and The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
27
|
Baena D, Toor B, van den Berg NH, Ray LB, Fogel SM. Spindle-slow wave coupling and problem-solving skills: impact of age. Sleep 2024; 47:zsae072. [PMID: 38477166 PMCID: PMC11236953 DOI: 10.1093/sleep/zsae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
We examined how aging affects the role of sleep in the consolidation of newly learned cognitive strategies. Forty healthy young adults (20-35 years) and 30 healthy older adults (60-85 years) were included. Participants were trained on the Tower of Hanoi (ToH) task, then, half of each age group were assigned to either the 90-minute nap condition, or stayed awake, before retesting. The temporal co-occurrence between slow waves (SW) and sleep spindles (SP) during non-rapid eye movement sleep was examined as a function of age in relation to memory consolidation of problem-solving skills. We found that despite intact learning, older adults derived a reduced benefit of sleep for problem-solving skills relative to younger adults. As expected, the percentage of coupled spindles was lower in older compared to younger individuals from control to testing sessions. Furthermore, coupled spindles in young adults were more strongly coupled to the SW upstate compared to older individuals. Coupled spindles in older individuals were lower in amplitude (mean area under the curve; μV) compared to the young group. Lastly, there was a significant relationship between offline gains in accuracy on the ToH and percent change of spindles coupled to the upstate of the slow wave in older, but not younger adults. Multiple regression revealed that age accounted for differences in offline gains in accuracy, as did spindle coupling during the upstate. These results suggest that with aging, spindle-slow wave coupling decreases. However, the degree of the preservation of coupling with age correlates with the extent of problem-solving skill consolidation during sleep.
Collapse
Affiliation(s)
- Daniel Baena
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Sleep Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Balmeet Toor
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | - Laura B Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Stuart M Fogel
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Sleep Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Shetty M, Davey MJ, Nixon GM, Walter LM, Horne RSC. Sleep spindles are reduced in children with Down syndrome and sleep-disordered breathing. Pediatr Res 2024; 96:457-470. [PMID: 37845520 PMCID: PMC11343711 DOI: 10.1038/s41390-023-02854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB). We investigated sleep spindle activity, as a marker of sleep quality, and its relationship with daytime functioning in children with DS compared to typically developing (TD) children. METHODS Children with DS and SDB (n = 44) and TD children matched for age, sex and SDB severity underwent overnight polysomnography. Fast or Slow sleep spindles were identified manually during N2/N3 sleep. Spindle activity was characterized as spindle number, density (number of spindles/h) and intensity (density × average duration) on central (C) and frontal (F) electrodes. Parents completed the Child Behavior Check List and OSA-18 questionnaires. RESULTS In children with DS, spindle activity was lower compared to TD children for F Slow and F Slow&Fast spindles combined (p < 0.001 for all). Furthermore, there were no correlations between spindle activity and CBCL subscales; however, spindle activity for C Fast and C Slow&Fast was negatively correlated with OSA-18 emotional symptoms and caregiver concerns and C Fast activity was also negatively correlated with daytime function and total problems. CONCLUSIONS Reduced spindle activity in children with DS may underpin the increased sleep disruption and negative effects of SDB on quality of life and behavior. IMPACT Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB), which is associated with sleep disruption affecting daytime functioning. Sleep spindles are a sensitive marker of sleep quality. We identified for the first time that children with DS had reduced sleep spindle activity compared to typically developing children matched for SDB severity. The reduced spindle activity likely underpins the more disrupted sleep and may be associated with reduced daytime functioning and quality of life and may also be an early biomarker for an increased risk of developing dementia later in life in children with DS.
Collapse
Affiliation(s)
- Marisha Shetty
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Margot J Davey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Gillian M Nixon
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Lisa M Walter
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Rosemary S C Horne
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Halonen R, Kuula L, Selin M, Suutari A, Antila M, Pesonen AK. REM Sleep Preserves Affective Response to Social Stress-Experimental Study. eNeuro 2024; 11:ENEURO.0453-23.2024. [PMID: 38802242 DOI: 10.1523/eneuro.0453-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Sleep's contribution to affective regulation is insufficiently understood. Previous human research has focused on memorizing or rating affective pictures and less on physiological affective responsivity. This may result in overlapping definitions of affective and declarative memories and inconsistent deductions for how rapid eye movement sleep (REMS) and slow-wave sleep (SWS) are involved. Literature associates REMS theta (4-8 Hz) activity with emotional memory processing, but its contribution to social stress habituation is unknown. Applying selective sleep stage suppression and oscillatory analyses, we investigated how sleep modulated affective adaptation toward social stress and retention of neutral declarative memories. Native Finnish participants (N = 29; age, M = 25.8 years) were allocated to REMS or SWS suppression conditions. We measured physiological (skin conductance response, SCR) and subjective stress response and declarative memory retrieval thrice: before laboratory night, the next morning, and after 3 d. Linear mixed models were applied to test the effects of condition and sleep parameters on emotional responsivity and memory retrieval. Greater overnight increase in SCR toward the stressor emerged after suppressed SWS (intact REMS) relative to suppressed REMS (20.1% vs 6.1%; p = 0.016). The overnight SCR increase was positively associated with accumulated REMS theta energy irrespective of the condition (r = 0.601; p = 0.002). Subjectively rated affective response and declarative memory recall were comparable between the conditions. The contributions of REMS and SWS to habituation of social stress are distinct. REMS theta activity proposedly facilitates the consolidation of autonomic affective responses. Declarative memory consolidation may not have greater dependence on intact SWS relative to intact REMS.
Collapse
Affiliation(s)
- Risto Halonen
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Liisa Kuula
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Maikki Selin
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Alma Suutari
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Minea Antila
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
30
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
31
|
Wüst LN, Antonenko D, Malinowski R, Khakimova L, Grittner U, Obermayer K, Ladenbauer J, Flöel A. Interrelations and functional roles of key oscillatory activities during daytime sleep in older adults. J Sleep Res 2024; 33:e13981. [PMID: 37488062 DOI: 10.1111/jsr.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/26/2023]
Abstract
Certain neurophysiological characteristics of sleep, in particular slow oscillations (SOs), sleep spindles, and their temporal coupling, have been well characterised and associated with human memory abilities. Delta waves, which are somewhat higher in frequency and lower in amplitude compared to SOs, and their interaction with spindles have only recently been found to play a critical role in memory processing of rodents, through a competitive interaction between SO-spindle and delta-spindle coupling. However, human studies that comprehensively address delta wave interactions with spindles and SOs, as well as their functional role for memory are still lacking. Electroencephalographic data were acquired across three naps of 33 healthy older human participants (17 female) to investigate delta-spindle coupling and the interplay between delta- and SO-related activity. Additionally, we determined intra-individual stability of coupling measures and their potential link to the ability to form novel memories in a verbal memory task. Our results revealed weaker delta-spindle compared to SO-spindle coupling. Contrary to our initial hypothesis, we found no evidence for an opposing dependency between SO- and delta-related activities during non-rapid eye movement sleep. Moreover, the ratio between SO- and delta-nested spindles rather than SO-spindle and delta-spindle coupling measures by themselves predicted the ability to form novel memories best. In conclusion, our results do not confirm previous findings in rodents on competitive interactions between delta activity and SO-spindle coupling in older adults. However, they support the hypothesis that SO, delta wave, and spindle activity should be jointly considered when aiming to link sleep physiology and memory formation.
Collapse
Affiliation(s)
- Larissa N Wüst
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Robert Malinowski
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Liliia Khakimova
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin, Berlin, Germany
| | - Klaus Obermayer
- Fakultät IV and Bernstein Center for Computational Neuroscience, Technische Universität Berlin, Berlin, Germany
| | - Julia Ladenbauer
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Schmidig FJ, Ruch S, Henke K. Episodic long-term memory formation during slow-wave sleep. eLife 2024; 12:RP89601. [PMID: 38661727 PMCID: PMC11045222 DOI: 10.7554/elife.89601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.
Collapse
Affiliation(s)
| | - Simon Ruch
- Institute of Psychology, University of BernBernSwitzerland
- Faculty of Psychology, UniDistance SuisseBrigSwitzerland
| | | |
Collapse
|
33
|
Carbone J, Bibian C, Born J, Forcato C, Diekelmann S. Comparing targeted memory reactivation during slow wave sleep and sleep stage 2. Sci Rep 2024; 14:9057. [PMID: 38643331 PMCID: PMC11032354 DOI: 10.1038/s41598-024-59696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
Sleep facilitates declarative memory consolidation, which is assumed to rely on the reactivation of newly encoded memories orchestrated by the temporal interplay of slow oscillations (SO), fast spindles and ripples. SO as well as the number of spindles coupled to SO are more frequent during slow wave sleep (SWS) compared to lighter sleep stage 2 (S2). But, it is unclear whether memory reactivation is more effective during SWS than during S2. To test this question, we applied Targeted Memory Reactivation (TMR) in a declarative memory design by presenting learning-associated sound cues during SWS vs. S2 in a counterbalanced within-subject design. Contrary to our hypothesis, memory performance was not significantly better when cues were presented during SWS. Event-related potential (ERP) amplitudes were significantly higher for cues presented during SWS than S2, and the density of SO and SO-spindle complexes was generally higher during SWS than during S2. Whereas SO density increased during and after the TMR period, SO-spindle complexes decreased. None of the parameters were associated with memory performance. These findings suggest that the efficacy of TMR does not depend on whether it is administered during SWS or S2, despite differential processing of memory cues in these sleep stages.
Collapse
Affiliation(s)
- Julia Carbone
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Carlos Bibian
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Depto. de Ciencias de La Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
34
|
Staresina BP. Coupled sleep rhythms for memory consolidation. Trends Cogn Sci 2024; 28:339-351. [PMID: 38443198 DOI: 10.1016/j.tics.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
How do passing moments turn into lasting memories? Sheltered from external tasks and distractions, sleep constitutes an optimal state for the brain to reprocess and consolidate previous experiences. Recent work suggests that consolidation is governed by the intricate interaction of slow oscillations (SOs), spindles, and ripples - electrophysiological sleep rhythms that orchestrate neuronal processing and communication within and across memory circuits. This review describes how sequential SO-spindle-ripple coupling provides a temporally and spatially fine-tuned mechanism to selectively strengthen target memories across hippocampal and cortical networks. Coupled sleep rhythms might be harnessed not only to enhance overnight memory retention, but also to combat memory decline associated with healthy ageing and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Orlando IF, O'Callaghan C, Lam A, McKinnon AC, Tan JBC, Michaelian JC, Kong SDX, D'Rozario AL, Naismith SL. Sleep spindle architecture associated with distinct clinical phenotypes in older adults at risk for dementia. Mol Psychiatry 2024; 29:402-411. [PMID: 38052981 PMCID: PMC11116104 DOI: 10.1038/s41380-023-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Sleep spindles are a hallmark of non-REM sleep and play a fundamental role in memory consolidation. Alterations in these spindles are emerging as sensitive biomarkers for neurodegenerative diseases of ageing. Understanding the clinical presentations associated with spindle alterations may help to elucidate the functional role of these distinct electroencephalographic oscillations and the pathophysiology of sleep and neurodegenerative disorders. Here, we use a data-driven approach to examine the sleep, memory and default mode network connectivity phenotypes associated with sleep spindle architecture in older adults (mean age = 66 years). Participants were recruited from a specialist clinic for early diagnosis and intervention for cognitive decline, with a proportion showing mild cognitive deficits on neuropsychological testing. In a sample of 88 people who underwent memory assessment, overnight polysomnography and resting-state fMRI, a k-means cluster analysis was applied to spindle measures of interest: fast spindle density, spindle duration and spindle amplitude. This resulted in three clusters, characterised by preserved spindle architecture with higher fast spindle density and longer spindle duration (Cluster 1), and alterations in spindle architecture (Clusters 2 and 3). These clusters were further characterised by reduced memory (Clusters 2 and 3) and nocturnal hypoxemia, associated with sleep apnea (Cluster 3). Resting-state fMRI analysis confirmed that default mode connectivity was related to spindle architecture, although directionality of this relationship differed across the cluster groups. Together, these results confirm a diversity in spindle architecture in older adults, associated with clinically meaningful phenotypes, including memory function and sleep apnea. They suggest that resting-state default mode connectivity during the awake state can be associated with sleep spindle architecture; however, this is highly dependent on clinical phenotype. Establishing relationships between clinical and neuroimaging features and sleep spindle alterations will advance our understanding of the bidirectional relationships between sleep changes and neurodegenerative diseases of ageing.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua B C Tan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Shawn D X Kong
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D'Rozario
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia.
| |
Collapse
|
36
|
Weiner OM, O'Byrne J, Cross NE, Giraud J, Tarelli L, Yue V, Homer L, Walker K, Carbone R, Dang-Vu TT. Slow oscillation-spindle cross-frequency coupling predicts overnight declarative memory consolidation in older adults. Eur J Neurosci 2024; 59:662-685. [PMID: 37002805 DOI: 10.1111/ejn.15980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
Cross-frequency coupling (CFC) between brain oscillations during non-rapid-eye-movement (NREM) sleep (e.g. slow oscillations [SO] and spindles) may be a neural mechanism of overnight memory consolidation. Declines in CFC across the lifespan might accompany coinciding memory problems with ageing. However, there are few reports of CFC changes during sleep after learning in older adults, controlling for baseline effects. Our objective was to examine NREM CFC in healthy older adults, with an emphasis on spindle activity and SOs from frontal electroencephalogram (EEG), during a learning night after a declarative learning task, as compared to a baseline night without learning. Twenty-five older adults (M [SD] age = 69.12 [5.53] years; 64% female) completed a two-night study, with a pre- and post-sleep word-pair associates task completed on the second night. SO-spindle coupling strength and a measure of coupling phase distance from the SO up-state were both examined for between-night differences and associations with memory consolidation. Coupling strength and phase distance from the up-state peak were both stable between nights. Change in coupling strength between nights was not associated with memory consolidation, but a shift in coupling phase towards (vs. away from) the up-state peak after learning predicted better memory consolidation. Also, an exploratory interaction model suggested that associations between coupling phase closer to the up-state peak and memory consolidation may be moderated by higher (vs. lower) coupling strength. This study supports a role for NREM CFC in sleep-related memory consolidation in older adults.
Collapse
Affiliation(s)
- Oren M Weiner
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Jordan O'Byrne
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montréal, Quebec, Canada
| | - Nathan E Cross
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Julia Giraud
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| | - Lukia Tarelli
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Victoria Yue
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Léa Homer
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Katherine Walker
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Roxanne Carbone
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Thien Thanh Dang-Vu
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
37
|
Mayeli A, Donati FL, Ferrarelli F. Altered Sleep Oscillations as Neurophysiological Biomarkers of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:351-383. [PMID: 39562451 DOI: 10.1007/978-3-031-69491-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Sleep spindles and slow waves are the two main oscillatory activities occurring during nonrapid eye movement (NREM) sleep. Here, we will first describe the electrophysiological characteristics of these sleep oscillations along with the neurophysiological and molecular mechanisms underlying their generation and synchronization in the healthy brain. We will then review the extant evidence of deficits in sleep spindles and, to a lesser extent, slow waves, including in slow wave-spindle coupling, in patients with Schizophrenia (SCZ) across the course of the disorder, from at-risk to chronic stages. Next, we will discuss how these sleep oscillatory deficits point to defects in neuronal circuits within the thalamocortical network as well as to alterations in molecular neurotransmission implicating the GABAergic and glutamatergic systems in SCZ. Finally, after explaining how spindle and slow waves may represent neurophysiological biomarkers with predictive, diagnostic, and prognostic potential, we will present novel pharmacological and neuromodulatory interventions aimed at restoring sleep oscillatory deficits in SCZ, which in turn may serve as target engagement biomarkers to ameliorate the clinical symptoms and the quality of life of individuals affected by this devastating brain disorder.
Collapse
Affiliation(s)
- Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Denis D, Cairney SA. Neural reactivation during human sleep. Emerg Top Life Sci 2023; 7:487-498. [PMID: 38054531 PMCID: PMC10754334 DOI: 10.1042/etls20230109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sleep promotes memory consolidation: the process by which newly acquired memories are stabilised, strengthened, and integrated into long-term storage. Pioneering research in rodents has revealed that memory reactivation in sleep is a primary mechanism underpinning sleep's beneficial effect on memory. In this review, we consider evidence for memory reactivation processes occurring in human sleep. Converging lines of research support the view that memory reactivation occurs during human sleep, and is functionally relevant for consolidation. Electrophysiology studies have shown that memory reactivation is tightly coupled to the cardinal neural oscillations of non-rapid eye movement sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have found that brain regions recruited during learning become reactivated during post-learning sleep. In sum, the current evidence paints a strong case for a mechanistic role of neural reactivation in promoting memory consolidation during human sleep.
Collapse
Affiliation(s)
- Dan Denis
- Department of Psychology, University of York, York YO10 5DD, U.K
| | - Scott A. Cairney
- Department of Psychology, University of York, York YO10 5DD, U.K
- York Biomedical Research Institute, University of York, York YO10 5DD, U.K
| |
Collapse
|
39
|
Schreiner T, Petzka M, Staudigl T, Staresina BP. Respiration modulates sleep oscillations and memory reactivation in humans. Nat Commun 2023; 14:8351. [PMID: 38110418 PMCID: PMC10728072 DOI: 10.1038/s41467-023-43450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
The beneficial effect of sleep on memory consolidation relies on the precise interplay of slow oscillations and spindles. However, whether these rhythms are orchestrated by an underlying pacemaker has remained elusive. Here, we tested the relationship between respiration, which has been shown to impact brain rhythms and cognition during wake, sleep-related oscillations and memory reactivation in humans. We re-analysed an existing dataset, where scalp electroencephalography and respiration were recorded throughout an experiment in which participants (N = 20) acquired associative memories before taking a nap. Our results reveal that respiration modulates the emergence of sleep oscillations. Specifically, slow oscillations, spindles as well as their interplay (i.e., slow-oscillation_spindle complexes) systematically increase towards inhalation peaks. Moreover, the strength of respiration - slow-oscillation_spindle coupling is linked to the extent of memory reactivation (i.e., classifier evidence in favour of the previously learned stimulus category) during slow-oscillation_spindles. Our results identify a clear association between respiration and memory consolidation in humans and highlight the role of brain-body interactions during sleep.
Collapse
Affiliation(s)
- Thomas Schreiner
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany.
| | - Marit Petzka
- Max Planck Institute for Human Development, Berlin, Germany
- Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, München, Germany
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Ohki T, Kunii N, Chao ZC. Efficient, continual, and generalized learning in the brain - neural mechanism of Mental Schema 2.0. Rev Neurosci 2023; 34:839-868. [PMID: 36960579 DOI: 10.1515/revneuro-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
There has been tremendous progress in artificial neural networks (ANNs) over the past decade; however, the gap between ANNs and the biological brain as a learning device remains large. With the goal of closing this gap, this paper reviews learning mechanisms in the brain by focusing on three important issues in ANN research: efficiency, continuity, and generalization. We first discuss the method by which the brain utilizes a variety of self-organizing mechanisms to maximize learning efficiency, with a focus on the role of spontaneous activity of the brain in shaping synaptic connections to facilitate spatiotemporal learning and numerical processing. Then, we examined the neuronal mechanisms that enable lifelong continual learning, with a focus on memory replay during sleep and its implementation in brain-inspired ANNs. Finally, we explored the method by which the brain generalizes learned knowledge in new situations, particularly from the mathematical generalization perspective of topology. Besides a systematic comparison in learning mechanisms between the brain and ANNs, we propose "Mental Schema 2.0," a new computational property underlying the brain's unique learning ability that can be implemented in ANNs.
Collapse
Affiliation(s)
- Takefumi Ohki
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zenas C Chao
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
41
|
Joechner AK, Hahn MA, Gruber G, Hoedlmoser K, Werkle-Bergner M. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife 2023; 12:e83565. [PMID: 37999945 PMCID: PMC10672804 DOI: 10.7554/elife.83565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
The synchronization of canonical fast sleep spindle activity (12.5-16 Hz, adult-like) precisely during the slow oscillation (0.5-1 Hz) up peak is considered an essential feature of adult non-rapid eye movement sleep. However, there is little knowledge on how this well-known coalescence between slow oscillations and sleep spindles develops. Leveraging individualized detection of single events, we first provide a detailed cross-sectional characterization of age-specific patterns of slow and fast sleep spindles, slow oscillations, and their coupling in children and adolescents aged 5-6, 8-11, and 14-18 years, and an adult sample of 20- to 26-year-olds. Critically, based on this, we then investigated how spindle and slow oscillation maturity substantiate age-related differences in their precise orchestration. While the predominant type of fast spindles was development-specific in that it was still nested in a frequency range below the canonical fast spindle range for the majority of children, the well-known slow oscillation-spindle coupling pattern was evident for sleep spindles in the adult-like canonical fast spindle range in all four age groups-but notably less precise in children. To corroborate these findings, we linked personalized measures of fast spindle maturity, which indicate the similarity between the prevailing development-specific and adult-like canonical fast spindles, and slow oscillation maturity, which reflects the extent to which slow oscillations show frontal dominance, with individual slow oscillation-spindle coupling patterns. Importantly, we found that fast spindle maturity was uniquely associated with enhanced slow oscillation-spindle coupling strength and temporal precision across the four age groups. Taken together, our results suggest that the increasing ability to generate adult-like canonical fast sleep spindles actuates precise slow oscillation-spindle coupling patterns from childhood through adolescence and into young adulthood.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
- Hertie-Institute for Clinical Brain Research, University Medical Center Tuebingen, Tuebingen, Germany
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- The Siesta Group, Vienna, Austria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
42
|
Dehnavi F, Koo-Poeggel PC, Ghorbani M, Marshall L. Memory ability and retention performance relate differentially to sleep depth and spindle type. iScience 2023; 26:108154. [PMID: 37876817 PMCID: PMC10590735 DOI: 10.1016/j.isci.2023.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Temporal interactions between non-rapid eye movement (NREM) sleep rhythms especially the coupling between cortical slow oscillations (SO, ∼1 Hz) and thalamic spindles (∼12 Hz) have been proposed to contribute to multi-regional interactions crucial for memory processing and cognitive ability. We investigated relationships between NREM sleep depth, sleep spindles and SO-spindle coupling regarding memory ability and memory consolidation in healthy humans. Findings underscore the functional relevance of spindle dynamics (slow versus fast), SO-phase, and most importantly NREM sleep depth for cognitive processing. Cross-frequency coupling analyses demonstrated stronger precise temporal coordination of slow spindles to SO down-state in N2 for subjects with higher general memory ability. A GLM model underscored this relationship, and furthermore that fast spindle properties were predictive of overnight memory consolidation. Our results suggest cognitive fingerprints dependent on conjoint fine-tuned SO-spindle temporal coupling, spindle properties, and brain sleep state.
Collapse
Affiliation(s)
- Fereshteh Dehnavi
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Center for International Scientific Studies & Collaborations (CISSC), Shahid Azodi Street, Karim-Khane Zand Boulevard, Tehran 15875-7788, Iran
| | - Ping Chai Koo-Poeggel
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Ratzeburger Allee 160, Bldg. 66, 23562 Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, 23562 Luebeck, Germany
| | - Maryam Ghorbani
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Center for International Scientific Studies & Collaborations (CISSC), Shahid Azodi Street, Karim-Khane Zand Boulevard, Tehran 15875-7788, Iran
| | - Lisa Marshall
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Ratzeburger Allee 160, Bldg. 66, 23562 Luebeck, Germany
- Center for Brain, Behavior and Metabolism, University of Luebeck, 23562 Luebeck, Germany
| |
Collapse
|
43
|
Kumral D, Matzerath A, Leonhart R, Schönauer M. Spindle-dependent memory consolidation in healthy adults: A meta-analysis. Neuropsychologia 2023; 189:108661. [PMID: 37597610 DOI: 10.1016/j.neuropsychologia.2023.108661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/23/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023]
Abstract
Accumulating evidence suggests a central role for sleep spindles in the consolidation of new memories. However, no meta-analysis of the association between sleep spindles and memory performance has been conducted so far. Here, we report meta-analytical evidence for spindle-memory associations and investigate how multiple factors, including memory type, spindle type, spindle characteristics, and EEG topography affect this relationship. The literature search yielded 53 studies reporting 1427 effect sizes, resulting in a small to moderate effect for the average association. We further found that spindle-memory associations were significantly stronger for procedural memory than for declarative memory. Neither spindle types nor EEG scalp topography had an impact on the strength of the spindle-memory relation, but we observed a distinct functional role of global and fast sleep spindles, especially for procedural memory. We also found a moderation effect of spindle characteristics, with power showing the largest effect sizes. Collectively, our findings suggest that sleep spindles are involved in learning, thereby representing a general physiological mechanism for memory consolidation.
Collapse
Affiliation(s)
- Deniz Kumral
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Alina Matzerath
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Rainer Leonhart
- Institute of Psychology, Social Psychology and Methodology, University of Freiburg, Freiburg Im Breisgau, Germany
| | - Monika Schönauer
- Institute of Psychology, Neuropsychology, University of Freiburg, Freiburg Im Breisgau, Germany; Bernstein Center Freiburg, Freiburg Im Breisgau, Germany
| |
Collapse
|
44
|
Gu Y, Gagnon JF, Kaminska M. Sleep electroencephalography biomarkers of cognition in obstructive sleep apnea. J Sleep Res 2023; 32:e13831. [PMID: 36941194 DOI: 10.1111/jsr.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/23/2023]
Abstract
Obstructive sleep apnea has been associated with cognitive impairment and may be linked to disorders of cognitive function. These associations may be a result of intermittent hypoxaemia, sleep fragmentation and changes in sleep microstructure in obstructive sleep apnea. Current clinical metrics of obstructive sleep apnea, such as the apnea-hypopnea index, are poor predictors of cognitive outcomes in obstructive sleep apnea. Sleep microstructure features, which can be identified on sleep electroencephalography of traditional overnight polysomnography, are increasingly being characterized in obstructive sleep apnea and may better predict cognitive outcomes. Here, we summarize the literature on several major sleep electroencephalography features (slow-wave activity, sleep spindles, K-complexes, cyclic alternating patterns, rapid eye movement sleep quantitative electroencephalography, odds ratio product) identified in obstructive sleep apnea. We will review the associations between these sleep electroencephalography features and cognition in obstructive sleep apnea, and examine how treatment of obstructive sleep apnea affects these associations. Lastly, evolving technologies in sleep electroencephalography analyses will also be discussed (e.g. high-density electroencephalography, machine learning) as potential predictors of cognitive function in obstructive sleep apnea.
Collapse
Affiliation(s)
- Yusing Gu
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean-François Gagnon
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Marta Kaminska
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
- Respiratory Division & Sleep Laboratory, McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
45
|
Memon AA, Edney BS, Baumgartner AJ, Gardner AJ, Catiul C, Irwin ZT, Joop A, Miocinovic S, Amara AW. Effects of deep brain stimulation on quantitative sleep electroencephalogram during non-rapid eye movement in Parkinson's disease. Front Hum Neurosci 2023; 17:1269864. [PMID: 37810765 PMCID: PMC10551142 DOI: 10.3389/fnhum.2023.1269864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Sleep dysfunction is frequently experienced by people with Parkinson's disease (PD) and negatively influences quality of life. Although subthalamic nucleus (STN) deep brain stimulation (DBS) can improve sleep in PD, sleep microstructural features such as sleep spindles provide additional insights about healthy sleep. For example, sleep spindles are important for better cognitive performance and for sleep consolidation in healthy adults. We hypothesized that conventional STN DBS settings would yield a greater enhancement in spindle density compared to OFF and low frequency DBS. Methods In a previous within-subject, cross-sectional study, we evaluated effects of low (60 Hz) and conventional high (≥130 Hz) frequency STN DBS settings on sleep macroarchitectural features in individuals with PD. In this post hoc, exploratory analysis, we conducted polysomnography (PSG)-derived quantitative electroencephalography (qEEG) assessments in a cohort of 15 individuals with PD who had undergone STN DBS treatment a median 13.5 months prior to study participation. Fourteen participants had unilateral DBS and 1 had bilateral DBS. During three nonconsecutive nights of PSG, the participants were assessed under three different DBS conditions: DBS OFF, DBS LOW frequency (60 Hz), and DBS HIGH frequency (≥130 Hz). The primary objective of this study was to investigate the changes in sleep spindle density across the three DBS conditions using repeated-measures analysis of variance. Additionally, we examined various secondary outcomes related to sleep qEEG features. For all participants, PSG-derived EEG data underwent meticulous manual inspection, with the exclusion of any segments affected by movement artifact. Following artifact rejection, sleep qEEG analysis was conducted on frontal and central leads. The measures included slow wave (SW) and spindle density and morphological characteristics, SW-spindle phase-amplitude coupling, and spectral power analysis during non-rapid eye movement (NREM) sleep. Results The analysis revealed that spindle density was significantly higher in the DBS HIGH condition compared to the DBS LOW condition. Surprisingly, we found that SW amplitude during NREM was significantly higher in the DBS LOW condition compared to DBS OFF and DBS HIGH conditions. However, no significant differences were observed in the other sleep qEEG features during sleep at different DBS conditions. Conclusion This study presents preliminary evidence suggesting that conventional HIGH frequency DBS settings enhance sleep spindle density in PD. Conversely, LOW frequency settings may have beneficial effects on increasing slow wave amplitude during sleep. These findings may inform mechanisms underlying subjective improvements in sleep quality reported in association with DBS. Moreover, this work supports the need for additional research on the influence of surgical interventions on sleep disorders, which are prevalent and debilitating non-motor symptoms in PD.
Collapse
Affiliation(s)
- Adeel A. Memon
- Department of Neurology, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Brandon S. Edney
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander J. Baumgartner
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alan J. Gardner
- Neuroscience Undergraduate Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Corina Catiul
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zachary T. Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Allen Joop
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Amy W. Amara
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
46
|
Miao X, Müller C, Lutz ND, Yang Q, Waszak F, Born J, Rauss K. Sleep consolidates stimulus-response learning. Learn Mem 2023; 30:175-184. [PMID: 37726140 PMCID: PMC10547380 DOI: 10.1101/lm.053753.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 09/21/2023]
Abstract
Performing a motor response to a sensory stimulus creates a memory trace whose behavioral correlates are classically investigated in terms of repetition priming effects. Such stimulus-response learning entails two types of associations that are partly independent: (1) an association between the stimulus and the motor response and (2) an association between the stimulus and the classification task in which it is encountered. Here, we tested whether sleep supports long-lasting stimulus-response learning on a task requiring participants (1) for establishing stimulus-classification associations to classify presented objects along two different dimensions ("size" and "mechanical") and (2) as motor response (action) to respond with either the left or right index finger. Moreover, we examined whether strengthening of stimulus-classification associations is preferentially linked to nonrapid eye movement (non-REM) sleep and strengthening of stimulus-action associations to REM sleep. We tested 48 healthy volunteers in a between-subjects design comparing postlearning retention periods of nighttime sleep versus daytime wakefulness. At postretention testing, we found that sleep supports consolidation of both stimulus-action and stimulus-classification associations, as indicated by increased reaction times in "switch conditions"; that is, when, at test, the acutely instructed classification task and/or correct motor response for a given stimulus differed from that during original learning. Polysomnographic recordings revealed that both kinds of associations were correlated with non-REM spindle activity. Our results do not support the view of differential roles for non-REM and REM sleep in the consolidation of stimulus-classification and stimulus-action associations, respectively.
Collapse
Affiliation(s)
- Xiu Miao
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
| | - Carolin Müller
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
| | - Nicolas D Lutz
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
- Institute of Medical Psychology, Ludwig-Maximilians-Universität, Munich 80336, Germany
| | - Qing Yang
- Université Paris Cité, Integrative Neuroscience and Cognition Center, UMR 8002, Centre National de la Recherche Scientifique, Paris 75006, France
| | - Florian Waszak
- Université Paris Cité, Integrative Neuroscience and Cognition Center, UMR 8002, Centre National de la Recherche Scientifique, Paris 75006, France
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
- Center for Integrative Neuroscience, Eberhard-Karls-Universität, Tübingen 72076, Germany
| | - Karsten Rauss
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-Universität, Tübingen 72076, Germany
| |
Collapse
|
47
|
Natraj N, Neylan TC, Yack LM, Metzler TJ, Woodward SH, Hubachek SQ, Dukes C, Udupa NS, Mathalon DH, Richards A. Sleep Spindles Favor Emotion Regulation Over Memory Consolidation of Stressors in Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:899-908. [PMID: 36889539 DOI: 10.1016/j.bpsc.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a trauma-induced condition, characterized by intrusive memories and trauma-associated anxiety. Non-rapid eye movement (NREM) sleep spindles might play a crucial role in learning and consolidating declarative stressor information. However, sleep and possibly sleep spindles are also known to regulate anxiety, suggestive of a dual role for sleep spindles in the processing of stressors. Specifically, in individuals with high PTSD symptom burden, spindles might fail to regulate anxiety levels after exposure and instead might maladaptively consolidate stressor information. METHODS To disentangle the role of spindles in declarative memory versus anxiety regulation after stressor exposure and to examine the role of PTSD in these processes, we measured nap sleep after a cohort of 45 trauma-exposed participants were exposed to laboratory stress. Participants (high vs. low PTSD symptoms) completed 2 visits: a stress visit involving exposure to negatively valent images before nap and a control visit. In both visits, sleep was monitored via electroencephalography. A stressor recall session occurred after the nap in the stress visit. RESULTS Stage 2 NREM (NREM2) spindle rates were higher in stress versus control sleep, indicative of stress-induced changes in spindles. In participants with high PTSD symptoms, NREM2 spindle rates in stress sleep predicted poorer recall accuracy of stressor images relative to participants with low PTSD symptoms, while correlating with greater reduction in stressor-induced anxiety levels after sleep. CONCLUSIONS Contrary to our expectations, although spindles are known to play a role in declarative memory processes, our findings highlight an important role for spindles in sleep-dependent anxiety regulation in PTSD.
Collapse
Affiliation(s)
- Nikhilesh Natraj
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California; Department of Veterans Affairs San Francisco Health Care System, San Francisco, California
| | - Thomas C Neylan
- Department of Veterans Affairs San Francisco Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Leslie M Yack
- Department of Veterans Affairs San Francisco Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Thomas J Metzler
- Department of Veterans Affairs San Francisco Health Care System, San Francisco, California
| | - Steven H Woodward
- Veterans Administration National Center for PTSD, Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Samantha Q Hubachek
- Department of Veterans Affairs San Francisco Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Cassandra Dukes
- Department of Veterans Affairs San Francisco Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Nikhila S Udupa
- Department of Veterans Affairs San Francisco Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Daniel H Mathalon
- Department of Veterans Affairs San Francisco Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Anne Richards
- Department of Veterans Affairs San Francisco Health Care System, San Francisco, California; Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
48
|
Wei Y, Luo M, Mai X, Feng L, Tang T, Yang D, Krishnan GP, Bazhenov M. The role of age-related sleep EEG changes in memory decline: experiments and computational modeling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083499 PMCID: PMC11214839 DOI: 10.1109/embc40787.2023.10340681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The slow oscillation (SO) observed during deep sleep is known to facilitate memory consolidation. However, the impact of age-related changes in sleep electroencephalography (EEG) oscillations and memory remains unknown. In this study, we aimed to investigate the contribution of age-related changes in sleep SO and its role in memory decline by combining EEG recordings and computational modeling. Based on the detected SO events, we found that older adults exhibit lower SO density, lower SO frequency, and longer Up and Down state durations during N3 sleep compared to young and middle-aged groups. Using a biophysically detailed thalamocortical network model, we simulated the "aged" brain as a partial loss of synaptic connections between neurons in the cortex. Our simulations showed that the changes in sleep SO properties in the "aged" brain, similar to those observed in older adults, resulting in impaired memory consolidation. Overall, this study provides mechanistic insights into how age-related changes modulate sleep SOs and memory decline.Clinical Relevance- This study contributes towards finding feasible biomarkers and target mechanism for designing therapy in older adults with memory deficits, such as Alzheimer's disease patients.
Collapse
|
49
|
Teh JZ, Grummitt L, Haroutonian C, Cross NE, Skinner B, Bartlett DJ, Yee B, Grunstein RR, Naismith SL, D’Rozario AL. Overnight declarative memory consolidation and non-rapid eye movement sleep electroencephalographic oscillations in older adults with obstructive sleep apnea. Sleep 2023; 46:zsad087. [PMID: 37052122 PMCID: PMC10666962 DOI: 10.1093/sleep/zsad087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
STUDY OBJECTIVES To compare overnight declarative memory consolidation and non-rapid eye movement (NREM) sleep electroencephalogram (EEG) oscillations in older adults with obstructive sleep apnea (OSA) to a control group and assess slow-wave activity (SWA) and sleep spindles as correlates of memory consolidation. METHODS Forty-six older adults (24 without OSA and 22 with OSA) completed a word-pair associate's declarative memory task before and after polysomnography. Recall and recognition were expressed as a percentage of the morning relative to evening scores. Power spectral analysis was performed on EEG recorded at frontal (F3-M2, F4-M1) and central (C3-M2, C4-M1) sites. We calculated NREM absolute slow oscillation (0.25-1 Hz) and delta (0.5-4.5 Hz) EEG power, and slow (11-13 Hz) spindle density (number of events per minute of N2 sleep) and fast (13-16 Hz) spindle density. RESULTS There were no significant differences in overnight recall and recognition between OSA (mean age 58.7 ± 7.1 years, apnea-hypopnea index (AHI) 41.9 ± 29.7 events/hour) and non-OSA (age 61.1 ± 10.3 years, AHI 6.6 ± 4.2 events/hour) groups. The OSA group had lower fast spindle density in the frontal region (p = 0.007). No between-group differences in SWA were observed. In the Control group, overnight recognition positively correlated with slow spindle density in frontal (rho = 0.555, p = 0.020) and central regions (rho = 0.490, p = 0.046). Overnight recall was not related to SWA or spindle measures in either group. CONCLUSIONS Older adults with OSA had deficits in fast sleep spindles but showed preserved overnight declarative memory consolidation. It is possible that compensatory mechanisms are being recruited by OSA patients to preserve declarative memory consolidation despite the presence of sleep spindle deficits.
Collapse
Affiliation(s)
- Jun Z Teh
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Lucinda Grummitt
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Carla Haroutonian
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Nathan E Cross
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Bradley Skinner
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Delwyn J Bartlett
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Brendon Yee
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D’Rozario
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
50
|
Geva-Sagiv M, Mankin EA, Eliashiv D, Epstein S, Cherry N, Kalender G, Tchemodanov N, Nir Y, Fried I. Augmenting hippocampal-prefrontal neuronal synchrony during sleep enhances memory consolidation in humans. Nat Neurosci 2023; 26:1100-1110. [PMID: 37264156 PMCID: PMC10244181 DOI: 10.1038/s41593-023-01324-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/06/2023] [Indexed: 06/03/2023]
Abstract
Memory consolidation during sleep is thought to depend on the coordinated interplay between cortical slow waves, thalamocortical sleep spindles and hippocampal ripples, but direct evidence is lacking. Here, we implemented real-time closed-loop deep brain stimulation in human prefrontal cortex during sleep and tested its effects on sleep electrophysiology and on overnight consolidation of declarative memory. Synchronizing the stimulation to the active phases of endogenous slow waves in the medial temporal lobe (MTL) enhanced sleep spindles, boosted locking of brain-wide neural spiking activity to MTL slow waves, and improved coupling between MTL ripples and thalamocortical oscillations. Furthermore, synchronized stimulation enhanced the accuracy of recognition memory. By contrast, identical stimulation without this precise time-locking was not associated with, and sometimes even degraded, these electrophysiological and behavioral effects. Notably, individual changes in memory accuracy were highly correlated with electrophysiological effects. Our results indicate that hippocampo-thalamocortical synchronization during sleep causally supports human memory consolidation.
Collapse
Affiliation(s)
- Maya Geva-Sagiv
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center of Neuroscience, University of California, Davis, Davis, CA, USA
| | - Emily A Mankin
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dawn Eliashiv
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shdema Epstein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalie Cherry
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guldamla Kalender
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Natalia Tchemodanov
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|