1
|
Li H, Hong J, Zhang Y, Li L, Long T, Huang L, Liu Y, Wan Z, Peng D. Machine Learning Classification Based on Individual Whole-Brain Functional Connectivity in Male OSA Patients. Nat Sci Sleep 2025; 17:959-973. [PMID: 40395455 PMCID: PMC12090846 DOI: 10.2147/nss.s504512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/11/2025] [Indexed: 05/22/2025] Open
Abstract
Purpose Previous studies have shown altered paired brain functional connectivity (FC) in obstructive sleep apnea (OSA) patients, linked to cognitive impairment. This study utilized individual FC analysis to investigate the distinctive FC characteristics in OSA and evaluate their classification efficiency. Methods We included 82 moderate to severe OSA patients [41 OSA with normal cognition (OSA-NC), 41 OSA with mild cognitive impairments (OSA-MCI)] and 84 healthy control (HC). Resting-state fMRI data and clinical scale data were collected. Individual FC was derived using multi-task learning-based sparse convex alternating structure optimization, with feature selection via the least absolute shrinkage and selection operator. Support vector machine classifiers were used for OSA vs HC and OSA-NC vs OSA-MCI classification. The top 10 FC features contributing to classification were analyzed for group differences. A significance level of p < 0.05 was considered statistically significant. Results The study results showed that individual FC achieved higher classification accuracy than traditional Pearson-based FC (OSA vs HC: 91.8% vs 79.5%; OSA-NC vs OSA-MCI: 81.3% vs 63.8%). The top 10 individual-specific FC networks contributing to classification were mainly located in the default mode network, attention network, showing significant inter-group differences in connectivity strength between the two groups. Conclusion This study identified static individualized FC characteristics in OSA patients with varying cognitive impairments. Based on individual FC, the classification accuracy of OSA-NC and OSA-MCI was significantly improved, the individual FC may serve as a potential neuroimaging marker for predicting OSA-MCI, providing an individual clinical diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Haijun Li
- Department of Radiology, PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Jin Hong
- School of Information Engineering, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Yudong Zhang
- School of Computing and Mathematic Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Lifeng Li
- Department of Radiology, PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Ting Long
- Department of Radiology, PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Ling Huang
- Department of Radiology, PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Yumen Liu
- Department of Radiology, PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| | - Zhijiang Wan
- School of Information Engineering, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Industrial Institute of Artificial Intelligence, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Dechang Peng
- Department of Radiology, PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
2
|
Yu R, Li Y, Zhao K, Fan F. The contributions of resting-state functional-MRI studies to our understanding of male patients with obstructive sleep apnea: a systematic review. Front Neurol 2025; 16:1532037. [PMID: 40271112 PMCID: PMC12014446 DOI: 10.3389/fneur.2025.1532037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
Objectives Obstructive sleep apnea (OSA) is a condition marked by the recurrent partial or complete obstruction of the upper airway during sleep. This leads to intermittent pauses in breathing, fragmented sleep, and frequent awakenings throughout the night. Many of these symptoms are believed to be linked to brain damage; however, the fundamental neurological processes underlying these impairments remain largely unknown. This study investigates resting-state functional MRI (rs-fMRI) findings in male patients with OSA to better understand the specific mechanisms associated with this condition in this demographic. Methods The search was conducted in the PubMed and Google Scholar databases, encompassing literature from their inception to July 2024. Studies were identified based on predetermined inclusion and exclusion criteria and were evaluated by two independent reviewers. Results A total of 16 eligible original rs-fMRI studies on male patients with OSA were included in this review. The findings indicate that patients with OSA exhibit alterations in resting-state brain activity. These neural changes may help explain the effects of OSA on emotion, cognition, and quality of life. Additionally, these findings could be used in the future to evaluate treatment outcomes. Conclusion This study highlights significant changes in local brain activities, interested region related functional connectivity, and whole-brain functional connectivity networks in patients with OSA. These findings offer valuable insights into the neural alterations at the core of OSA and may serve as potential biomarkers for diagnosis and intervention.
Collapse
Affiliation(s)
- Ruoxi Yu
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Hangzhou MindMatrixes Technology Co., Ltd, Hangzhou, China
| | - Kangqing Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Fangfang Fan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Wang J, Wang Z, Wang X, Ji L, Li Y, Cheng C, Su T, Wang E, Han F, Chen R. Altered brain dynamic functional connectivity in patients with obstructive sleep apnea and its association with cognitive performance. Sleep Med 2025; 128:174-182. [PMID: 39954375 DOI: 10.1016/j.sleep.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVES Obstructive sleep apnea (OSA) is associated with potential disruptions in brain function and structure. The aim was to investigate alterations in dynamic functional connectivity (dFC) in OSA patients utilizing resting-state functional magnetic resonance imaging (rs-fMRI) and multiplication of temporal derivatives (MTD) to better understand the neurological implications of OSA. METHODS This cross-sectional study eventually recruited 111 patients, aged 25-65 years. We categorized participants based on the apnea-hypopnea index (AHI) assessed via polysomnography (PSG), 43 patients were groupAHI <15 and 68 patients were group AHI ≥15. Rs-fMRI and neuropsychological assessments were conducted to assess the brain function and visual-spatial memory, respectively. We evaluated the intergroup differences in dFC as well as its correlation with clinical parameters. RESULTS The dFC analysis identified five distinct connectivity states, comprising four hyperconnected states (State 1, 2, 3, and 5) and one hypoconnected state (State 4). Group AHI≥ 15 showed altered fraction time (FT) and mean dwell time (MDT) in States 1, 3, and 4. The partial correlation showed that the FT/MDT of State 1 negatively correlated with hypoxia parameters, while the FT/MDT of State 3 positively correlated with total sleep time in Group AHI≥ 15. Group AHI≥ 15 exhibited a negative association between FT of state 3 and Visuospatial/Executive score in MoCA (r = -0.297, p = 0.033). CONCLUSIONS Untreated male moderate to severe OSA patients exhibited altered in dFC, which significantly correlated with hypoxia parameters and cognitive performance, high lighting that dFC changes may be an indicator of the neurological consequence of OSA, especially moderate to severe OSA.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China; Department of Sleep Centre, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Zhijun Wang
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China; Department of Sleep Centre, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Xin Wang
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China; Department of Sleep Centre, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Lirong Ji
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Yezhou Li
- Oxford University and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Chaohong Cheng
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China; Department of Sleep Centre, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Tong Su
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China; Department of Sleep Centre, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Erlei Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Fei Han
- Department of Sleep Centre, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China
| | - Rui Chen
- Department of Respiratory and Critical Care, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China; Department of Sleep Centre, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, China.
| |
Collapse
|
4
|
Ji T, Li X, Xu Z, Zhao J, Wang G, Li Y, Zhang X, Liu Q, Sun N, Mei L, Wang S, Ni X. Aberrant Resting-State Effective Connectivity Between the Insula and Other Regions of the Whole Brain in Children With Obstructive Sleep Apnea. J Sleep Res 2025:e70015. [PMID: 39957378 DOI: 10.1111/jsr.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
To investigate the effective connectivity between the bilateral insulae and other regions of the whole brain in children with obstructive sleep apnea (OSA), and to reveal the relationships between these abnormal connections and cognitive dysfunction in this condition. Resting-state functional magnetic resonance imaging (rs-fMRI) data and clinical variables were collected from 55 children with OSA [5.0 (5.0, 8.0) years, 32 males, 28 pre-school children] and 25 healthy controls [6.0 (5.0, 9.0) years, 11 males, 9 pre-school children], matched for age, gender, and education. Rs-fMRI data were analysed to investigative group-difference in the effective connectivity between the bilateral insulae and other regions of the brain of children with OSA with those of controls. Spearman correlation analysis was conducted between these abnormal connections and clinical variables among children with OSA. Compared with controls, children with OSA showed abnormal clinical variables (i.e., increased OAHI, AHI, OAI, HI, ODI, time of SpO2 < 90%, total AI, and respiratory-related AI, while decreased minimal SpO2, FIQ, VIQ, and PIQ). Additionally, significant alterations were observed in the effective connectivity between the bilateral insulae and other regions of brain, such as frontal, parietal, occipital, and cerebellum and so forth. Furthermore, the mean values of the effective connectivity in children with OSA were significantly correlated with several sleep-related and neurocognitive parameters. There exist abnormal causal interactions between the bilateral insulae and other regions throughout the brain in OSA children, accompanied by impaired cognitive function, suggesting that the former may be a potential neural mechanism underlying the latter.
Collapse
Affiliation(s)
- Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaodan Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Zhifei Xu
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jing Zhao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guixiang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yanzhen Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Qiaoyin Liu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Nian Sun
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lin Mei
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
5
|
Wu K, Gan Q, Pi Y, Wu Y, Zou W, Su X, Zhang S, Wang X, Li X, Zhang N. Obstructive sleep apnea and structural and functional brain alterations: a brain-wide investigation from clinical association to genetic causality. BMC Med 2025; 23:42. [PMID: 39865248 PMCID: PMC11770961 DOI: 10.1186/s12916-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is linked to brain alterations, but the specific regions affected and the causal associations between these changes remain unclear. METHODS We studied 20 pairs of age-, sex-, BMI-, and education- matched OSA patients and healthy controls using multimodal magnetic resonance imaging (MRI) from August 2019 to February 2020. Additionally, large-scale Mendelian randomization analyses were performed using genome-wide association study (GWAS) data on OSA and 3935 brain imaging-derived phenotypes (IDPs), assessed in up to 33,224 individuals between December 2023 and March 2024, to explore potential genetic causality between OSA and alterations in whole brain structure and function. RESULTS In the cohort study, OSA patients exhibited significantly lower fractional amplitude of low-frequency fluctuation and regional homogeneity in the right posterior cerebellar lobe and bilateral superior and middle frontal gyrus, while showing higher levels in the left occipital lobe and left posterior central gyrus. Decreased fractional anisotropy (FA) but increased apparent diffusion coefficient (ADC) was shown in the bilateral superior longitudinal fasciculus. According to the results of Affiliation file 2: table s6, it is the ADC value of right superior longitudinal fasciculus was shown a positive correlation with the lowest oxygen saturation. In the Mendelian randomization analyses, the area of left inferior temporal sulcus (OR: 0.89; 95% CI: 0.82-0.96), rfMRI connectivity ICA100 edge 893 (OR: 0.88; 95% CI: 0.82-0.96), ICA100 edge 951 (OR: 0.89; 95% CI: 0.82-0.97), and ICA100 edge 1213 (OR: 0.89; 95% CI: 0.82-0.96) were significantly decreased in OSA. Conversely, mean thickness of G-front-inf-Triangul in right hemisphere (OR: 1.14; 95% CI: 1.05-1.23), mean orientation dispersion index in right tapetum (OR: 1.13; 95% CI: 1.04-1.23), and rfMRI connectivity ICA100 edge 258 (OR: 1.13; 95% CI: 1.04-1.22) showed opposite results. CONCLUSIONS Nerve fiber damage and imbalances in neuronal activity across multiple brain regions caused by hypoxia, particularly the frontal lobe, underlie the structural and the functional connectivity impairments in OSA.
Collapse
Affiliation(s)
- Kang Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Qiming Gan
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Yuhong Pi
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Yanjuan Wu
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Wenjin Zou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofen Su
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Sun Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Xinni Wang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China
| | - Xinchun Li
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Nuofu Zhang
- Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, NO.28 Qiaozhong Mid Road, Guangzhou, Guangdong, 510160, China.
| |
Collapse
|
6
|
Zhang X, Zhang N, Yang Y, Wang S, Yu P, Wang CX. Cortical activation during the verbal fluency task for obstructive sleep apnea patients with depressive symptoms: A multi-channel fNIRS study. Brain Behav 2024; 14:e70038. [PMID: 39344269 PMCID: PMC11440028 DOI: 10.1002/brb3.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/23/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
STUDY OBJECTIVE The aim of our study was to elucidate differences in brain activity patterns among obstructive sleep apnea (OSA) patients, OSA patients with depressive symptoms, and healthy controls (HCs). We also investigated the relationship between brain function and depression in OSA patients. METHODS A total of 95 subjects were included in the study, including 34 OSA patients without depressive symptoms, 31 OSA patients with depressive symptoms, and 30 HCs. The 53-channel functional near-infrared spectroscopy (fNIRS) was used to monitor the concentration of oxy-hemoglobin (Oxy-Hb) in the brain, whereas the participants performed the verbal fluency task, and the degree of depression was scored using the 17-item Hamilton Rating Scale for Depression (HAMD-17). Hierarchical regression models were conducted to analyze the association of fNIRS features with depressive symptom. RESULTS The Oxy-Hb changes of the three groups were significantly different in Channels 25 (H = 9.878, p = .007) and 43 (H = 6.957, p = .031). Inter-group comparisons showed that the Oxy-Hb change of Channel 25 (located in the dorsolateral prefrontal cortex [DLPFC]) in OSA group was less than that in HC group (p = .006), and the Oxy-Hb change of Channel 43 (located in the right frontal polar region) in OSA group with depression was less than that in OSA group (p = .025). Spearman's test showed that there was a significant negative correlation between HAMD-17 scores and mean Oxy-Hb changes in Channel 43 (r = -.319, p < .05) in the OSA patients. Using hierarchical regression, Oxy-Hb changes in Channel 43 accounted for a significant proportion of the variation in outcome variables, even when accounting for other polysomnography features. CONCLUSIONS Changes in the hemodynamic response of DLPFC may be a potential mechanism of executive dysfunction in OSA patients. And the right frontal polar region may be significant in assessing depressive symptoms in patients with OSA.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Department of Neuropsychiatry & Behavioral Neurology and Clinical Psychology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Ning Zhang
- Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Department of Neuropsychiatry & Behavioral Neurology and Clinical Psychology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yang Yang
- Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Department of Neuropsychiatry & Behavioral Neurology and Clinical Psychology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Department of Neuropsychiatry & Behavioral Neurology and Clinical Psychology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Ping Yu
- Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Department of Neuropsychiatry & Behavioral Neurology and Clinical Psychology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Chun-Xue Wang
- Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- Department of Neuropsychiatry & Behavioral Neurology and Clinical Psychology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Long T, Shu Y, Liu X, Huang L, Zeng L, Li L, Zhan J, Li H, Peng D. Abnormal temporal variability of thalamo-cortical circuit in patients with moderate-to-severe obstructive sleep apnea. J Sleep Res 2024; 33:e14159. [PMID: 38318885 DOI: 10.1111/jsr.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
This study investigated the abnormal dynamic functional connectivity (dFC) variability of the thalamo-cortical circuit in patients with obstructive sleep apnea (OSA) and explored the relationship between these changes and the clinical characteristics of patients with OSA. A total of 91 newly diagnosed patients with moderate-to-severe OSA and 84 education-matched healthy controls (HCs) were included. All participants underwent neuropsychological testing and a functional magnetic resonance imaging scan. We explored the thalamo-cortical dFC changes by dividing the thalamus into 16 subregions and combining them using a sliding-window approach. Correlation analysis assessed the relationship between dFC variability and clinical features, and the support vector machine method was used for classification. The OSA group exhibited increased dFC variability between the thalamic subregions and extensive cortical areas, compared with the HCs group. Decreased dFC variability was observed in some frontal-occipital-temporal cortical regions. These dFC changes positively correlated with daytime sleepiness, disease severity, and cognitive scores. Altered dFC variability contributed to the discrimination between patients with OSA and HCs, with a classification accuracy of 77.8%. Our findings show thalamo-cortical overactivation and disconnection in patients with OSA, disrupting information flow within the brain networks. These results enhance understanding of the temporal variability of thalamo-cortical circuits in patients with OSA.
Collapse
Affiliation(s)
- Ting Long
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiang Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ling Huang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lifeng Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jie Zhan
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
8
|
Mohammadi M, Oghabian MA, Ghaderi S, Jalali M, Samadi S. Volumetric analysis of the hypothalamic subunits in obstructive sleep apnea. Brain Behav 2024; 14:e70026. [PMID: 39236146 PMCID: PMC11376441 DOI: 10.1002/brb3.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a prevalent sleep disorder that is associated with structural brain damage and cognitive impairment. The hypothalamus plays a crucial role in regulating sleep and wakefulness. We aimed to evaluate hypothalamic subunit volumes in patients with OSA. METHODS We enrolled 30 participants (15 patients with OSA and 15 healthy controls (HC)). Patients with OSA underwent complete overnight polysomnography (PSG) examination. All the participants underwent MRI. The hypothalamic subunit volumes were calculated using a segmentation technique that trained a 3D convolutional neural network. RESULTS Although hypothalamus subunit volumes were comparable between the HC and OSA groups (lowest p = .395), significant negative correlations were found in OSA patients between BMI and whole left hypothalamus volume (R = -0.654, p = .008), as well as between BMI and left posterior volume (R = -0.556, p = .032). Furthermore, significant positive correlations were found between ESS and right anterior inferior volume (R = 0.548, p = .042), minimum SpO2 and the whole left hypothalamus (R = 0.551, p = .033), left tubular inferior volumes (R = 0.596, p = .019), and between the percentage of REM stage and left anterior inferior volume (R = 0.584, p = .022). CONCLUSIONS While there were no notable differences in the hypothalamic subunit volumes between the OSA and HC groups, several important correlations were identified in the OSA group. These relationships suggest that factors related to sleep apnea severity could affect hypothalamic structure in patients.
Collapse
Affiliation(s)
- Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalali
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Advanced Medical Technologies and Equipment Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Samadi
- Sleep Breathing Disorders Research Center, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Anesthesia, Critical Care and Pain Management Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Li L, Liu Y, Shu Y, Liu X, Song Y, Long T, Li K, Xie W, Zeng Y, Zeng L, Huang L, Liu Y, Deng Y, Li H, Peng D. Altered functional connectivity of cerebellar subregions in male patients with obstructive sleep apnea: A resting-state fMRI study. Neuroradiology 2024; 66:999-1012. [PMID: 38671339 DOI: 10.1007/s00234-024-03356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024]
Abstract
PURPOSE Previous studies have demonstrated impaired cerebellar function in patients with obstructive sleep apnea (OSA), which is associated with impaired cognition. However, the effects of OSA on resting-state functional connectivity (FC) in the cerebellum has not been determined. The purpose of this study was to investigate resting-state FC of the cerebellar subregions and its relevance to clinical symptoms in patients with OSA. METHODS Sixty-eight patients with OSA and seventy-two healthy controls (HCs) were included in the study. Eight subregions of the cerebellum were selected as regions of interest, and the FC values were calculated for each subregion with other voxels. A correlation analysis was performed to examine the relationship between clinical and cognitive data. RESULTS Patients with OSA showed higher FC in specific regions, including the right lobule VI with the right posterior middle temporal gyrus and right angular gyrus, the right Crus I with the bilateral precuneus/left superior parietal lobule, and the right Crus II with the precuneus/right posterior cingulate cortex. Furthermore, the oxygen depletion index was negatively correlated with aberrant FC between the right Crus II and the bilateral precuneus / right posterior cingulate cortex in OSA patients (p = 0.004). CONCLUSION The cerebellum is functionally lateralized and closely linked to the posterior default mode network. Higher FC is related to cognition, emotion, language, and sleep in OSA. Abnormal FC may offer new neuroimaging evidence and insights for a deeper comprehension of OSA-related alterations.
Collapse
Affiliation(s)
- Lifeng Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Department of Radiology, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Hengyang, 410000, Hunan Province, China
| | - Yuting Liu
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, 410000, Hunan Province, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiang Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yucheng Song
- School of Computer Science and Engineering, Central South University, Changsha, 410000, Hunan Province, China
| | - Ting Long
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Kunyao Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wei Xie
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yaping Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Li Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Ling Huang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yumeng Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yingke Deng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, Nanchang, 330006, Nanchang Province, China.
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- PET Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Province, Nanchang, 330006, Nanchang Province, China.
| |
Collapse
|
10
|
Yorita A, Kawayama T, Inoue M, Kinoshita T, Oda H, Tokunaga Y, Tateishi T, Shoji Y, Uchimura N, Abe T, Hoshino T, Taniwaki T. Altered Functional Connectivity during Mild Transient Respiratory Impairment Induced by a Resistive Load. J Clin Med 2024; 13:2556. [PMID: 38731091 PMCID: PMC11084533 DOI: 10.3390/jcm13092556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Previous neuroimaging studies have identified brain regions related to respiratory motor control and perception. However, little is known about the resting-state functional connectivity (FC) associated with respiratory impairment. We aimed to determine the FC involved in mild respiratory impairment without altering transcutaneous oxygen saturation. Methods: We obtained resting-state functional magnetic resonance imaging data from 36 healthy volunteers during normal respiration and mild respiratory impairment induced by resistive load (effort breathing). ROI-to-ROI and seed-to-voxel analyses were performed using Statistical Parametric Mapping 12 and the CONN toolbox. Results: Compared to normal respiration, effort breathing activated FCs within and between the sensory perceptual area (postcentral gyrus, anterior insular cortex (AInsula), and anterior cingulate cortex) and visual cortex (the visual occipital, occipital pole (OP), and occipital fusiform gyrus). Graph theoretical analysis showed strong centrality in the visual cortex. A significant positive correlation was observed between the dyspnoea score (modified Borg scale) and FC between the left AInsula and right OP. Conclusions: These results suggested that the FCs within the respiratory sensory area via the network hub may be neural mechanisms underlying effort breathing and modified Borg scale scores. These findings may provide new insights into the visual networks that contribute to mild respiratory impairments.
Collapse
Affiliation(s)
- Akiko Yorita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Masayuki Inoue
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Takashi Kinoshita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Hanako Oda
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Yoshihisa Tokunaga
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Yoshihisa Shoji
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Naohisa Uchimura
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Toshi Abe
- Department of Radiology, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Takayuki Taniwaki
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| |
Collapse
|
11
|
Xiao F, Liu M, Wang Y, Zhou L, Luo J, Chen C, Chen W. Altered Functional Connectivity of Temporoparietal Lobe in Obstructive Sleep Apnea: A Resting-State fNIRS Study. Bioengineering (Basel) 2024; 11:389. [PMID: 38671810 PMCID: PMC11048547 DOI: 10.3390/bioengineering11040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Obstructive Sleep Apnea (OSA), a sleep disorder with high prevalence, is normally accompanied by affective, autonomic, and cognitive abnormalities, and is deemed to be linked to functional brain alterations. To investigate alterations in brain functional connectivity properties in patients with OSA, a comparative analysis of global and local topological properties of brain networks was conducted between patients with OSA and healthy controls (HCs), utilizing functional near-infrared spectroscopy (fNIRS) imaging. A total of 148 patients with OSA and 150 healthy individuals were involved. Firstly, quantitative alterations in blood oxygen concentration, changes in functional connectivity, and variations in graph theory-based network topological characteristics were assessed. Then, with Mann-Whitney statistics, this study compared whether there are significant differences in the above characteristics between patients with OSA and HCs. Lastly, the study further examined the correlation between the altered characteristics and the apnea hypopnea index (AHI) using linear regression. Results revealed a higher mean and standard deviation of hemoglobin concentration in the superior temporal gyrus among patients with OSA compared to HCs. Resting-state functional connectivity (RSFC) exhibited a slight increase between the superior temporal gyrus and other specific areas in patients with OSA. Notably, neither patients with OSA nor HCs demonstrated significant small-world network properties. Patients with OSA displayed an elevated clustering coefficient (p < 0.05) and local efficiency (p < 0.05). Additionally, patients with OSA exhibited a tendency towards increased nodal betweenness centrality (p < 0.05) and degree centrality (p < 0.05) in the right supramarginal gyrus, as well as a trend towards higher betweenness centrality (p < 0.05) in the right precentral gyrus. The results of multiple linear regressions indicate that the influence of the AHI on RSFC between the right precentral gyrus and right superior temporal gyrus (p < 0.05), as well as between the right precentral gyrus and right supramarginal gyrus (p < 0.05), are statistically significant. These findings suggest that OSA may compromise functional brain connectivity and network topological properties in affected individuals, serving as a potential neurological mechanism underlying the observed abnormalities in brain function associated with OSA.
Collapse
Affiliation(s)
- Fang Xiao
- School of Information Science and Technology, Fudan University, Shanghai 200437, China; (F.X.); (M.L.); (L.Z.)
| | - Minghui Liu
- School of Information Science and Technology, Fudan University, Shanghai 200437, China; (F.X.); (M.L.); (L.Z.)
| | - Yalin Wang
- School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ligang Zhou
- School of Information Science and Technology, Fudan University, Shanghai 200437, China; (F.X.); (M.L.); (L.Z.)
| | - Jingchun Luo
- Human Phenome Institute, Fudan University, Shanghai 200437, China;
| | - Chen Chen
- Human Phenome Institute, Fudan University, Shanghai 200437, China;
| | - Wei Chen
- School of Information Science and Technology, Fudan University, Shanghai 200437, China; (F.X.); (M.L.); (L.Z.)
- Human Phenome Institute, Fudan University, Shanghai 200437, China;
| |
Collapse
|
12
|
Shi X, Shen G, Zhao Z, Yu J, Chen M, Cai H, Gao J, Zhao L, Yao Z, Hu B. Decreased structural pathways mediating functional connectivity in obstructive sleep apnea. Sleep Med 2024; 116:96-104. [PMID: 38437782 DOI: 10.1016/j.sleep.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a common sleep breathing disorder that is often accompanied by changes in structural connectivity (SC) and functional connectivity (FC). However, the current understanding of the interaction between SC and FC in OSA is still limited. METHODS The aim of this study is to integrate complementary neuroimaging modalities into a unified framework using multi-layer network analysis methods and to reveal their complex interrelationships. We introduce a new graph metric called SC-FC bandwidth, which measures the throughput of SC mediating FC in a multi-layer network. The bandwidth differences between two groups are evaluated using the network-based statistics (NBS) method. Additionally, we traced and analyzed the SC pathways corresponding to the abnormal bandwidth. RESULTS In both the healthy control and patients with OSA, the majority offunctionally synchronized nodes were connected via SC paths of length 2. With the NBS method, we observed significantly lower bandwidth between the right Posterior cingulate gyrus and right Cuneus, bilateral Middle frontal gyrus, bilateral Gyrus rectus in OSA patients. By tracing the high-proportion SC pathways, it was found that OSA patients typically exhibit a decrease in direct SC-FC, SC-FC triangles, and SC-FC quads intra- and inter-networks. CONCLUSION Complex interrelationship changes have been observed between the SC and FC in patients with OSA, which might leads to abnormal information transmission and communication in the brain network.
Collapse
Affiliation(s)
- Xuerong Shi
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Guo Shen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jiandong Yu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Miao Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Jing Gao
- Department of Function, The Second Hospital of Yinchuan, Yinchuan, 750000, China
| | - Lianping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Mingming Z, Wenhong C, Xiaoying M, Yang J, Liu HH, Lingli S, Hongwu M, Zhirong J. Abnormal prefrontal functional network in adult obstructive sleep apnea: A resting-state fNIRS study. J Sleep Res 2024; 33:e14033. [PMID: 37723923 DOI: 10.1111/jsr.14033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
To assess prefrontal brain network abnormality in adults with obstructive sleep apnea (OSA), resting-state functional near infrared spectroscopy (rs-fNIRS) was used to evaluate 52 subjects, including 27 with OSA and 25 healthy controls (HC). The study found that patients with OSA had a decreased connection edge number, particularly in the connection between the right medial frontal cortex (MFG-R) and other right-hemisphere regions. Graph-based analysis also revealed that patients with OSA had a lower global efficiency, local efficiency, and clustering coefficient than the HC group. Additionally, the study found a significant positive correlation between the Montreal Cognitive Assessment (MoCA) score and both the connection edge number and the graph-based indicators in patients with OSA. These preliminary results suggest that prefrontal rs-fNIRS could be a useful tool for objectively and quantitatively assessing cognitive function impairment in patients with OSA.
Collapse
Affiliation(s)
- Zhao Mingming
- Department of Sleep Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nan Ning, China
| | - Chen Wenhong
- Department of Sleep Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nan Ning, China
| | - Mo Xiaoying
- Department of Sleep Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nan Ning, China
| | - Jianrong Yang
- Department of Sleep Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nan Ning, China
| | - Howe Hao Liu
- Physical Therapy Department, Allen College, Waterloo, Lowa, USA
| | - Shi Lingli
- Department of Sleep Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nan Ning, China
| | - Ma Hongwu
- Department of Sleep Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nan Ning, China
| | - Jiang Zhirong
- Department of Sleep Medicine, People's Hospital of Guangxi Zhuang Autonomous Region, Nan Ning, China
| |
Collapse
|
14
|
Huang Y, Shen C, Zhao W, Zhang HT, Li C, Ju C, Ouyang R, Liu J. Multilayer network analysis of dynamic network reconfiguration in patients with moderate-to-severe obstructive sleep apnea and its association with neurocognitive function. Sleep Med 2023; 112:333-341. [PMID: 37956645 DOI: 10.1016/j.sleep.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Brain functional network disruption and neurocognitive dysfunction have been reported in obstructive sleep apnea (OSA) patients. Nevertheless, most research studies static networks, while brain evolution continues dynamically. PURPOSE To investigate the characteristics of dynamical networks in moderate-to-severe OSA patients using multilayer network analysis of dynamic networks and compare their association with neurocognitive function. METHODS Twenty-seven moderate-to-severe OSA patients and twenty-five matched healthy controls (HCs) who completed the examination of the Epworth sleepiness scale (ESS), neurocognitive function, polysomnography, and functional magnetic resonance imaging (fMRI) were prospectively included. The dynamic variations of resting-state functional networks in both groups were described via network switching rate. Switching rates and their correlation with clinical parameters were analyzed. RESULTS At the global level, network switching rates were notably lower in the OSA group than in the HCs group (p = 0.002). More specifically, the differences include the default mode network (DMN), auditory network, and ventral attention network at the subnetwork level, and the right rolandic operculum, left middle temporal gyrus, and right precentral gyrus at the nodal level. Furthermore, these altered switching rates have a close correlation with ESS, sleep parameters, and neurocognitive function. CONCLUSION Patients with moderate-to-severe OSA showed lower network switching rates, especially in the DMN, auditory network, and ventral attention network. The disruption of dynamic functional networks may be a potentially crucial mechanism of neurocognitive dysfunction in moderate-to-severe OSA patients.
Collapse
Affiliation(s)
- Yijie Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chong Shen
- Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Zhao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China; Department of Radiology, The Second Xiangya Hospital of Central South University, China; Clinical Research Center for Medical Imaging in Hunan Province, China; Department of Radiology Quality Control Center, Hunan Province, Changsha, Hunan Province, China
| | - Hui-Ting Zhang
- MR Research Collaboration Team, Siemens Healthineers, Wuhan, China
| | - Chang Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chao Ju
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China; Department of Radiology, The Second Xiangya Hospital of Central South University, China; Clinical Research Center for Medical Imaging in Hunan Province, China; Department of Radiology Quality Control Center, Hunan Province, Changsha, Hunan Province, China.
| |
Collapse
|
15
|
Huang L, Shu Y, Liu X, Li L, Long T, Zeng L, Liu Y, Deng Y, Li H, Peng D. Abnormal dynamic functional connectivity in the hippocampal subregions of patients with untreated moderate-to-severe obstructive sleep apnea. Sleep Med 2023; 112:273-281. [PMID: 37939546 DOI: 10.1016/j.sleep.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVE To investigate the dynamic change characteristics of dynamic functional connectivity (dFC) between the hippocampal subregions (anterior and posterior) and other brain regions in obstructive sleep apnoea (OSA) and its relationship with cognitive function, and to explore whether these characteristics can be used to distinguish OSA from healthy controls (HCs). METHODS Eighty-five patients with newly diagnosed moderate-to-severe OSA and 85 HCs were enrolled. All participants underwent resting-state functional magnetic resonance imaging (fMRI). The difference between dFC values between the hippocampal subregions and other brain regions in OSA patients and HCs was compared using the two-sample t tests. Correlation analyses were used to assess the relationship between dFC, clinical data, and cognitive functions in OSA patients. dFC values from different brain regions were used as classification features to distinguish between the two groups using a support vector machine. RESULTS Compared with HCs, the dFC values between the left anterior hippocampus and right culmen of the cerebellum anterior lobe, right anterior hippocampus and left lingual gyrus, and left posterior hippocampus and left precentral gyrus were significantly lower, and the dFC values between the left posterior hippocampus and precuneus were significantly higher in OSA patients. The dFC values between the left posterior hippocampus and the precuneus of OSA patients were associated with sleep-related indicators and Montreal Cognitive Assessment scores. Support vector machine analysis results showed that dFC values in different brain regions could distinguish OSA patients from HCs. CONCLUSION dFC patterns between the hippocampal subregions and other brain regions were altered in patients with OSA, including the cerebellum, default mode networks, sensorimotor networks, and visual function networks, which is possibly associated with cognitive decline. In addition, the dFC values of different brain regions could effectively distinguish OSA patients from HCs. These findings provide new perspectives on neurocognition in these patients.
Collapse
Affiliation(s)
- Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lifeng Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yumeng Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yingke Deng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China; PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China; PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
16
|
Leconte CE, Ng JW, Manzardo AM, Douglass MM. A Pediatric Patient with Severe Obstructive Sleep Apnea and Comorbid Depression and Substance Abuse. Case Rep Psychiatry 2023; 2023:9985503. [PMID: 38028754 PMCID: PMC10656197 DOI: 10.1155/2023/9985503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Obstructive sleep apnea (OSA), depression, and substance abuse problems share similar symptomatology and have significant interplay. An underlying diagnosis of OSA can often be overlooked in patients with significant psychiatric illness and polysubstance use. Pediatric OSA is often associated with adenotonsillar hypertrophy and frequently requires surgical intervention for resolution of symptoms. Untreated OSA can worsen mental status and encourage polysubstance abuse as a form of self-medication. Proper identification and management of OSA plays an important role in treating psychiatric conditions. We report a 16-year-old with major depressive disorder (MDD), suicide attempts, polysubstance use disorder, and severe OSA admitted to an inpatient psychiatric facility. History included sleep and mood disturbances started at age 12. Patient presented with apnea-hypopnea index greater than 50 and started on bilevel-positive airway pressure (BiPAP) prior to admission. Management of OSA led to significant improvement of MDD, insomnia, and polysubstance abuse. OSA can often be overlooked in patients with MDD or substance abuse. Among adolescent patients with poorly managed psychiatric conditions, significant sleep disturbances, and polysubstance abuse, providers should maintain a high degree of suspicion for OSA, as its proper management will aid in the management of the other conditions.
Collapse
Affiliation(s)
- Caitlin E. Leconte
- University of Kansas School of Medicine, 2060 W 39th Avenue, Kansas City, KS 66103, USA
| | - Joshua W. Ng
- University of Kansas School of Medicine-Wichita, 1010 N Kansas Street, Wichita, KS 67214, USA
| | - Ann M. Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66103, USA
| | - Mitchell M. Douglass
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66103, USA
| |
Collapse
|
17
|
Ghaderi S, Mohammadi S, Mohammadi M. Obstructive sleep apnea and attention deficits: A systematic review of magnetic resonance imaging biomarkers and neuropsychological assessments. Brain Behav 2023; 13:e3262. [PMID: 37743582 PMCID: PMC10636416 DOI: 10.1002/brb3.3262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Obstructive sleep apnea (OSA) is a common sleep disorder that causes intermittent hypoxia and sleep fragmentation, leading to attention impairment and other cognitive deficits. Magnetic resonance imaging (MRI) is a powerful modality that can reveal the structural and functional brain alterations associated with attention impairment in OSA patients. The objective of this systematic review is to identify and synthesize the evidence on MRI biomarkers and neuropsychological assessments of attention deficits in OSA patients. METHODS We searched the Scopus and PubMed databases for studies that used MRI to measure biomarkers related to attention alteration in OSA patients and reported qualitative and quantitative data on the association between MRI biomarkers and attention outcomes. We also included studies that found an association between neuropsychological assessments and MRI findings in OSA patients with attention deficits. RESULTS We included 19 studies that met our inclusion criteria and extracted the relevant data from each study. We categorized the studies into three groups based on the MRI modality and the cognitive domain they used: structural and diffusion tensor imaging MRI findings, functional, perfusion, and metabolic MRI findings, and neuropsychological assessment findings. CONCLUSIONS We found that OSA is associated with structural, functional, and metabolic brain alterations in multiple regions and networks that are involved in attention processing. Treatment with continuous positive airway pressure can partially reverse some of the brain changes and improve cognitive function in some domains and in some studies. This review suggests that MRI techniques and neuropsychological assessments can be useful tools for monitoring the progression and response to treatment of OSA patients.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction StudiesSchool of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
| | - Sana Mohammadi
- Department of Medical SciencesSchool of MedicineIran University of Medical SciencesTehranIran
| | - Mahdi Mohammadi
- Department of Medical Physics and Biomedical Engineering, School of MedicineTehran University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Gao J, Cao J, Chen J, Wu D, Luo K, Shen G, Fang Y, Zhang W, Huang G, Su X, Zhao L. Brain morphology and functional connectivity alterations in patients with severe obstructive sleep apnea. Sleep Med 2023; 111:62-69. [PMID: 37722341 DOI: 10.1016/j.sleep.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND It has been demonstrated that widespread structural and functional brain alterations influence the development of cognitive impairment in patients with obstructive sleep apnea (OSA). However, the literature has limited evidence regarding the neuropathophysiological mechanisms behind these impairments. This research aimed to investigate brain morphologic and functional connectivity (FC) abnormalities related to neurocognitive function in OSA. METHODS Fifty treatment-naïve males, newly diagnosed patients with severe OSA, and 50 well-matched healthy controls (HCs) were enrolled prospectively. All subjects underwent an MRI scan, cognitive psychological and sleep scale assessment. The differences of brain morphological and seed-based FC between the two groups were compared. The correlation analysis and receiver operating characteristic curve were performed for further analysis. RESULTS Compared with HCs, the right brainstem, left dorsal-lateral superior frontal gyrus (SFGdor), and superior temporal gyrus (STG) exhibited atrophy in the OSA group. In addition, FC between the left SFGdor and the right postcentral gyrus (PoCG) was increased, which was positively correlated with disease duration (r = 0.312, FDR-corrected P = 0.027). The Jacobian values of the brainstem were negatively correlated with MoCA and recall scores (r = -0.449, FDR-corrected P = 0.0025; r = -0.416, FDR-corrected P = 0.005). Furthermore, the Jacobian values of the left SFGdor demonstrated a relatively high diagnostic performance (sensitivity: 86%, specificity: 56%, AUC: 0.740, 95% CI: 0.643-0.836, P < 0.0001). CONCLUSIONS Structural atrophy in brainstem and frontotemporal lobe and altered FC may be the neurobiological hallmark of brain impairment in OSA. Notably, brainstem atrophy has been associated with cognitive impairment, which may provide new insights into understanding the neuropathophysiological mechanisms of cognitive impairment in OSA patients.
Collapse
Affiliation(s)
- Jing Gao
- The First Clinical Medical College of Gansu University of Chinese Medicine(Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Jiancang Cao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Jieyu Chen
- The First Clinical Medical College of Gansu University of Chinese Medicine(Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Dan Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine(Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Ke Luo
- The First Clinical Medical College of Gansu University of Chinese Medicine(Gansu Provincial Hospital), Lanzhou, 730000, China
| | - Guo Shen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanyan Fang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Wenwen Zhang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaoyan Su
- Sleep Medicine Center, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Lianping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
19
|
Huang L, Li H, Shu Y, Li K, Xie W, Zeng Y, Long T, Zeng L, Liu X, Peng D. Changes in Functional Connectivity of Hippocampal Subregions in Patients with Obstructive Sleep Apnea after Six Months of Continuous Positive Airway Pressure Treatment. Brain Sci 2023; 13:brainsci13050838. [PMID: 37239310 DOI: 10.3390/brainsci13050838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown that the structural and functional impairments of hippocampal subregions in patients with obstructive sleep apnea (OSA) are related to cognitive impairment. Continuous positive airway pressure (CPAP) treatment can improve the clinical symptoms of OSA. Therefore, this study aimed to investigate functional connectivity (FC) changes in hippocampal subregions of patients with OSA after six months of CPAP treatment (post-CPAP) and its relationship with neurocognitive function. We collected and analyzed baseline (pre-CPAP) and post-CPAP data from 20 patients with OSA, including sleep monitoring, clinical evaluation, and resting-state functional magnetic resonance imaging. The results showed that compared with pre-CPAP OSA patients, the FC between the right anterior hippocampal gyrus and multiple brain regions, and between the left anterior hippocampal gyrus and posterior central gyrus were reduced in post-CPAP OSA patients. By contrast, the FC between the left middle hippocampus and the left precentral gyrus was increased. The changes in FC in these brain regions were closely related to cognitive dysfunction. Therefore, our findings suggest that CPAP treatment can effectively change the FC patterns of hippocampal subregions in patients with OSA, facilitating a better understanding of the neural mechanisms of cognitive function improvement, and emphasizing the importance of early diagnosis and timely treatment of OSA.
Collapse
Affiliation(s)
- Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
20
|
Long T, Li H, Shu Y, Li K, Xie W, Zeng Y, Huang L, Zeng L, Liu X, Peng D. Functional Connectivity Changes in the Insular Subregions of Patients with Obstructive Sleep Apnea after 6 Months of Continuous Positive Airway Pressure Treatment. Neural Plast 2023; 2023:5598047. [PMID: 36865671 PMCID: PMC9974286 DOI: 10.1155/2023/5598047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
This study was aimed at investigating the functional connectivity (FC) changes between the insular subregions and whole brain in patients with obstructive sleep apnea (OSA) after 6 months of continuous positive airway pressure (CPAP) treatment and at exploring the relationship between resting-state FC changes and cognitive impairment in OSA patients. Data from 15 patients with OSA before and after 6 months of CPAP treatment were included in this study. The FC between the insular subregions and whole brain was compared between baseline and after 6 months of CPAP treatment in OSA. After 6 months of treatment, OSA patients had increased FC from the right ventral anterior insula to the bilateral superior frontal gyrus and bilateral middle frontal gyrus and increased FC from the left posterior insula to the left middle temporal gyrus and left inferior temporal gyrus. Hyperconnectivity was found from the right posterior insula to the right middle temporal gyrus, bilateral precuneus, and bilateral posterior cingulate cortex, which mainly involved the default mode network. There are changes in functional connectivity patterns between the insular subregions and whole brain in OSA patients after 6 months of CPAP treatment. These changes provide a better understanding of the neuroimaging mechanisms underlying the improvement in cognitive function and emotional impairment in OSA patients and can be used as potential biomarkers for clinical CPAP treatment.
Collapse
Affiliation(s)
- Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
- PET Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
- PET Center, The First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
21
|
Byun JI, Jahng GH, Ryu CW, Park S, Lee KH, Hong SO, Jung KY, Shin WC. Altered intrinsic brain functional network dynamics in moderate-to-severe obstructive sleep apnea. Sleep Med 2023; 101:550-557. [PMID: 36577226 DOI: 10.1016/j.sleep.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Obstructive sleep apnea (OSA) can affect temporal fluctuations in brain activity during rest. Dynamic functional connectivity (dFC) captures the fluctuations in FC during the resting state. This study aimed to investigate differences in dFC between moderate-to-severe OSA patients and healthy controls using resting-state functional magnetic resonance imaging (fMRI) and sliding-window analysis. METHODS Thirty-seven consecutive patients with moderate-to-severe OSA and 16 age- and sex-matched controls underwent resting-state fMRI in the morning following overnight polysomnography. The dynamics of aberrant FC between the groups and the correlation between the dynamics and clinical variables were evaluated. RESULTS dFC analysis revealed two distinct connectivity states: hypoconnected (State I) and hyperconnected (State II). In OSA patients, State I occurred 34% more often than in the controls and the occurrence of State II was proportionally reduced. The time in State I positively correlated with the Pittsburg Sleep Quality Index score in the OSA patients. CONCLUSIONS This study showed dFC alterations in moderate-to-severe OSA patients, which may serve as a novel physiological biomarker for OSA.
Collapse
Affiliation(s)
- Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea.
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Kun Hee Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Sung Ok Hong
- Department of Oral and Maxillofacial Surgery, Kyung Hee University College of Dentistry, Kyung Hee University Hospital at Gangdong, Seoul, Republic of Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won Chul Shin
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea; Department of Medicine, AgeTech-service Convergence Major, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Abnormal dynamic functional network connectivity in first-episode, drug-naïve patients with major depressive disorder. J Affect Disord 2022; 319:336-343. [PMID: 36084757 DOI: 10.1016/j.jad.2022.08.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/25/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Dynamic functional network connectivity (dFNC) could capture temporal features of spontaneous brain activity during MRI scanning, and it might be a powerful tool to examine functional brain network alters in major depressive disorder (MDD). Therefore, this study investigated the changes in temporal properties of dFNC of first-episode, drug-naïve patients with MDD. A total of 48 first-episode, drug-naïve MDD patients and 46 age- and gender-matched healthy controls were recruited in this study. Sliding windows were implied to construct dFNC. We assessed the relationships between altered dFNC temporal properties and depressive symptoms. Receiver operating characteristic (ROC) curve analyses were used to examine the diagnostic performance of these altered temporal properties. The results showed that patients with MDD have more occurrences and spent more time in a weak connection state, but with fewer occurrences and shorter dwell time in a strong connection state. Importantly, the fractional time and mean dwell time of state 2 was negatively correlated with Hamilton Depression Rating Scale (HDRS) scores. ROC curve analysis demonstrated that these temporal properties have great identified power including the fractional time and mean dwell time in state 2, and the AUC is 0.872, 0.837, respectively. The AUC of the combination of fractional time and mean dwell time in state 2 with age, gender is 0.881. Our results indicated the temporal properties of dFNC are altered in first-episode, drug-naïve patients with MDD, and these changes' properties could serve as a potential biomarker in MDD.
Collapse
|
23
|
He Y, Shen J, Wang X, Wu Q, Liu J, Ji Y. Preliminary study on brain resting-state networks and cognitive impairments of patients with obstructive sleep apnea-hypopnea syndrome. BMC Neurol 2022; 22:456. [PMID: 36476321 PMCID: PMC9728000 DOI: 10.1186/s12883-022-02991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To investigate functional changes in brain resting-state networks (RSNs) in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS) and their correlations with sleep breathing disorders and neurocognitive performance. METHODS In this study, 18 OSAHS patients and 18 matched healthy controls underwent neurocognitive assessment and magnetic resonance imaging (MRI). Group-level independent component analysis (ICA) and statistical analyses were used to explore between-group differences in RSNs and the relationship between functional changes in RSNs, sleep breathing disorders and neurocognitive performance. RESULTS The OSAHS patients performed worse on neuropsychological tests than the healthy controls. Eight RSNs were identified, and between-group analyses showed that OSAHS patients displayed significantly decreased functional connectivity in the bilateral posterior cingulate gyri (PCC) within the default mode network (DMN), the right middle frontal gyrus (MFG) within the dorsal attention network (DAN), and the left superior temporal gyrus (STG) within the ventral attention network (VAN), and increased functional connectivity in the right superior frontal gyrus (SFG) within the salience network (SN). Further correlation analyses revealed that the average ICA z-scores in the bilateral PCC were correlated with sleep breathing disorders. CONCLUSIONS Our findings demonstrate that the DMN, SN, DAN, and VAN are impaired during the resting state and are associated with decreased functionally distinct aspects of cognition in patients with OSAHS. Moreover, the intermittent hypoxia and sleep fragmentation caused by OSAHS are likely to be the main influencing factors.
Collapse
Affiliation(s)
- Yaqing He
- Department of Radiology, Suzhou Ninth People’s Hospital, Suzhou, China
| | - Junkang Shen
- grid.452666.50000 0004 1762 8363Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Wang
- Department of Respiratory, Suzhou Ninth People’s Hospital, Suzhou, China
| | - Qiaozhen Wu
- Department of Respiratory, Suzhou Ninth People’s Hospital, Suzhou, China
| | - Jiacheng Liu
- grid.452290.80000 0004 1760 6316Department of Radiology, The Affiliated Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Yiding Ji
- Department of Radiology, Suzhou Ninth People’s Hospital, Suzhou, China
| |
Collapse
|
24
|
Shu Y, Liu X, Yu P, Li H, Duan W, Wei Z, Li K, Xie W, Zeng Y, Peng D. Inherent regional brain activity changes in male obstructive sleep apnea with mild cognitive impairment: A resting-state magnetic resonance study. Front Aging Neurosci 2022; 14:1022628. [PMID: 36389072 PMCID: PMC9659950 DOI: 10.3389/fnagi.2022.1022628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/13/2022] [Indexed: 04/11/2025] Open
Abstract
Obstructive sleep apnea (OSA) is the most common sleep disorder worldwide. Previous studies have shown that OSA patients are often accompanied by cognitive function loss, and the underlying neurophysiological mechanism is still unclear. This study aimed to determine whether there are differences in regional homogeneity (Reho) and functional connectivity (FC) across the brain between OSA patients with MCI (OSA-MCI) and those without MCI (OSA-nMCI) and whether such differences can be used to distinguish the two groups. Resting state magnetic resonance data were collected from 48 OSA-MCI patients and 47 OSA-nMCI patients. The brain regions with significant differences in Reho and FC between the two groups were identified, and the Reho and FC features were combined with machine learning methods for classification. Compared with OSA-nMCI patients, OSA-MCI patients showed significantly lower Reho in bilateral lingual gyrus and left superior temporal gyrus. OSA-MCI patients also showed significantly lower FC between the bilateral lingual gyrus and bilateral cuneus, left superior temporal gyrus and left middle temporal gyrus, middle frontal gyrus, and bilateral posterior cingulate/calcarine/cerebellar anterior lobe. Based on Reho and FC features, logistic regression classification accuracy was 0.87; sensitivity, 0.70; specificity, 0.89; and area under the curve, 0.85. Correlation analysis showed that MoCA scale score in OSA patients was significant positive correlation sleep efficiency and negatively correlation with neck circumference. In conclusion, our results showed that the OSA-MCI group showed decreased Reho and FC in specific brain regions compared with the OSA-nMCI group, which may help to understand the underlying neuroimaging mechanism of OSA leading to cognitive dysfunction and may serve as a potential biomarker to distinguish whether OSA is accompanied by cognitive impairment.
Collapse
Affiliation(s)
- Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xiang Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Pengfei Yu
- Big Data Center, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
- Department of PET Center, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wenfeng Duan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhipeng Wei
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kunyao Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wei Xie
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yaping Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
- Department of PET Center, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
25
|
Li H, Li L, Li K, Li P, Xie W, Zeng Y, Kong L, Long T, Huang L, Liu X, Shu Y, Zeng L, Peng D. Abnormal dynamic functional network connectivity in male obstructive sleep apnea with mild cognitive impairment: A data-driven functional magnetic resonance imaging study. Front Aging Neurosci 2022; 14:977917. [DOI: 10.3389/fnagi.2022.977917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe purpose of this study was to investigate the dynamic functional network connectivity (FNC) and its relationship with cognitive function in obstructive sleep apnea (OSA) patients from normal cognition (OSA-NC) to mild cognitive impairment (OSA-MCI).Materials and methodsEighty-two male OSA patients and 48 male healthy controls (HC) were included in this study. OSA patients were classified to OSA-MCI (n = 41) and OSA-NC (n = 41) based on cognitive assessments. The independent component analysis was used to determine resting-state functional networks. Then, a sliding-window approach was used to construct the dynamic FNC, and differences in temporal properties of dynamic FNC and functional connectivity strength were compared between OSA patients and the HC. Furthermore, the relationship between temporal properties and clinical assessments were analyzed in OSA patients.ResultsTwo different connectivity states were identified, namely, State I with stronger connectivity and lower frequency, and State II with lower connectivity and relatively higher frequency. Compared to HC, OSA patients had a longer mean dwell time and higher fractional window in stronger connectivity State I, and opposite result were found in State II, which was mainly reflected in OSA-MCI patients. The number of transitions was an increasing trend and positively correlated with cognitive assessment in OSA-MCI patients. Compared with HC, OSA patients showed extensive abnormal functional connectivity in stronger connected State I and less reduced functional connectivity in lower connected State II, which were mainly located in the salience network, default mode network, and executive control network.ConclusionOur study found that OSA patients showed abnormal dynamic FNC properties, which was a continuous trend from HC, and OSA-NC to OSA-MCI, and OSA patients showed abnormal dynamic functional connectivity strength. The number of transformations was associated with cognitive impairment in OSA-MCI patients, which may provide new insights into the neural mechanisms in OSA patients.
Collapse
|
26
|
Li K, Shu Y, Liu X, Xie W, Li P, Kong L, Yu P, Zeng Y, Huang L, Long T, Zeng L, Li H, Peng D. Dynamic regional homogeneity alterations and cognitive impairment in patients with moderate and severe obstructive sleep apnea. Front Neurosci 2022; 16:940721. [PMID: 36090274 PMCID: PMC9459312 DOI: 10.3389/fnins.2022.940721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background and purposePrevious studies have found that abnormal local spontaneous brain activity in patients with obstructive sleep apnea (OSA) was associated with cognitive impairment, and dynamic functional connections can capture the time changes of functional connections during magnetic resonance imaging acquisition. The purpose of this study was to investigate the dynamic characteristics of regional brain connectivity and its relationship with cognitive function in patients with OSA and to explore whether the dynamic changes can be used to distinguish them from healthy controls (HCs).MethodsSeventy-nine moderate and severe male OSA patients without any treatment and 84 HCs with similar age and education were recruited, and clinical data and resting functional magnetic resonance imaging data were collected. The dynamic regional homogeneity (dReHo) was calculated using a sliding window technique, and a double-sample t-test was used to test the difference in the dReHo map between OSA patients and HCs. We explored the relationship between dReHo and clinical and cognitive function in OSA patients using Pearson correlation analysis. A support vector machine was used to classify the OSA patients and HCs based on abnormal dReHo.ResultCompared with HCs, OSA patients exhibited higher dReHo values in the right medial frontal gyrus and significantly lower dReHo values in the right putamen, right superior temporal gyrus, right cingulate gyrus, left insula and left precuneus. The correlation analysis showed that the abnormal dReHo values in multiple brain regions in patients with OSA were significantly correlated with nadir oxygen saturation, the oxygen depletion index, sleep period time, and Montreal cognitive assessment score. The support vector machine classification accuracy based on the dReHo difference in brain regions was 81.60%, precision was 81.01%, sensitivity was 81.01%, specificity was 82.14%, and area under the curve was 0.89.ConclusionThe results of this study suggested that there was abnormal dynamic regional spontaneous brain activity in patients with OSA, which was related to clinical and cognitive evaluation and can be used to distinguish OSA patients from HCs. The dReHo is a potential objective neuroimaging marker for patients with OSA that can further the understanding of the neuropathological mechanism of patients with OSA.
Collapse
Affiliation(s)
- Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panmei Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linghong Kong
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengfei Yu
- Science and Technology Division, Big Data Research Center, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Haijun Li,
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Dechang Peng,
| |
Collapse
|
27
|
Liu X, Shu Y, Yu P, Li H, Duan W, Wei Z, Li K, Xie W, Zeng Y, Peng D. Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: A machine learning analysis. Front Neurol 2022; 13:1005650. [PMID: 36090863 PMCID: PMC9453022 DOI: 10.3389/fneur.2022.1005650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we aimed to use voxel-level degree centrality (DC) features in combination with machine learning methods to distinguish obstructive sleep apnea (OSA) patients with and without mild cognitive impairment (MCI). Ninety-nine OSA patients were recruited for rs-MRI scanning, including 51 MCI patients and 48 participants with no mild cognitive impairment. Based on the Automated Anatomical Labeling (AAL) brain atlas, the DC features of all participants were calculated and extracted. Ten DC features were screened out by deleting variables with high pin-correlation and minimum absolute contraction and performing selective operator lasso regression. Finally, three machine learning methods were used to establish classification models. The support vector machine method had the best classification efficiency (AUC = 0.78), followed by random forest (AUC = 0.71) and logistic regression (AUC = 0.77). These findings demonstrate an effective machine learning approach for differentiating OSA patients with and without MCI and provide potential neuroimaging evidence for cognitive impairment caused by OSA.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yongqiang Shu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Pengfei Yu
- Big Data Center, the Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Haijun Li
- Department of PET Center, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wenfeng Duan
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhipeng Wei
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kunyao Li
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wei Xie
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yaping Zeng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Dechang Peng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
- *Correspondence: Dechang Peng
| |
Collapse
|
28
|
Sun Y, Yang SX, Xie M, Zou K, Tang X. Aberrant amplitude of low-frequency fluctuations in different frequency bands and changes after one-night positive airway pressure treatment in severe obstructive sleep apnea. Front Neurol 2022; 13:985321. [PMID: 36071907 PMCID: PMC9441702 DOI: 10.3389/fneur.2022.985321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThis study was aimed to investigate the characteristics of the amplitude of low-frequency fluctuation (ALFF) at specific frequencies in severe obstructive sleep apnea (OSA) patients. A comparison was made between pre-CPAP treatment and one night after continuous positive airway pressure (CPAP) treatment.Methods30 severe OSA patients and 19 healthy controls (HC) were recruited. The ALFF method was used to assess the local features of spontaneous brain activity and calculated at different bands (slow-5 and slow-4). A correlation analysis was performed to evaluate the relationship between the changes of the ALFF and polysomnography data.ResultsCompared with HC, in slow-5 frequency band, OSA patients showed significantly decreased ALFF in the left inferior temporal gyrus, and significantly increased ALFF in the left middle frontal gyrus, left inferior frontal gyrus, triangular part, right superior frontal gyrus, dorsolateral and right middle temporal gyrus. In slow-4 frequency, there was significantly decreased ALFF in the right inferior temporal gyrus, and significantly increased ALFF in the left precuneus, right posterior cingulate gyrus and right median cingulate besides the slow-5 difference band showed. Compared with pre-CPAP, we found that after CPAP treatment, ALFF signals in the left insula in slow-5 and left caudate in slow-4 increased, but the calcarine in slow-4 significantly reduced. Correlation analysis showed that the left angular slow-4 band change was positively correlated with the slow wave sleep change (r = 0.4933, p = 0.0056). The left cerebellum 6 slow-5 band change was positively correlated with the duration of the REM sleep change (r = 0.4563, p = 0.0113), and the left cerebellum 6 slow-4 band change was also positively correlated with the mean blood oxygen change in the REM (r = 0.4591, p = 0.0107) and NREM sleep (r = 0.4492, p = 0.0128).ConclusionWe found that the use of slow-4 was more specific in OSA studies. These results suggested that the severe OSA patients have frequency-related abnormal spontaneous neural activity, which may contribute to a better understanding of the pathological basis of OSA-related diseases and provide a potential therapeutic target for OSA patients.
Collapse
Affiliation(s)
- Yuanfeng Sun
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Sophine Xin Yang
- Business Administration of Business School, Sichuan University, Chengdu, China
| | - Min Xie
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Zou
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ke Zou
| | - Xiangdong Tang
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
- Xiangdong Tang
| |
Collapse
|
29
|
Hou A, Pang X, Zhang X, Peng Y, Li D, Wang H, Zhang Q, Liang M, Gao F. Widespread aberrant functional connectivity throughout the whole brain in obstructive sleep apnea. Front Neurosci 2022; 16:920765. [PMID: 35979339 PMCID: PMC9377518 DOI: 10.3389/fnins.2022.920765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Obstructive sleep apnea (OSA) is a sleep-related breathing disorder with high prevalence and is associated with cognitive impairment. Previous neuroimaging studies have reported abnormal brain functional connectivity (FC) in patients with OSA that might contribute to their neurocognitive impairments. However, it is unclear whether patients with OSA have a characteristic pattern of FC changes that can serve as a neuroimaging biomarker for identifying OSA. Methods A total of 21 patients with OSA and 21 healthy controls (HCs) were included in this study and scanned using resting-state functional magnetic resonance imaging (fMRI). The automated anatomical labeling (AAL) atlas was used to divide the cerebrum into 90 regions, and FC between each pair of regions was calculated. Univariate analyses were then performed to detect abnormal FCs in patients with OSA compared with controls, and multivariate pattern analyses (MVPAs) were applied to classify between patients with OSA and controls. Results The univariate comparisons did not detect any significantly altered FC. However, the MVPA showed a successful classification between patients with OSA and controls with an accuracy of 83.33% (p = 0.0001). Furthermore, the selected FCs were associated with nearly all brain regions and widely distributed in the whole brain, both within and between, many resting-state functional networks. Among these selected FCs, 3 were significantly correlated with the apnea-hypopnea index (AHI) and 2 were significantly correlated with the percentage of time with the saturation of oxygen (SaO2) below 90% of the total sleep time (%TST < 90%). Conclusion There existed widespread abnormal FCs in the whole brain in patients with OSA. This aberrant FC pattern has the potential to serve as a neurological biomarker of OSA, highlighting its importance for understanding the complex neural mechanism underlying OSA and its cognitive impairment.
Collapse
Affiliation(s)
- Ailin Hou
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Xueming Pang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Xi Zhang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Yanmin Peng
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Dongyue Li
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - He Wang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
- *Correspondence: Quan Zhang,
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
- Meng Liang,
| | - Feng Gao
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
- Feng Gao,
| |
Collapse
|
30
|
Liu X, Chen L, Duan W, Li H, Kong L, Shu Y, Li P, Li K, Xie W, Zeng Y, Peng D. Abnormal Functional Connectivity of Hippocampal Subdivisions in Obstructive Sleep Apnea: A Resting-State Functional Magnetic Resonance Imaging Study. Front Neurosci 2022; 16:850940. [PMID: 35546892 PMCID: PMC9082679 DOI: 10.3389/fnins.2022.850940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/14/2022] [Indexed: 01/16/2023] Open
Abstract
The hippocampus is involved in various cognitive function, including memory. Hippocampal structural and functional abnormalities have been observed in patients with obstructive sleep apnoea (OSA), but the functional connectivity (FC) patterns among hippocampal subdivisions in OSA patients remain unclear. The purpose of this study was to investigate the changes in FC between hippocampal subdivisions and their relationship with neurocognitive function in male patients with OSA. Resting-state fMRI were obtained from 46 male patients with untreated severe OSA and 46 male good sleepers. The hippocampus was divided into anterior, middle, and posterior parts, and the differences in FC between hippocampal subdivisions and other brain regions were determined. Correlation analysis was used to explore the relationships between abnormal FC of hippocampal subdivisions and clinical characteristics in patients with OSA. Our results revealed increased FC in the OSA group between the left anterior hippocampus and left middle temporal gyrus; between the left middle hippocampus and the left inferior frontal gyrus, right anterior central gyrus, and left anterior central gyrus; between the left posterior hippocampus and right middle frontal gyrus; between the right middle hippocampus and left inferior frontal gyrus; and between the right posterior hippocampus and left middle frontal gyrus. These FC abnormalities predominantly manifested in the sensorimotor network, fronto-parietal network, and semantic/default mode network, which are closely related to the neurocognitive impairment observed in OSA patients. This study advances our understanding of the potential pathophysiological mechanism of neurocognitive dysfunction in OSA.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liting Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenfeng Duan
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linghong Kong
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panmei Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kunyao Li
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xie
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaping Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dechang Peng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Lee MH, Sin S, Lee S, Park H, Wagshul ME, Zimmerman ME, Arens R. Altered cortical structure network in children with obstructive sleep apnea. Sleep 2022; 45:zsac030. [PMID: 35554588 PMCID: PMC9113011 DOI: 10.1093/sleep/zsac030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) is characterized by recurrent airway collapse during sleep, resulting in intermittent hypoxia and sleep fragmentation that may contribute to alternations in brain structure and function. We hypothesized that OSA in children reorganizes and alters cortical structure, which can cause changes in cortical thickness correlation between brain regions across subjects. METHODS We constructed cortical structure networks based on cortical thickness measurements from 41 controls (age 15.54 ± 1.66 years, male 19) and 50 children with OSA (age 15.32 ± 1.65 years, male 29). The global (clustering coefficient [CC], path length, and small-worldness) and regional (nodal betweenness centrality, NBC) network properties and hub region distributions were examined between groups. RESULTS We found increased CCs in OSA compared to controls across a wide range of network densities (p-value < .05) and lower NBC area under the curve in left caudal anterior cingulate, left caudal middle frontal, left fusiform, left transverse temporal, right pars opercularis, and right precentral gyri (p-value < .05). In addition, while most of the hub regions were the same between groups, the OSA group had fewer hub regions and a different hub distribution compared to controls. CONCLUSIONS Our findings suggest that children with OSA exhibit altered global and regional network characteristics compared to healthy controls. Our approach to the investigation of cortical structure in children with OSA could prove useful in understanding the etiology of OSA-related brain functional disorders.
Collapse
Affiliation(s)
- Min-Hee Lee
- Institute of Human Genomic Study, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Sanghun Sin
- Division of Respiratory and Sleep Medicine, Children’s Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics and Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, USA
| | - Hyunbin Park
- Division of Respiratory and Sleep Medicine, Children’s Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mark E Wagshul
- Department of Radiology, Albert Einstein College of Medicine, Gruss MRRC, Bronx, NY, USA
| | | | - Raanan Arens
- Division of Respiratory and Sleep Medicine, Children’s Hospital at Montefiore/Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
32
|
Gouveris H, Koirala N, Anwar AR, Ding H, Ludwig K, Huppertz T, Matthias C, Groppa S, Muthuraman M. Reduced Cross-Frequency Coupling and Daytime Sleepiness in Obstructive Sleep Apnea Patients. BIOLOGY 2022; 11:biology11050700. [PMID: 35625429 PMCID: PMC9138271 DOI: 10.3390/biology11050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/10/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Obstructive sleep apnea (OSA) is associated with sleep-stage- and respiratory-event-specific sensorimotor cortico-muscular disconnection. The modulation of phase−amplitude cross-frequency coupling (PACFC) may influence information processing throughout the brain. We investigated whether sleep-stage-specific PACFC is impaired at the sensorimotor areas in OSA patients. C3 and C4 electrode EEG polysomnography recordings of 170 participants were evaluated. Different frequency band combinations were used to compute CFC modulation index (MI) to assess if MI differs between OSA and non-significant OSA patients in distinct sleep stages. We tested if the CFC-MI could predict daytime sleepiness in OSA. Theta−gamma CFC-MI at cortical sensorimotor areas was significantly reduced during all sleep stages; the delta−alpha CFC-MI was significantly reduced during REM and N1 while increasing during N2 in patients with respiratory disturbance index (RDI) > 15/h compared to those with RDI ≤ 15/h. A sleep stage classification using MI values was achieved in both patient groups. Theta−gamma MI during N2 and N3 could predict RDI and Epworth Sleepiness Scale, while delta−alpha MI during REM predicted RDI. This increase in disconnection at the cortical sensorimotor areas with increasing respiratory distress during sleep supports a cortical motor dysfunction in OSA patients. The MI provides an objective marker to quantify subjective sleepiness and respiratory distress in OSA.
Collapse
Affiliation(s)
- Haralampos Gouveris
- Sleep Medicine Center, Department of Otolaryngology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.L.); (T.H.); (C.M.)
- Correspondence: ; Tel.: +49-6131-177361
| | - Nabin Koirala
- Haskins Laboratories, Yale University, New Haven, CT 06511, USA;
| | - Abdul Rauf Anwar
- Department of Biomedical Engineering, University of Engineering and Technology (New Campus), Lahore 54890, Pakistan;
| | - Hao Ding
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (H.D.); (S.G.); (M.M.)
| | - Katharina Ludwig
- Sleep Medicine Center, Department of Otolaryngology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.L.); (T.H.); (C.M.)
| | - Tilman Huppertz
- Sleep Medicine Center, Department of Otolaryngology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.L.); (T.H.); (C.M.)
| | - Christoph Matthias
- Sleep Medicine Center, Department of Otolaryngology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.L.); (T.H.); (C.M.)
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (H.D.); (S.G.); (M.M.)
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (H.D.); (S.G.); (M.M.)
| |
Collapse
|
33
|
Goldie C, Stork B, Bernhardt K, Gaydos SJ, Kelley AM. Obstructive Sleep Apnea Among Army Aircrew. Aerosp Med Hum Perform 2022; 93:415-420. [PMID: 35551721 DOI: 10.3357/amhp.5990.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: Obstructive sleep apnea (OSA) is a condition characterized by disrupted sleep and excessive daytime fatigue. Associated cognitive and psychomotor decrements pose a threat to aviators' performance and flight safety. Additionally, the longer term health effects associated with the disease can jeopardize an aviator's career and negatively impact operational outputs. This study reviews OSA prevalence, related comorbid conditions in Army aviators, and analyzes the aeromedical dispositions of affected individuals.METHODS: The U.S. Army Aeromedical Electronic Resource Office (AERO) database was interrogated for all cases of OSA from June 2005 through June 2015 using ICD-9 code 327.23. Prevalence rates for OSA and other comorbid conditions were then calculated using the total number of aviators in the AERO database.RESULTS: A total of 663 unique instances of OSA were found among the aviator population (N = 24,568), giving a point prevalence of 2.69%. Four cases affected women. Mean age of initial presentation was 42.62 yr and mean Body Mass Index was 28.69. The top five most prevalent comorbid conditions were hypertension, lumbago, degeneration of a lumbar or lumbosacral intervertebral disc, PTSD, and testicular hypofunction.DISCUSSION: Prevalence of OSA among aviators is lower than the general population but is not uncommon. A positive diagnosis requires a waiver or can result in suspension if not managed effectively, potentially leading to a reduction in aviator numbers. Aggressive health promotion and robust medical surveillance and aeromedical disposition management by the aeromedical community is essential to reduce OSA numbers, maintain aviator health, and maximize flight safety.Goldie C, Stork B, Bernhardt K, Gaydos SJ, Kelley AM. Obstructive sleep apnea among army aircrew. Aerosp Med Hum Perform. 2022; 93(5):415-420.
Collapse
|
34
|
Changes in the Intranetwork and Internetwork Connectivity of the Default Mode Network and Olfactory Network in Patients with COVID-19 and Olfactory Dysfunction. Brain Sci 2022; 12:brainsci12040511. [PMID: 35448042 PMCID: PMC9029634 DOI: 10.3390/brainsci12040511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022] Open
Abstract
Olfactory dysfunction (OD) is a common symptom in coronavirus disease 2019 (COVID-19) patients. Moreover, many neurological manifestations have been reported in these patients, suggesting central nervous system involvement. The default mode network (DMN) is closely associated with olfactory processing. In this study, we investigated the internetwork and intranetwork connectivity of the DMN and the olfactory network (ON) in 13 healthy controls and 22 patients presenting with COVID-19-related OD using independent component analysis and region of interest functional magnetic resonance imaging (fMRI) analysis. There was a significant correlation between the butanol threshold test (BTT) and the intranetwork connectivity in ON. Meanwhile, the COVID-19 patients with OD showed significantly higher intranetwork connectivity in the DMN, as well as higher internetwork connectivity between ON and DMN. However, no significant difference was found between groups in the intranetwork connectivity within ON. We postulate that higher intranetwork functional connectivities compensate for the deficits in olfactory processing and general well-being in COVID-19 patients. Nevertheless, the compensation process in the ON may not be obvious at this stage. Our results suggest that resting-state fMRI is a potentially valuable tool to evaluate neurosensory dysfunction in COVID-19 patients.
Collapse
|
35
|
Kong L, Li H, Shu Y, Liu X, Li P, Li K, Xie W, Zeng Y, Peng D. Aberrant Resting-State Functional Brain Connectivity of Insular Subregions in Obstructive Sleep Apnea. Front Neurosci 2022; 15:765775. [PMID: 35126035 PMCID: PMC8813041 DOI: 10.3389/fnins.2021.765775] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
The insular cortex is a cortical regulatory area involved in dyspnea, cognition, emotion, and sensorimotor function. Previous studies reported that obstructive sleep apnea (OSA) shows insular tissue damage and abnormal functional connections for the whole insula. The insula can be divided into different subregions with distinct functional profiles, including the ventral anterior insula (vAI) participating in affective processing, dorsal anterior insula (dAI) involved in cognitive processing, and posterior insula (PI) involved in the processing of sensorimotor information. However, the functional connectivity (FC) of these insular subregions in OSA has yet to be established. Hence, the purpose of this study was to explore the resting-state FC of the insular subregions with other brain areas and its relationship with clinical symptoms of OSA. Resting-state functional magnetic resonance imaging data from 83 male OSA patients and 84 healthy controls were analyzed by whole-brain voxel-based FC using spherical seeds from six insular subregions, namely, the bilateral vAI, dAI, and PI, to identify abnormalities in the insular subregions network and related brain regions. Ultimately, the Pearson correlation analysis was carried out between the dysfunction results and the neuropsychological tests. Compared with the healthy control group, the OSA patients exhibited disturbed FC from the dAI to areas relevant to cognition, such as the bilateral cerebellum posterior lobe, superior frontal gyrus, right middle frontal gyrus and middle temporal gyrus; decreased FC from the vAI to areas linked with emotion, such as the bilateral fusiform gyrus, superior parietal lobule, precuneus and cerebellum posterior lobe; and abnormal FC from the PI to the brain regions involved in sensorimotor such as the bilateral precentral gyrus, right superior/middle temporal gyrus and left superior frontal gyrus. The linear regression result showed that the apnea-hypopnea index was positively correlated with the increased FC between the right PI and the right precuneus (after Bonferroni correlation, P < 0.001) In conclusion, the abnormal FC between insular subregions and other brain regions were related to cognitive, emotional and sensorimotor networks in OSA patients. These results may provide a new imaging perspective for further understanding of OSA-related cognitive and affective disorders.
Collapse
|
36
|
Xie W, Shu Y, Liu X, Li K, Li P, Kong L, Yu P, Huang L, Long T, Zeng L, Li H, Peng D. Abnormal Spontaneous Brain Activity and Cognitive Impairment in Obstructive Sleep Apnea. Nat Sci Sleep 2022; 14:1575-1587. [PMID: 36090000 PMCID: PMC9462436 DOI: 10.2147/nss.s376638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE This study aimed to explore the alterations in spontaneous brain activity in obstructive sleep apnea (OSA) using percent amplitude of fluctuation (PerAF) and investigate the relationship between abnormal spontaneous brain activity and cognitive impairment in OSA. PATIENTS AND METHODS Overall, 52 patients with moderate to severe OSA and 61 healthy controls (HCs) were eventually enrolled in this study. All participants underwent resting-state functional magnetic resonance (rs-fMRI) and T1-weighted imaging. The PerAF was calculated and compared between patients with OSA and HCs, with voxel level P < 0.001 and cluster level P < 0.05 corrected with Gaussian Random Field was be considered statistically different. A partial correlation analysis was used to assess the relationship between altered PerAF and clinical assessments in patients with OSA. RESULTS Compared to HCs, patients with OSA had significantly lower PerAF values in the right rectal gyrus and left superior frontal gyrus, but higher PerAF values in the right cerebellum posterior lobe and left middle frontal gyrus. The PerAF values of some specific regions in patients with OSA correlated with sleep efficiency and Montreal Cognitive Assessment scores. Additionally, support vector machine analysis showed that PerAF values in all differential brain regions could differentiate patients with OSA from HCs with good accuracy. CONCLUSION Specific brain areas in OSA patients may exhibit aberrant neuronal activity, and these anomalies may be linked to decreased cognitive performance. This discovery offers fresh perspectives on these patients' neurocognition.
Collapse
Affiliation(s)
- Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Panmei Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Linghong Kong
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Pengfei Yu
- Big Data Research Center, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
37
|
Stevens D, D'Rozario A, Openshaw H, Bartlett D, Rae CD, Catcheside P, Wong K, McEvoy RD, Grunstein RR, Vakulin A. Clinical predictors of working memory performance in obstructive sleep apnoea patients before and during extended wakefulness. Sleep 2021; 45:6460438. [PMID: 34897504 DOI: 10.1093/sleep/zsab289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Extended wakefulness (EW) and obstructive sleep apnoea (OSA) impair working memory (WM), but their combined effects are unclear. This study examined the impact of EW on WM function in OSA patients and identified clinical predictors of WM impairment. METHODS Following polysomnography (PSG), 56 OSA patients (Mean ± SD, age 49.5 ± 8.9, AHI 38.1 ± 25.0) completed WM 2-back performance tasks 10 times over 24 hours of wakefulness to assess average accuracy and completion times measured after 6-12 hours awake (baseline) compared to 18-24 hours awake (EW). Hierarchical cluster analysis classified participants with poorer versus better WM performance at baseline and during EW. Clinical predictors of performance were examined via regression and receiver operator characteristic (ROC) analyses. RESULTS WM performance decreased following EW and showed consistent correlations with age, ESS, total sleep time and hypoxemia (O2 nadir and mean O2 desaturation) at baseline and with EW (all p<0.01). O2 nadir and age were significant independent predictors of performance at baseline (adjusted R 2=0.30, p<0.01), while O2 nadir and ESS were predictors of WM following EW (adjusted R 2=0.38, p<0.001). ROC analysis demonstrated high sensitivity and specificity of models to predict poorer vs better performing participants at baseline (83% and 69%) and during EW (84% and 74%). CONCLUSIONS O2 nadir, age and sleepiness show prognostic value for predicting WM impairment in both rested and sleep deprived OSA patients and may guide clinicians in identifying patients most at risk of impaired WM under both rested and heightened sleep pressure conditions.
Collapse
Affiliation(s)
- David Stevens
- Flinders Health and Medical Research Institute, Sleep Health / Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, Australia.,Centre for Nutrition and Gastrointestinal Diseases, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Angela D'Rozario
- CIRUS and NeuroSleep, Centres of Research Excellence, Sleep and Circadian Research Group, Woolcock Institute of Medical Research, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Hannah Openshaw
- Flinders Health and Medical Research Institute, Sleep Health / Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Delwyn Bartlett
- CIRUS and NeuroSleep, Centres of Research Excellence, Sleep and Circadian Research Group, Woolcock Institute of Medical Research, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Sydney, Australia.,School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Peter Catcheside
- Flinders Health and Medical Research Institute, Sleep Health / Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Keith Wong
- CIRUS and NeuroSleep, Centres of Research Excellence, Sleep and Circadian Research Group, Woolcock Institute of Medical Research, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, and Sydney Health Partners, Sydney, Australia
| | - R Doug McEvoy
- Flinders Health and Medical Research Institute, Sleep Health / Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Ronald R Grunstein
- CIRUS and NeuroSleep, Centres of Research Excellence, Sleep and Circadian Research Group, Woolcock Institute of Medical Research, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, and Sydney Health Partners, Sydney, Australia
| | - Andrew Vakulin
- Flinders Health and Medical Research Institute, Sleep Health / Adelaide Institute for Sleep Health, College of Medicine and Public Health, Flinders University, Adelaide, Australia.,CIRUS and NeuroSleep, Centres of Research Excellence, Sleep and Circadian Research Group, Woolcock Institute of Medical Research, Sydney, Australia
| |
Collapse
|
38
|
Bai J, Wen H, Tai J, Peng Y, Li H, Mei L, Ji T, Li X, Li Y, Ni X, Liu Y. Altered Spontaneous Brain Activity Related to Neurologic and Sleep Dysfunction in Children With Obstructive Sleep Apnea Syndrome. Front Neurosci 2021; 15:595412. [PMID: 34867137 PMCID: PMC8634797 DOI: 10.3389/fnins.2021.595412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Childhood obstructive sleep apnea (OSA) is a common chronic sleep-related breathing disorder in children, which leads to growth retardation, neurocognitive impairments, and serious complications. Considering the previous studies about brain structural abnormalities in OSA, in the present study, we aimed to explore the altered spontaneous brain activity among OSA patients, using amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) methods based on resting-state functional magnetic resonance imaging (MRI). Thirty-one untreated OSA children and 33 age-and gender-matched healthy children (HC) were included in this study. Compared with controls, the OSA group showed significant lower ALFF in the right lingual gyrus, decreased fALFF in the left middle frontal gyrus (MFG), but increased fALFF in the left precuneus. Decreased ReHo was found in the left inferior frontal gyrus (orbital part) and left middle frontal gyrus. Notably, the mean fALFF value of left MFG was not only significantly related to multiple sleep parameters but also demonstrated the best performance in ROC curve analysis. These findings revealed OSA children were associated with dysfunctions in the default mode network, the frontal lobe, and the lingual gyrus, which may implicate the underlying neurophysiological mechanisms of intrinsic brain activity. The correlation between the altered spontaneous neuronal activity and the clinical index provides early useful diagnostic biomarkers for OSA children as well.
Collapse
Affiliation(s)
- Jie Bai
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing, China.,School of Psychology, Southwest University, Chongqing, China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital Institute of Pediatrics, Beijing, China
| | - Yun Peng
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hongbin Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lin Mei
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tingting Ji
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaodan Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yanhua Li
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yue Liu
- Department of Radiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
39
|
Bai Y, Zhang L, Liu C, Cui X, Li D, Yin H. Association of white matter volume with sleep quality: a voxel-based morphometry study. Brain Imaging Behav 2021; 16:1163-1175. [PMID: 34846693 DOI: 10.1007/s11682-021-00569-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 01/13/2023]
Abstract
Many studies have focused on the gray matter volume associated with sleep quality, little is known about the relationship between white matter volume and sleep quality. Brain white structure is a crucial component in the structural neuroanatomy. Therefore, in this study, we investigated the association between white matter volume and sleep quality. Data were collected using the Pittsburgh Sleep Quality Index and voxel-based morphometry among 352 college students. Results showed that the global PSQI score was negatively associated with the white matter volume, including in the right middle occipital gyrus, the left superior temporal gyrus, the right the precentral gyrus, the left supramarginal gyrus, the left middle frontal gyrus, the left precunes, and the right superior frontal gyrus. Results also indicated that the white matter volume in specific regions negatively associated with the factor of PSQI. These specific brain regions may be replicated in brain areas related to sleep quality. In summary, we suggested that exploring brain white structure are related to sleep could help to expound the mechanisms by which sleep quality are associated with brain function, behavior and cognition, as well as potentially the networks and systems responsible for variations in sleep themselves.
Collapse
Affiliation(s)
- Youling Bai
- School of Education Science, Hunan Normal University, Changsha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Li Zhang
- School of Education Science, Hunan Normal University, Changsha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Chengwei Liu
- Department of Psychology, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xiaobing Cui
- School of Education Science, Hunan Normal University, Changsha, 410081, China.,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Dan Li
- School of Education Science, Hunan Normal University, Changsha, 410081, China. .,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China.
| | - Huazhan Yin
- School of Education Science, Hunan Normal University, Changsha, 410081, China. .,Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
40
|
Yan L, Park HR, Kezirian EJ, Yook S, Kim JH, Joo EY, Kim H. Altered regional cerebral blood flow in obstructive sleep apnea is associated with sleep fragmentation and oxygen desaturation. J Cereb Blood Flow Metab 2021; 41:2712-2724. [PMID: 33906511 PMCID: PMC8504950 DOI: 10.1177/0271678x211012109] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Altered cerebral perfusion has been reported in obstructive sleep apnea (OSA). Using dynamic susceptibility contrast MRI, we compared cerebral perfusion between male OSA patients and male healthy reference subjects and assessed correlations of perfusion abnormalities of OSA patients with sleep parameters and neuropsychological deficits at 3 T MRI, polysomnography and neuropsychological tests in 68 patients with OSA and 21 reference subjects. We found lower global and regional cerebral blood flow and cerebral blood volume, localized mainly in bilateral parietal and prefrontal cortices, as well as multiple focal cortical and deep structures related to the default mode network and attention network. In the correlation analysis between regional hypoperfusion and parameters of polysomnography, different patterns of regional hypoperfusion were distinctively associated with parameters of intermittent hypoxia and sleep fragmentation, which involved mainly parietal and orbitofrontal cortices, respectively. There was no association between brain perfusion and cognition in OSA patients in areas where significant association was observed in reference subjects, largely overlapping with nodes of the default mode network and attention network. Our results suggest that impaired cerebral perfusion in important areas of functional networks could be an important pathomechanism of neurocognitive deficits in OSA.
Collapse
Affiliation(s)
- Lirong Yan
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Hea Ree Park
- Department of Neurology, Inje University College of Medicine, Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Eric J Kezirian
- USC Caruso, Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Soonhyun Yook
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jae-Hun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun Yeon Joo
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hosung Kim
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Wang Z, Zhu H, Yuan M, Li Y, Qiu C, Ren Z, Yuan C, Lui S, Gong Q, Zhang W. The resting-state functional connectivity of amygdala subregions associated with post-traumatic stress symptom and sleep quality in trauma survivors. Eur Arch Psychiatry Clin Neurosci 2021; 271:1053-1064. [PMID: 32052123 DOI: 10.1007/s00406-020-01104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023]
Abstract
Neuroimaging findings suggest that the amygdala plays a primary role in both the psychopathology of posttraumatic stress disorder (PTSD) and poor sleep quality, which are common in trauma survivors. However, the neural mechanisms of these two problems in trauma survivors associated with amygdala remain unclear. In the current study, we aimed to explore the role of functional connectivity of amygdala subregions in both PTSD symptoms and poor sleep quality. A total of 94 trauma-exposed subjects were scanned on a 3T MR system using resting-state functional magnetic resonance imaging. Both Pittsburgh Sleep Quality Index and Clinician-Administered PTSD Scale scores were negatively correlated with the resting-state functional connectivity between the left basolateral amygdala-left medial prefrontal cortex and the right basolateral amygdala-right medial prefrontal cortex. Our findings suggest a shared amygdala subregional neural circuitry underlying the neuropathological mechanisms of PTSD symptoms and poor sleep quality in trauma survivors.
Collapse
Affiliation(s)
- Zuxing Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Center for Mental Healthy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yuchen Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhengjia Ren
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Department of Clinical Psychology, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Cui Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Park HR, Cha J, Joo EY, Kim H. Altered cerebrocerebellar functional connectivity in patients with obstructive sleep apnea and its association with cognitive function. Sleep 2021; 45:6357664. [PMID: 34432059 DOI: 10.1093/sleep/zsab209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/19/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES Previous functional MRI studies have reported altered brain networks in patients with obstructive sleep apnea (OSA). However, the extent and pattern of abnormal connectivity were inconsistent across studies, and cerebrocerebellar connections have been rarely assessed. We investigated functional network changes in cerebral and cerebellar cortices of OSA patients. METHODS Resting-state functional MRI, polysomnography and neuropsychological (NP) test data were acquired from 74 OSA patients (age: 45.8±10.7 years) and 33 healthy subjects (39.6±9.3 years). Connectivity matrices were extracted by computing correlation coefficients from various ROIs, and Fisher r-to-z transformations. In the functional connections that showed significant group differences, linear regression was conducted to examine the association between connectivity and clinical characteristics. RESULTS Patients with OSA showed reduced functional connectivity (FC) in cerebrocerebellar connections linking different functional networks, and greater FC in cortical between-network connections in prefrontal regions involving the default mode network and the control network. For OSA group, we found no correlation between FC and sleep parameters including lowest SaO2 and arousal index in the connections where significant associations were observed in healthy subjects. FC changes in default mode network (DMN) areas were related to reduced verbal fluency in OSA. Lower local efficiency and lower clustering coefficient of the salience network in the left cerebellum were also observed in OSA. CONCLUSIONS OSA affects mainly the cerebrocerebellar pathway. The disruption of function in these connections are related to sleep fragmentation and hypoxia during sleep. These abnormal network functions, especially DMN, are suggested to participate in cognitive decline of OSA.
Collapse
Affiliation(s)
- Hea Ree Park
- Department of Neurology, Inje University College of Medicine, Ilsan Paik Hospital, Goyang, Republic of Korea
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun Yeon Joo
- Department of Neurology, Neuroscience Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hosung Kim
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
43
|
Zhang T, Pan Y, Lian J, Pang F, Wen J, Luo Y. Regional characterization of functional connectivity in patients with sleep apnea hypopnea syndrome during sleep. Physiol Meas 2021; 42. [PMID: 34167101 DOI: 10.1088/1361-6579/ac0e83] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/24/2021] [Indexed: 02/04/2023]
Abstract
Objective. Sleep apnea hypopnea syndrome (SAHS) induces abnormalities in brain function. This study aims to find features that can characterize the impact of SAHS on the brain functional connectivity (FC) during sleep.Approach. Seventy-eight participants (39 SAHS patients and 39 age-matched healthy controls) were recruited and underwent a whole night of polysomnography. The improved weighted phase lag index algorithm was utilized to evaluate FC inδ,θ,α,β, andγbands of six EEG channels. The regional FC features were further constructed to characterize the asymmetries of FC between the left and right hemispheres, the imbalances of FC between the inter- and intra-hemispheres, and those between the anterior and posterior cortex, respectively. Then, support vector machines and feature evaluation were used to verify the discriminative ability for the abnormal FC in SAHS patients of the above-mentioned features.Main results.The study observed abnormal FC changes in SAHS patients during sleep in multiple frequency bands. Moreover, regional FC features performed better in SAHS screening, and important features were mainly distributed inβandγbands.Significance. Our research exhibited the abnormal regional FC in SAHS patients during sleep, which provided new insights and established indicators to investigate the changes of brain function in patients.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Yu Pan
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Jiakai Lian
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Feng Pang
- Sleep-Disordered Breathing Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, People's Republic of China
| | - Jinfeng Wen
- Psychology Department, Guangdong 999 Brain Hospital, Guangzhou 510275, People's Republic of China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
44
|
Macchitella L, Romano DL, Marinelli CV, Toraldo DM, Arigliani M, De Benedetto M, Angelelli P. Neuropsychological and socio-cognitive deficits in patients with obstructive sleep apnea. J Clin Exp Neuropsychol 2021; 43:514-533. [PMID: 34212782 DOI: 10.1080/13803395.2021.1944609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Patients with obstructive sleep apnea (OSA) suffer from several neurocognitive deficits. We investigated the cognitive and socio-cognitive profiles of patients with severe OSA, controlling for potentially relevant mediating variables (i.e. age, body-mass index, cognitive reserve and depression). Moreover, we studied the neuropsychological profile of a high-risk OSA phenotype characterized by severe OSA and severe nocturnal hypoxemia.Method: We assessed 29 previously untreated severe OSA patients with a mean age of 55.6 (± 9.9 years) and a mean apnea-hypopnea index (AHI) of 53.1 (± 17.4). A control group of 34 healthy participants was also enrolled. Participants completed an extensive neuropsychological battery that included social cognition, a relatively new investigation area among OSA patients.Data analysis: Data were analyzed with a Bayesian approach. Specifically, Bayesian ANCOVA was used to investigate whether the grouping variable could predict test performance. Age, body-mass index, cognitive reserve and state of depression were added as covariates to the null model to weight the effects of these potential confounding factors. Three groups were analyzed: healthy controls (H), OSA with severe apnea and severe nocturnal oxygen desaturation (D+), and OSA with severe apnea non-desaturators (D-). Performances on the various neuropsychological tests were treated as the dependent variables.Results: The results indicate that non-verbal reasoning, the theory of mind skills, and mental shifting ability were impaired in OSA patients. Patients with severe nocturnal hypoxemia underperformed compared to patients with the same severity of apnea but non-desaturators. Additionally, we observed a trend toward a worse performance among OSA desaturator patients in the following abilities: constructional ability, short term verbal memory, phonological fluency, and the ability to inhibit automatic and dominant responses.Conclusion: The data suggest a key role of hypoxemia in affecting cognitive functioning in OSA patients. Executive functions and the concomitant involvement of social cognition are particularly affected.
Collapse
Affiliation(s)
- Luigi Macchitella
- Department of History, Society and Human Studies - Lab of Applied Psychology and Intervention, University of Salento, Lecce, Italy
| | - Daniele Luigi Romano
- Department of History, Society and Human Studies - Lab of Applied Psychology and Intervention, University of Salento, Lecce, Italy.,Department of Psychology and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Chiara Valeria Marinelli
- Department of History, Society and Human Studies - Lab of Applied Psychology and Intervention, University of Salento, Lecce, Italy.,Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Michele Arigliani
- Department of ENT (Otolaryngology), "V. Fazzi" Hospital, Lecce, Italy
| | | | - Paola Angelelli
- Department of History, Society and Human Studies - Lab of Applied Psychology and Intervention, University of Salento, Lecce, Italy
| |
Collapse
|
45
|
Li H, Li L, Kong L, Li P, Zeng Y, Li K, Xie W, Shu Y, Liu X, Peng D. Frequency‑Specific Regional Homogeneity Alterations and Cognitive Function in Obstructive Sleep Apnea Before and After Short-Term Continuous Positive Airway Pressure Treatment. Nat Sci Sleep 2021; 13:2221-2238. [PMID: 34992481 PMCID: PMC8714019 DOI: 10.2147/nss.s344842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Previous studies have demonstrated abnormal local spontaneous brain activity in the conventional frequency bands (0.01-0.08 Hz) in obstructive sleep apnea (OSA). However, it is not clear whether these abnormalities are associated with the specific frequency band of low-frequency oscillations or whether it can be improved with a continuous positive airway pressure (CPAP) treatment. This study aimed to investigate the regional homogeneity (ReHo) in specific frequency at baseline (pre-CPAP) and after one month of CPAP adherence treatment (post-CPAP) in OSA patients. METHODS Twenty-one patients with moderate-to-severe OSA and 21 age- and sex-matched healthy controls (HCs) were included in the final analysis. ReHo was calculated in three different frequency bands (typical frequency band: 0.01-0.1 Hz; slow-5 band: 0.01-0.027 Hz; slow-4 band: 0.027-0.073 Hz), respectively. A partial correlational analysis was performed to assess the relationship between altered ReHo and clinical evaluation. RESULTS OSA patients revealed increased ReHo in the brainstem, bilateral inferior temporal gyrus (ITG)/fusiform, and right-cerebellum posterior lobe (CPL), and decreased ReHo in the bilateral inferior parietal lobule (IPL), right superior temporal gyrus (STG), and left precentral gyrus (PG) compared to HC groups in different frequency bands. Significantly changed ReHo in the bilateral middle temporal gyrus (MTG), PG, medial frontal gyrus (MFG), supplementary motor area (SMA), CPL, IPL, left superior frontal gyrus (SFG), ITG, MTG, and right STG were observed between post-CPAP and pre-CPAP OSA patients, which was associated with specific frequency bands. The altered ReHo in specific frequency bands was correlated with Montreal cognitive assessment score, Epworth sleepiness scale, and apnea hypopnea index in pre-CPAP OSA patients. CONCLUSION These findings indicate that OSA has frequency-related abnormalities of spontaneous neural activity before and after short-term CPAP treatment, which might contribute to a better understanding of local neural psychopathology and may serve as potential biomarkers for clinical CPAP treatment.
Collapse
Affiliation(s)
- Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China.,PET Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Lan Li
- Jiangxi Provincial Institute of Parasitic Diseases Control, Nanchang City, Jiangxi Province, People's Republic of China
| | - Linghong Kong
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Panmei Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China.,PET Center, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People's Republic of China
| |
Collapse
|
46
|
Zhou L, Liu G, Luo H, Li H, Peng Y, Zong D, Ouyang R. Aberrant Hippocampal Network Connectivity Is Associated With Neurocognitive Dysfunction in Patients With Moderate and Severe Obstructive Sleep Apnea. Front Neurol 2020; 11:580408. [PMID: 33362692 PMCID: PMC7759642 DOI: 10.3389/fneur.2020.580408] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/11/2020] [Indexed: 01/20/2023] Open
Abstract
Objectives: This work aims to explore the changes of functional connectivity (FC) within the hippocampus network in patients with moderate and severe obstructive sleep apnea (OSA) and its correlation with neurocognitive dysfunction to explore the potential neurophysiological mechanism. Methods: A total of 32 treatment-naïve patients with moderate or severe OSA and 26 healthy controls (HCs), matched in age, gender, and education, underwent the evaluations of Epworth Sleep Scale, neurocognitive function, full-night polysomnography, and resting-state functional magnetic resonance imaging. The FC map of the hippocampus to other brain areas was compared among 15 OSA patients and 15 HCs with little head motion. Finally, the correlation between hippocampus FC strength and respiratory sleep parameters and neurocognitive assessments was analyzed. Results: Compared with HCs, the right hippocampus showed a significantly decreased FC with the bilateral insular lobe, right thalamus, and right anterior cingulate gyrus (ACG) and an increased FC with the right superior and middle temporal gyrus, left posterior cingulate gyrus, and left angular gyrus in the patients with OSA. The left hippocampus presented a significantly decreased FC with the left anterior cerebellum in patients with OSA. In addition, the aberrant right hippocampal FC with the right ACG was significantly correlated with disease severity and disrupted sleep architecture in the OSA group. Furthermore, after adjusting the related confounding factors, the FC strength between the right hippocampus, right insular lobe, and right thalamus was positively associated with the scores of Stroop Color-Word Test (SCWT) or Hopkins Verbal Learning Test-Revised (HVLT-R), while the FC between the right hippocampus and the right middle temporal gyrus was negatively correlated with the scores of HVLT-R. The right hippocampus FC with right superior temporal gyrus, left angular gyrus, and ACG were all negatively related to the scores of the symbol coding test (r = -0.642, p = 0.045; r = -0.638, p = 0.047; r = -0.753, p = 0.012), respectively. The FC between the left hippocampal and the left anterior cerebellar lobe showed a positive relationship with the scores of HVLT-R (r = 0.757, p = 0.011) and CPT-3D (r = -0.801, p = 0.005). Conclusion: The hippocampus presented abnormal FC with the cerebral and cerebellar regions extensively in OSA, and the correlation between abnormal hippocampal network FC and neurocognitive dysfunction in OSA suggests a promising insight to explore the potential biomarker and pathophysiologic mechanism of neurocognitive dysfunction of OSA.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Guiqian Liu
- Hunan Province Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yating Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Dandan Zong
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ruoyun Ouyang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
47
|
Garcia A, Reljic T, Pogoda TK, Kenney K, Agyemang A, Troyanskaya M, Belanger HG, Wilde EA, Walker WC, Nakase-Richardson R. Obstructive Sleep Apnea Risk Is Associated with Cognitive Impairment after Controlling for Mild Traumatic Brain Injury History: A Chronic Effects of Neurotrauma Consortium Study. J Neurotrauma 2020; 37:2517-2527. [PMID: 32709212 PMCID: PMC7698980 DOI: 10.1089/neu.2019.6916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The contribution of sleep disturbance to persistent cognitive symptoms following a mild traumatic brain injury (mTBI) remains unclear. Obstructive sleep apnea (OSA) is very common, yet its relationship between risk factors for developing OSA and cognitive performance in those with history of mTBI has not been investigated. The current study examined OSA risk levels and its association with cognitive performance in 391 combat-exposed, post-911 veterans and service members (median age = 37 years) enrolled in the Chronic Effects of Neurotrauma Consortium (CENC) prospective multi-center study. Participants included those with and without mTBI (n = 326 and 65, respectively). When using clinical cut-offs, those with history of mTBI were more likely to be categorized as high risk for OSA (mTBI positive = 65% vs. mTBI negative = 51%). After adjustment for TBI status and demographic variables, increased OSA risk was significantly associated with worse performance on measures of complex processing speed and executive functioning (Wechsler Adult Intelligence Scale Fourth Edition Coding, Trail Making Test, part B) and greater symptom burden (Neurobehavioral Symptom Inventory). Thus, OSA, a modifiable behavioral health factor, likely contributes to cognitive performance following mTBI. Accordingly, OSA serves as a potential point of intervention to improve clinical and cognitive outcomes after injury.
Collapse
Affiliation(s)
- Amanda Garcia
- Defense and Veterans Brain Injury Center, James A. Haley VA Hospital, Tampa, Florida, USA
- Mental Health and Behavioral Sciences and Defense and Veterans Brain Injury Center, James A. Haley VA Hospital, Tampa, Florida, USA
| | - Tea Reljic
- Morsani College of Medicine, Sleep and Pulmonary Division, University of South Florida, Tampa, Florida, USA
| | - Terri K. Pogoda
- Center for Healthcare Organization and Implementation Research, VA Boston Healthcare System, Boston, Massachusetts, USA
- Boston University School of Public Health, Boston, Massachusetts, USA
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Neurology, Uniformed Services University, Bethesda, Maryland, USA
| | - Amma Agyemang
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maya Troyanskaya
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - Heather G. Belanger
- United States Special Operations Command, Tampa, Florida, USA
- Department of Psychology and Psychiatry and Behavioral Neurosciences, Sleep and Pulmonary Division, University of South Florida, Tampa, Florida, USA
| | - Elisabeth A. Wilde
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
- George E. Wahlen VA Salt Lake City Healthcare System, Salt Lake City, Utah, USA
- Department of Neurology, TBI and Concussion Center, University of Utah, Salt Lake City, Utah, USA
| | - William C. Walker
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Risa Nakase-Richardson
- Defense and Veterans Brain Injury Center, James A. Haley VA Hospital, Tampa, Florida, USA
- Mental Health and Behavioral Sciences and Defense and Veterans Brain Injury Center, James A. Haley VA Hospital, Tampa, Florida, USA
- Department of Internal Medicine, Sleep and Pulmonary Division, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
48
|
Naismith SL, Duffy SL, Cross N, Grunstein R, Terpening Z, Hoyos C, D'Rozario A, Lagopoulos J, Osorio RS, Shine JM, McKinnon AC. Nocturnal Hypoxemia Is Associated with Altered Parahippocampal Functional Brain Connectivity in Older Adults at Risk for Dementia. J Alzheimers Dis 2020; 73:571-584. [PMID: 31815696 DOI: 10.3233/jad-190747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obstructive sleep apnea is associated with an increased risk of developing mild cognitive impairment and dementia. Intermittent nocturnal hypoxemia in obstructive sleep apnea is associated with brain changes in key regions that underpin memory. OBJECTIVE To determine whether older adults with severe nocturnal hypoxemia would exhibit reduced functional connectivity within these regions, with associated deficits in memory. METHODS Seventy-two participants 51 years and over underwent polysomnography with continuous blood oxygen saturation recorded via oximetry. The oxygen desaturation index (ODI, 3% dips in oxygen levels per hour) was the primary outcome measure. ODI was split into tertiles, with analyses comparing the lowest and highest tertiles (N = 48). Thirty-five of the 48 participants from these two tertiles had mild cognitive impairment. Participants also underwent resting-state fMRI and comprehensive neuropsychological, medical, and psychiatric assessment. RESULTS The highest ODI tertile group demonstrated significantly reduced connectivity between the left and right parahippocampal cortex, relative to the lowest ODI tertile group (t(42) = -3.26, p = 0.041, beta = -1.99).The highest ODI tertile group also had poorer working memory performance. In the highest ODI tertile group only, higher left-right parahippocampal functional connectivity was associated with poorer visual memory recall (between-groups z = -2.93, p = 0.0034). CONCLUSIONS Older adults with severe nocturnal hypoxemia demonstrate impaired functional connectivity in medial temporal structures, key regions involved in sleep memory processing and implicated in dementia pathophysiology. Oxygen desaturation and functional connectivity in these individuals each relate to cognitive performance. Research is now required to further elucidate these findings.
Collapse
Affiliation(s)
- Sharon L Naismith
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Shantel L Duffy
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Charles Perkins Centre, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Nathan Cross
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia
| | - Ron Grunstein
- Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Zoe Terpening
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Camilla Hoyos
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Angela D'Rozario
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,Sleep and Circadian Group, Woolcock Institute of Medical Research, Sydney Health Partners, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson Institute University of Sunshine Coast, Queensland, Australia
| | - Ricardo S Osorio
- Department of Psychiatry, Sleep Aging and Memory Lab, NYU School of Medicine, New York, NY, USA.,Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - James M Shine
- Brain & Mind Centre, University of Sydney, Sydney, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, School of Psychology, University of Sydney, Sydney, Australia.,Brain & Mind Centre, University of Sydney, Sydney, Australia.,NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep), Australia
| |
Collapse
|
49
|
Reduced regional homogeneity and neurocognitive impairment in patients with moderate-to-severe obstructive sleep apnea. Sleep Med 2020; 75:418-427. [PMID: 32980663 DOI: 10.1016/j.sleep.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neurocognitive dysfunction and abnormal regional homogeneity (ReHo) have been reported in patients with obstructive sleep apnea (OSA). However, little is known about whether brain functional alteration could be used to differentiate from healthy controls (HCs) and its correlation with neurocognitive impairment. METHODS Thirty-three treatment-naive patients with moderate-to-severe OSA and 22 HCs with matched age, sex and education underwent the evaluation of Epworth sleepiness scale, neurocognitive function, full night polysomnography and resting-state functional magnetic resonance imaging scan. ReHo, support vector machine, and correlation with neurocognitive function were administrated to analyze the data. RESULTS Compared with HCs, patients with OSA showed decreased ReHo in the bilateral superior frontal gyrus (FG), bilateral superior medial prefrontal cortex (PFC)/right supplementary motor area (SMA), left middle FG, and right precentral/postcentral gyrus. Negative correlations were observed between the ReHo values in the left superior FG/middle FG and apnea hypopnea index, oxygen desaturation index in the OSA group. The scores of Stroop word test, Stroop color-word test, symbol coding test were all negatively correlated with the ReHo values in the right precentral gyrus/postcentral gyrus in patients. Scores of the animal naming fluency test were positively correlated with the ReHo values in the left superior FG/middle FG in patients. Moreover, support vector machine analysis showed the ReHo values in the left superior FG/middle FG or bilateral superior medial PFC/right SMA both could discriminate patients from HCs with good accuracies, sensitivities, and specificities (85.45%, 87.88%, 81.82% and 81.82%, 84.85%, 77.27%, respectively). CONCLUSION Dysfunction in the frontal lobe is a potentially pivotal neuro-pathophysiological mechanism of neurocognitive impairment in patients with moderate-to-severe OSA. And significantly lower ReHo values in the left superior FG/middle FG and/or superior medial PFC/SMA are promising imaging biomarkers to discriminate moderate-to-severe patients with OSA from HCs.
Collapse
|
50
|
Fortin M, Lina JM, Desjardins MÈ, Gagnon K, Baril AA, Carrier J, Gosselin N. Waking EEG functional connectivity in middle-aged and older adults with obstructive sleep apnea. Sleep Med 2020; 75:88-95. [PMID: 32853923 DOI: 10.1016/j.sleep.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The present study aimed at investigating changes in waking electroencephalography (EEG), most specifically regarding spectral power and functional connectivity, in middle-aged and older adults with obstructive sleep apnea (OSA). We also explored whether changes in spectral power or functional connectivity are associated with polysomnographic characteristics and/or neuropsychological performance. METHODS In sum, 19 OSA subjects (apnea-hypopnea index ≥ 20, age: 63.6 ± 6.4) and 22 controls (apnea-hypopnea index ≤ 10, age: 63.6 ± 6.7) underwent a full night of in-laboratory polysomnography (PSG) followed by a waking EEG and a neuropsychological assessment. Waking EEG spectral power and imaginary coherence were compared between groups for all EEG frequency bands and scalp regions. Correlation analyses were performed between selected waking EEG variables, polysomnographic parameters and neuropsychological performance. RESULTS No group difference was observed for EEG spectral power for any frequency band. Regarding the imaginary coherence, when compared to controls, OSA subjects showed decreased EEG connectivity between frontal and temporal regions in theta and alpha bands as well as increased connectivity between frontal and parietal regions in delta and beta 1 bands. In the OSA group, these changes in connectivity correlated with lower sleep efficiency, lower total sleep time and higher apnea-hypopnea index. No relationship was found with neuropsychological performance. CONCLUSIONS Contrary to spectral power, imaginary coherence was sensitive enough to detect changes in brain function in middle-aged and older subjects with OSA when compared to controls. Whether these changes in cerebral connectivity predict cognitive decline needs to be investigated longitudinally.
Collapse
Affiliation(s)
- Maxime Fortin
- Center for Advanced Research in Sleep Medicine, CIUSSS du Nord de l'Île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, Québec, H4J 1C5, Canada; Département de Psychologie, Université du Québec à Montréal, Pavillon Adrien-Pinard, C.P. 8888 Succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada.
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, CIUSSS du Nord de l'Île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, Québec, H4J 1C5, Canada; Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montréal, H3C 1K3, Canada.
| | - Marie-Ève Desjardins
- Center for Advanced Research in Sleep Medicine, CIUSSS du Nord de l'Île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, Québec, H4J 1C5, Canada; Département de Psychologie, Université de Montréal, Pavillon Marie-Victorin, C. P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| | - Katia Gagnon
- Center for Advanced Research in Sleep Medicine, CIUSSS du Nord de l'Île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, Québec, H4J 1C5, Canada; Département de Psychologie, Université du Québec à Montréal, Pavillon Adrien-Pinard, C.P. 8888 Succursale Centre-ville, Montréal, Québec, H3C 3P8, Canada.
| | - Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, CIUSSS du Nord de l'Île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, Québec, H4J 1C5, Canada; Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Pavillon Roger-Gaudry, C.P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, CIUSSS du Nord de l'Île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, Québec, H4J 1C5, Canada; Département de Psychologie, Université de Montréal, Pavillon Marie-Victorin, C. P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, CIUSSS du Nord de l'Île-de-Montréal, Hôpital du Sacré-Coeur de Montréal, 5400 Boulevard Gouin Ouest, Montréal, Québec, H4J 1C5, Canada; Département de Psychologie, Université de Montréal, Pavillon Marie-Victorin, C. P. 6128, Succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada.
| |
Collapse
|