1
|
Guo Q, Zhang Y, Zhang J, Tian X, Zhou Y, Wang Y, He M, Chen L, Zeng J, Tang C, Li Q, He Z, Ma B, Jiang C, Zhao H. Melanin concentrating hormone-sleep pressure loop regulates melanin degradation through both autophagic degradation and lysosomal hydrolysis in zebrafish. J Biol Chem 2025; 301:108486. [PMID: 40209955 DOI: 10.1016/j.jbc.2025.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide initially isolated from salmon and later found to be conserved in mammals. It plays a role in regulating melanin changes and rhythmic behaviors such as sleep and feeding, though its relationship with these processes is not fully understood. Our preliminary research revealed significant differences in melanin degradation in zebrafish under varying light conditions, suggesting a link to MCH. This study aims to explore MCH's role in lighting-induced changes in rhythmic behavior patterns and melanin of zebrafish. Using the zebrafish model, we evaluated MCH expression under different lighting conditions and analyzed the effects of arousal-promoting and sleep-inducing agents. We also investigated the impact of exogenous MCH and its inhibitors on melanin degradation, behavioral changes, and differences in MCH expression to uncover potential regulatory relationships between MCH, sleep pressure, and melanin. In-depth research using flow cytometry, acridine orange staining, LysoTracker Red staining, and quantitative real-time PCR analysis of autophagy- and apoptosis-related genes showed that melanin degradation regulation depends on MCH expression levels. Sleep pressure can intervene in MCH's effects, forming a regulatory loop to jointly regulate melanin degradation. The influence of the MCH-sleep pressure loop on melanin degradation is closely tied to autophagic and lysosomal pathways. Our findings reveal a mutually regulatory loop in zebrafish between MCH and sleep pressure, affecting melanin degradation through these pathways.
Collapse
Affiliation(s)
- Qingquan Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yudong Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jianhua Zhang
- N.O.D Topia (GuangZhou) Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Xiaoyu Tian
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yawen Zhou
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaxin Wang
- Guangzhou Sun-Hi Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Mingjie He
- Guangzhou Sun-Hi Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Lu Chen
- Guangzhou Sun-Hi Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Jiaqi Zeng
- Guangzhou Sun-Hi Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Chuanjin Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Qiuru Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhenming He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Bingji Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Chenyang Jiang
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Haishan Zhao
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
2
|
Agamme ALDA, Tufik S, Torterolo P, D'Almeida V. Effects of Paradoxical Sleep Deprivation on MCH and Hypocretin Systems. Sleep Sci 2024; 17:e392-e400. [PMID: 39698172 PMCID: PMC11651861 DOI: 10.1055/s-0044-1782171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/20/2023] [Indexed: 12/20/2024] Open
Abstract
Melanin-concentrating hormone (MCH) and hypocretins (Hcrt) 1 and 2 are neuropeptides synthesized in the lateral hypothalamic area by neurons that are critical in the regulation of sleep and wakefulness. Their receptors are located in the same cerebral regions, including the frontal cortex and hippocampus. The present study aimed to assess whether 96 hours of paradoxical sleep deprivation alters the functioning of the MCH and hypocretin systems. To do this, in control rats with normal sleep (CTL) and in rats that were deprived of paradoxical sleep (SD), we quantified the following parameters: 1) levels of MCH and hypocretin-1 in the cerebrospinal fluid (CSF); 2) expression of the prepro-MCH ( Pmch ) and prepro-hypocretin ( Hcrt ) genes in the hypothalamus; 3) expression of the Mchr1 and Hcrtr1 genes in the frontal cortex and hippocampus; and 4) expression of the Hcrtr2 gene in the hippocampus. These measures were performed at 6 Zeitgeber time (ZT) points of the day (ZTs: 0, 4, 8, 12, 16, and 20). In the SD group, we found higher levels of MCH in the CSF at the beginning of the dark phase. In the frontal cortex, sleep deprivation decreased the expression of Hcrtr1 at ZT0 . Moreover, we identified significant differences between the light and dark phases in the expression of Mchr1 and Hcrtr1 , but only in the CTL animals . We conclude that there is a day/night modulation in the expression of components of the MCH and hypocretin systems, and this profile is affected by paradoxical sleep deprivation.
Collapse
Affiliation(s)
- Ana Luiza Dias Abdo Agamme
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Pablo Torterolo
- Department of Physiology, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Vânia D'Almeida
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Concetti C, Peleg-Raibstein D, Burdakov D. Hypothalamic MCH Neurons: From Feeding to Cognitive Control. FUNCTION 2023; 5:zqad059. [PMID: 38020069 PMCID: PMC10667013 DOI: 10.1093/function/zqad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Modern neuroscience is progressively elucidating that the classic view positing distinct brain regions responsible for survival, emotion, and cognitive functions is outdated. The hypothalamus demonstrates the interdependence of these roles, as it is traditionally known for fundamental survival functions like energy and electrolyte balance, but is now recognized to also play a crucial role in emotional and cognitive processes. This review focuses on lateral hypothalamic melanin-concentrating hormone (MCH) neurons, producing the neuropeptide MCH-a relatively understudied neuronal population with integrative functions related to homeostatic regulation and motivated behaviors, with widespread inputs and outputs throughout the entire central nervous system. Here, we review early findings and recent literature outlining their role in the regulation of energy balance, sleep, learning, and memory processes.
Collapse
Affiliation(s)
- Cristina Concetti
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Daria Peleg-Raibstein
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- Neurobehavioural Dynamics Laboratory, ETH Zürich, Schorenstrasse 16, Schwerzenbach 8603, Switzerland
| |
Collapse
|
4
|
Sharma A, Tripathi V, Kumar V. Hypothalamic molecular correlates of photoperiod-induced spring migration in intact and castrated male redheaded buntings. Mol Cell Endocrinol 2023; 561:111829. [PMID: 36526025 DOI: 10.1016/j.mce.2022.111829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
This study investigated the molecular changes associated with neural plasticity in photoperiodic induction of spring migration in intact and castrated redheaded bunting, Emberiza bruniceps. We measured the hypothalamic mRNA expression of genes in birds that were photostimulated into winter non-migratory and spring (vernal) migratory phenotypes under short and long photoperiods, respectively. These included genes associated with the appetitive phase of reproduction (spring migration drive, th and ddc genes encoding for tyrosine hydroxylase and dopamine decarboxylase enzymes, respectively), sleep/awake state (pmch gene encoding for pro-melanin concentrating hormone; hcrt and hcrtr2 encoding for the hypocretin/orexin and its receptor, respectively) and neurogenesis (dcx and neuN coding for doublecortin and neuronal nuclear proteins, respectively). Higher th mRNA levels suggested an upregulated dopamine synthesis in the hypothalamus of spring migrants. Similarly, elevated hcrt and hcrtr2 mRNA levels suggested an increased wakefulness, and those of dcx and neuN genes suggested an enhanced neurogenesis during the spring migration state. Further, compared to intact birds, the lower th and pmch, and higher hcrtr2 and neuN mRNA levels in castrates suggested a role of testicular steroids in modulation of the appetitive phase of reproduction, sleep and awake states, and neurogenesis during spring migration period. These results provide insights into molecular changes linked with important hypothalamic molecular pathways and steroidal influence in the photoperiodic induction of spring migration in obligate migratory songbirds.
Collapse
Affiliation(s)
- Aakansha Sharma
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Vatsala Tripathi
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, 110003, India.
| | - Vinod Kumar
- IndoUS Center in Chronobiology, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
5
|
He X, Li Y, Zhang N, Huang J, Ming X, Guo R, Hu Y, Ji P, Guo F. Melanin-concentrating hormone promotes anxiety and intestinal dysfunction via basolateral amygdala in mice. Front Pharmacol 2022; 13:906057. [PMID: 36016574 PMCID: PMC9395614 DOI: 10.3389/fphar.2022.906057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The limbic system plays a pivotal role in stress-induced anxiety and intestinal disorders, but how the functional circuits between nuclei within the limbic system are engaged in the processing is still unclear. In our study, the results of fluorescence gold retrograde tracing and fluorescence immunohistochemistry showed that the melanin-concentrating hormone (MCH) neurons of the lateral hypothalamic area (LHA) projected to the basolateral amygdala (BLA). Both chemogenetic activation of MCH neurons and microinjection of MCH into the BLA induced anxiety disorder in mice, which were reversed by intra-BLA microinjection of MCH receptor 1 (MCHR1) blocker SNAP-94847. In the chronic acute combining stress (CACS) stimulated mice, SNAP94847 administrated in the BLA ameliorated anxiety-like behaviors and improved intestinal dysfunction via reducing intestinal permeability and inflammation. In conclusion, MCHergic circuit from the LHA to the BLA participates in the regulation of anxiety-like behavior in mice, and this neural pathway is related to the intestinal dysfunction in CACS mice by regulating intestinal permeability and inflammation.
Collapse
Affiliation(s)
- Xiaoman He
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuhang Li
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinfang Huang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xing Ming
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ruixiao Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yang Hu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Pengfei Ji
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
- *Correspondence: Feifei Guo,
| |
Collapse
|
6
|
Rodrigues LTC, Patrone LGA, Gargaglioni LH, Dias MB. Melanin-concentrating hormone regulates the hypercapnic chemoreflex by acting in the lateral hypothalamic area. Exp Physiol 2022; 107:1298-1311. [PMID: 35930596 DOI: 10.1113/ep090318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? MCH suppresses the hypercapnic chemoreflex but the mechanism by which this effect is produced has not been previously explored. What is the main finding and its importance? MCH acting in the lateral hypothalamic area but not in the locus coeruleus in rats, in the light period, attenuates the hypercapnic chemoreflex. Our data provide new insight regarding the role of MCH in the modulation of the hypercapnic ventilatory response. ABSTRACT Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide involved in a broad range of homeostatic functions including regulation of the hypercapnic chemoreflex. We evaluated whether MCH modulates the hypercapnic ventilatory response by acting in the lateral hypothalamic area (LHA) and/or in the locus coeruleus (LC). Here, we measured pulmonary ventilation (VE ), body temperature, electroencephalogram (EEG) and electromyogram (EMG) of unanesthetized adult male Wistar rats before and after microinjection of MCH [0.4 mM] or MCH1-R antagonist (SNAP-94847 [63 mM]) into the LHA and LC, in room air and 7% CO2 conditions during wakefulness and sleep, in the dark and light periods. MCH intra-LHA caused a decreased CO2 ventilatory response during wakefulness and sleep in the light period, while SNAP-94847 intra-LHA increased this response, during wakefulness in the light period. In the LC, MCH or the MCH1-R antagonist caused no change in the hypercapnic ventilatory response. Our results suggest that MCH, in the LHA, exerts an inhibitory modulation of the hypercapnic ventilatory response during the light-inactive period in rats. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laísa T C Rodrigues
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University-FCAV, Jaboticabal, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-FCAV, Jaboticabal, SP, Brazil
| | - Mirela B Dias
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University-UNESP, Botucatu, SP, Brazil
| |
Collapse
|
7
|
Crosstalk between Melanin Concentrating Hormone and Endocrine Factors: Implications for Obesity. Int J Mol Sci 2022; 23:ijms23052436. [PMID: 35269579 PMCID: PMC8910548 DOI: 10.3390/ijms23052436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 01/03/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis. However, the MCH control of energy balance is a complex mechanism that involves the interaction of several neuroendocrine systems. The aim of the present work is to describe the current knowledge of the crosstalk of MCH with different endocrine factors. We also provide our view about the possible use of melanin-concentrating hormone receptor antagonists for the treatment of metabolic complications. In light of the data provided here and based on its actions and function, we believe that the MCH system emerges as an important target for the treatment of obesity and its comorbidities.
Collapse
|
8
|
Al-Massadi O, Dieguez C, Schneeberger M, López M, Schwaninger M, Prevot V, Nogueiras R. Multifaceted actions of melanin-concentrating hormone on mammalian energy homeostasis. Nat Rev Endocrinol 2021; 17:745-755. [PMID: 34608277 DOI: 10.1038/s41574-021-00559-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Melanin-concentrating hormone (MCH) is a small cyclic peptide expressed in all mammals, mainly in the hypothalamus. MCH acts as a robust integrator of several physiological functions and has crucial roles in the regulation of sleep-wake rhythms, feeding behaviour and metabolism. MCH signalling has a very broad endocrine context and is involved in physiological functions and emotional states associated with metabolism, such as reproduction, anxiety, depression, sleep and circadian rhythms. MCH mediates its functions through two receptors (MCHR1 and MCHR2), of which only MCHR1 is common to all mammals. Owing to the wide variety of MCH downstream signalling pathways, MCHR1 agonists and antagonists have great potential as tools for the directed management of energy balance disorders and associated metabolic complications, and translational strategies using these compounds hold promise for the development of novel treatments for obesity. This Review provides an overview of the numerous roles of MCH in energy and glucose homeostasis, as well as in regulation of the mesolimbic dopaminergic circuits that encode the hedonic component of food intake.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| | - Carlos Dieguez
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Miguel López
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Laboratory of Development and Plasticity of the Neuroendocrine Brain, UMR-S1172, EGID, Lille, France
| | - Ruben Nogueiras
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.
- Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Zhao S, Li R, Li H, Wang S, Zhang X, Wang D, Guo J, Li H, Li A, Tong T, Zhong H, Yang Q, Dong H. Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Modulate the Anesthetic Potency of Isoflurane in Mice. Neurosci Bull 2021; 37:934-946. [PMID: 33847915 PMCID: PMC8275739 DOI: 10.1007/s12264-021-00674-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 01/19/2023] Open
Abstract
The lateral hypothalamic area (LHA) plays a pivotal role in regulating consciousness transition, in which orexinergic neurons, GABAergic neurons, and melanin-concentrating hormone neurons are involved. Glutamatergic neurons have a large population in the LHA, but their anesthesia-related effect has not been explored. Here, we found that genetic ablation of LHA glutamatergic neurons shortened the induction time and prolonged the recovery time of isoflurane anesthesia in mice. In contrast, chemogenetic activation of LHA glutamatergic neurons increased the time to anesthesia and decreased the time to recovery. Optogenetic activation of LHA glutamatergic neurons during the maintenance of anesthesia reduced the burst suppression pattern of the electroencephalogram (EEG) and shifted EEG features to an arousal pattern. Photostimulation of LHA glutamatergic projections to the lateral habenula (LHb) also facilitated the emergence from anesthesia and the transition of anesthesia depth to a lighter level. Collectively, LHA glutamatergic neurons and their projections to the LHb regulate anesthetic potency and EEG features.
Collapse
Affiliation(s)
- Shiyi Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Sa Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juan Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huihui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tingting Tong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Haixing Zhong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
10
|
The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 2019; 24:1284-1295. [PMID: 30377299 PMCID: PMC6491268 DOI: 10.1038/s41380-018-0291-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Sleep and wakefulness control in the mammalian brain requires the coordination of various discrete interconnected neurons. According to the most conventional sleep model, wake-promoting neurons (WPNs) and sleep-promoting neurons (SPNs) compete for network dominance, creating a systematic "switch" that results in either the sleep or awake state. WPNs and SPNs are ubiquitous in the brainstem and diencephalon, areas that together contain <1% of the neurons in the human brain. Interestingly, many of these WPNs and SPNs co-express and co-release various types of the neurotransmitters that often have opposing modulatory effects on the network. Co-transmission is often beneficial to structures with limited numbers of neurons because it provides increasing computational capability and flexibility. Moreover, co-transmission allows subcortical structures to bi-directionally control postsynaptic neurons, thus helping to orchestrate several complex physiological functions such as sleep. Here, we present an in-depth review of co-transmission in hypothalamic WPNs and SPNs and discuss its functional significance in the sleep-wake network.
Collapse
|
11
|
Vaudano AE, Pizza F, Talami F, Plazzi G, Meletti S. The neuronal network of laughing in young patients with untreated narcolepsy. Neurology 2019; 92:e504-e515. [PMID: 30635496 DOI: 10.1212/wnl.0000000000006853] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the neuronal correlates of spontaneous laughter in drug-naive pediatric patients with narcolepsy type I (NT1) compared to healthy controls by means of blood oxygen level-dependent (BOLD) MRI. METHODS Twenty-one children/adolescents with recent onset of NT1 and 21 age- and sex-matched healthy controls were studied with fMRI while viewing funny videos using a naturalistic paradigm. Whole-brain hemodynamic correlates of spontaneous laughter were investigated in each group and compared by use of appropriate second-level general linear model analyses. If recorded, cataplexy events were treated as the effect of no interest at the single-participant level. Correlations analyses between these contrasts and behavioral findings were performed. RESULTS Emotion-induced laughter occurred in 16 patients (294 events) and 21 controls (357 events). In controls, laughter-related BOLD increases involved a widespread cortical and subcortical network including the bilateral motor and premotor areas, cingulated cortex, insula, and amygdala. In NT1, laughter induced BOLD signal increments in the motor cortex, right thalamus, and left subthalamic nucleus/zona incerta (STN/ZI). STN/ZI and thalamic changes were significantly higher during fMRI sessions with laughter without cataplexy compared to sessions in which laughter was associated with cataplexy. CONCLUSION Laughter expression in individuals with NT1 involves different brain circuits compared to controls by means of overactivation of cortical and subcortical regions belonging to the volitional control of laughter. The activation of the STN/ZI region observed predominantly in patients with NT1 during laugh episodes without cataplexy suggests that the ZI could act to prevent cataplexy.
Collapse
Affiliation(s)
- Anna Elisabetta Vaudano
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy.
| | - Fabio Pizza
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Francesca Talami
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giuseppe Plazzi
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Stefano Meletti
- From the Department of Medicine and Surgery (A.E.V.), Sleep Medicine Center, University of Parma; Department of Biomedical, Metabolic, and Neural Science (A.E.V., S.M.) and Center for Neuroscience and Neurotechnology (A.E.V., S.M.), University of Modena and Reggio Emilia; Department of Biomedical and Neuromotor Sciences (F.P., G.P.), University of Bologna; IRCCS Istituto Delle Scienze Neurologiche di Bologna (F.P., G.P.); and Neurology Unit (F.T., S.M.), OCSAE Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
12
|
Arrigoni E, Chee MJS, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question. Neuropharmacology 2018; 154:34-49. [PMID: 30503993 DOI: 10.1016/j.neuropharm.2018.11.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
The lateral hypothalamus (LH) is a functionally and anatomically complex brain region that is involved in the regulation of many behavioral and physiological processes including feeding, arousal, energy balance, stress, reward and motivated behaviors, pain perception, body temperature regulation, digestive functions and blood pressure. Despite noteworthy experimental efforts over the past decades, the circuit, cellular and synaptic bases by which these different processes are regulated by the LH remains incompletely understood. This knowledge gap links in large part to the high cellular heterogeneity of the LH. Fortunately, the rapid evolution of newer genetic and electrophysiological tools is now permitting the selective manipulation, typically genetically-driven, of discrete LH cell populations. This, in turn, permits not only assignment of function to discrete cell groups, but also reveals that considerable synergistic and antagonistic interactions exist between key LH cell populations that regulate feeding and arousal. For example, we now know that while LH melanin-concentrating hormone (MCH) and orexin/hypocretin neurons both function as sensors of the internal metabolic environment, their roles regulating sleep and arousal are actually opposing. Additional studies have uncovered similarly important roles for subpopulations of LH GABAergic cells in the regulation of both feeding and arousal. Herein we review the role of LH MCH, orexin/hypocretin and GABAergic cell populations in the regulation of energy homeostasis (including feeding) and sleep-wake and discuss how these three cell populations, and their subpopulations, may interact to optimize and coordinate metabolism, sleep and arousal. This article is part of the Special Issue entitled 'Hypothalamic Control of Homeostasis'.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Melissa J S Chee
- Department of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
13
|
Riveros ME, Retamal MA. Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS. Front Physiol 2018; 9:693. [PMID: 29946266 PMCID: PMC6005883 DOI: 10.3389/fphys.2018.00693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder (BD) is an extremely disabling psychiatric disease, characterized by alternate states of mania (or hypomania) and depression with euthymic states in between. Currently, patients receive pharmacological treatment with mood stabilizers, antipsychotics, and antidepressants. Unfortunately, not all patients respond well to this type of treatment. Bipolar patients are also more prone to heart and metabolic diseases as well as a higher risk of suicide compared to the healthy population. For a correct brain function is indispensable a right protein and lipids (e.g., fatty acids) balance. In particular, the amount of fatty acids in the brain corresponds to a 50–70% of the dry weight. It has been reported that in specific brain regions of BD patients there is a reduction in the content of unsaturated n-3 fatty acids. Accordingly, a diet rich in n-3 fatty acids has beneficial effects in BD patients, while their absence or high levels of saturated fatty acids in the diet are correlated to the risk of developing the disease. On the other hand, the histamine system is likely to be involved in the pathophysiology of several psychiatric diseases such as BD. Histamine is a neuromodulator involved in arousal, motivation, and energy balance; drugs acting on the histamine receptor H3 have shown potential as antidepressants and antipsychotics. The histaminergic system as other neurotransmission systems can be altered by fatty acid membrane composition. The purpose of this review is to explore how polyunsaturated fatty acids content alterations are related to the histaminergic system modulation and their impact in BD pathophysiology.
Collapse
Affiliation(s)
- María E Riveros
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Center of Applied Ecology and Sustainability, Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
14
|
Shiromani PJ, Peever JH. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit. Sleep 2017; 40:3059391. [PMID: 28329204 DOI: 10.1093/sleep/zsx032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The complexity of the brain is yielding to technology. In the area of sleep neurobiology, conventional neuroscience tools such as lesions, cell recordings, c-Fos, and axon-tracing methodologies have been instrumental in identifying the complex and intermingled populations of sleep- and arousal-promoting neurons that orchestrate and generate wakefulness, NREM, and REM sleep. In the last decade, new technologies such as optogenetics, chemogenetics, and the CRISPR-Cas system have begun to transform how biologists understand the finer details associated with sleep-wake regulation. These additions to the neuroscience toolkit are helping to identify how discrete populations of brain cells function to trigger and shape the timing and transition into and out of different sleep-wake states, and how glia partner with neurons to regulate sleep. Here, we detail how some of the newest technologies are being applied to understand the neural circuits underlying sleep and wake.
Collapse
Affiliation(s)
- Priyattam J Shiromani
- Ralph H. Johnson Veterans Administration Medical Center, Research Service, Charleston, SC
| | - John H Peever
- Centre for Biological Timing and Cognition, Department Cell and Systems Biology, and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Wang D, Opperhuizen AL, Reznick J, Turner N, Su Y, Cooney GJ, Kalsbeek A. Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus. Brain Res 2017; 1671:93-101. [DOI: 10.1016/j.brainres.2017.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 01/18/2023]
|
16
|
Ferreira JGP, Bittencourt JC, Adamantidis A. Melanin-concentrating hormone and sleep. Curr Opin Neurobiol 2017; 44:152-158. [DOI: 10.1016/j.conb.2017.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/31/2017] [Accepted: 04/11/2017] [Indexed: 01/11/2023]
|
17
|
Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss. PLoS One 2017; 12:e0178573. [PMID: 28570646 PMCID: PMC5453544 DOI: 10.1371/journal.pone.0178573] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/15/2017] [Indexed: 11/24/2022] Open
Abstract
The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt) neurons are seen in the night compared to the day, and an additional 17% are seen after inhibiting microtubule polymerization with colchicine. We see no such difference between the number of MCH (melanin concentrating hormone) neurons in dark, light or colchicine conditions, despite MCH and Hcrt both being hypothalamic peptide transmitters. Although the size of Hcrt neurons did not differ between light and dark, the size of MCH neurons was increased by 15% in the light phase. The number of neurons containing histidine decarboxylase (HDC), the histamine synthesizing enzyme, was 34% greater in the dark than in the light, but, like Hcrt, cell size did not differ. We did not find a significant difference in the number or the size of neurons expressing choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, in the horizontal diagonal band (HBD) during the dark and light conditions. As expected, colchicine treatment did not increase the number of these neurons. Understanding the function and dynamics of transmitter production within “non-visible” phenotypically defined cells has fundamental implications for our understanding of brain plasticity.
Collapse
|
18
|
Narwade SC, Mallick BN, Deobagkar DD. Transcriptome Analysis Reveals Altered Expression of Memory and Neurotransmission Associated Genes in the REM Sleep Deprived Rat Brain. Front Mol Neurosci 2017; 10:67. [PMID: 28367113 PMCID: PMC5355427 DOI: 10.3389/fnmol.2017.00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Sleep disorders are associated with cognitive impairment. Selective rapid eye movement sleep (REMS) deprivation (REMSD) alters several physiological processes and behaviors. By employing NGS platform we carried out transcriptomic analysis in brain samples of control rats and those exposed to REMSD. The expression of genes involved in chromatin assembly, methylation, learning, memory, regulation of synaptic transmission, neuronal plasticity and neurohypophysial hormone synthesis were altered. Increased transcription of BMP4, DBH and ATP1B2 genes after REMSD supports our earlier findings and hypothesis. Alteration in the transcripts encoding histone subtypes and important players in chromatin remodeling was observed. The mRNAs which transcribe neurotransmitters such as OXT, AVP, PMCH and LNPEP and two small non-coding RNAs, namely RMRP and BC1 were down regulated. At least some of these changes are likely to regulate REMS and may participate in the consequences of REMS loss. Thus, the findings of this study have identified key epigenetic regulators and neuronal plasticity genes associated to REMS and its loss. This analysis provides a background and opens up avenues for unraveling their specific roles in the complex behavioral network particularly in relation to sustained REMS-loss associated changes.
Collapse
Affiliation(s)
- Santosh C Narwade
- Molecular Biology Research Laboratory, Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune University Pune, India
| | | | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Center of Advanced Studies, Department of Zoology, Savitribai Phule Pune UniversityPune, India; Bioinformatics Center, Savitribai Phule Pune UniversityPune, India
| |
Collapse
|
19
|
Abstract
Narcolepsy is a life-long, underrecognized sleep disorder that affects 0.02%-0.18% of the US and Western European populations. Genetic predisposition is suspected because of narcolepsy's strong association with HLA DQB1*06-02, and genome-wide association studies have identified polymorphisms in T-cell receptor loci. Narcolepsy pathophysiology is linked to loss of signaling by hypocretin-producing neurons; an autoimmune etiology possibly triggered by some environmental agent may precipitate hypocretin neuronal loss. Current treatment modalities alleviate the main symptoms of excessive daytime somnolence (EDS) and cataplexy and, to a lesser extent, reduce nocturnal sleep disruption, hypnagogic hallucinations, and sleep paralysis. Sodium oxybate (SXB), a sodium salt of γ hydroxybutyric acid, is a first-line agent for cataplexy and EDS and may help sleep disruption, hypnagogic hallucinations, and sleep paralysis. Various antidepressant medications including norepinephrine serotonin reuptake inhibitors, selective serotonin reuptake inhibitors, and tricyclic antidepressants are second-line agents for treating cataplexy. In addition to SXB, modafinil and armodafinil are first-line agents to treat EDS. Second-line agents for EDS are stimulants such as methylphenidate and extended-release amphetamines. Emerging therapies include non-hypocretin-based therapy, hypocretin-based treatments, and immunotherapy to prevent hypocretin neuronal death. Non-hypocretin-based novel treatments for narcolepsy include pitolisant (BF2.649, tiprolisant); JZP-110 (ADX-N05) for EDS in adults; JZP 13-005 for children; JZP-386, a deuterated sodium oxybate oral suspension; FT 218 an extended-release formulation of SXB; and JNJ-17216498, a new formulation of modafinil. Clinical trials are investigating efficacy and safety of SXB, modafinil, and armodafinil in children. γ-amino butyric acid (GABA) modulation with GABAA receptor agonists clarithromycin and flumazenil may help daytime somnolence. Other drugs investigated include GABAB agonists (baclofen), melanin-concentrating hormone antagonist, and thyrotropin-releasing hormone agonists. Hypocretin-based therapies include hypocretin peptide replacement administered either through an intracerebroventricular route or intranasal route. Hypocretin neuronal transplant and transforming stem cells into hypothalamic neurons are also discussed in this article. Immunotherapy to prevent hypocretin neuronal death is reviewed.
Collapse
Affiliation(s)
- Vivien C Abad
- Department of Psychiatry and Behavioral Sciences, Division of Sleep Medicine, Stanford University Outpatient Center, Redwood City, CA, USA
| | - Christian Guilleminault
- Department of Psychiatry and Behavioral Sciences, Division of Sleep Medicine, Stanford University Outpatient Center, Redwood City, CA, USA
| |
Collapse
|
20
|
Chokroverty S, Provini F. Sleep, Breathing, and Neurologic Disorders. SLEEP DISORDERS MEDICINE 2017:787-890. [DOI: 10.1007/978-1-4939-6578-6_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ. Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 2016; 44:2846-2857. [PMID: 27657541 DOI: 10.1111/ejn.13410] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 01/06/2023]
Abstract
Neurons containing melanin-concentrating hormone (MCH) are located in the hypothalamus. In mice, optogenetic activation of the MCH neurons induces both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep at night, the normal wake-active period for nocturnal rodents [R. R. Konadhode et al. (2013) J. Neurosci., 33, 10257-10263]. Here we selectively activate these neurons in rats to test the validity of the sleep network hypothesis in another species. Channelrhodopsin-2 (ChR2) driven by the MCH promoter was selectively expressed by MCH neurons after injection of rAAV-MCHp-ChR2-EYFP into the hypothalamus of Long-Evans rats. An in vitro study confirmed that the optogenetic activation of MCH neurons faithfully triggered action potentials. In the second study, in Long-Evans rats, rAAV-MCH-ChR2, or the control vector, rAAV-MCH-EYFP, were delivered into the hypothalamus. Three weeks later, baseline sleep was recorded for 48 h without optogenetic stimulation (0 Hz). Subsequently, at the start of the lights-off cycle, the MCH neurons were stimulated at 5, 10, or 30 Hz (1 mW at tip; 1 min on - 4 min off) for 24 h. Sleep was recorded during the 24-h stimulation period. Optogenetic activation of MCH neurons increased both REM and NREM sleep at night, whereas during the day cycle, only REM sleep was increased. Delta power, an indicator of sleep intensity, was also increased. In control rats without ChR2, optogenetic stimulation did not increase sleep or delta power. These results lend further support to the view that sleep-active MCH neurons contribute to drive sleep in mammals.
Collapse
Affiliation(s)
- Carlos Blanco-Centurion
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | - Meng Liu
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | - Roda P Konadhode
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | - Xiaobing Zhang
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| | - Dheeraj Pelluru
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA
| | | | - Priyattam J Shiromani
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, 114 Doughty Street, MSC 404/STB 404, Charleston, SC, 29425, USA.,Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, USA
| |
Collapse
|
22
|
Konadhode RR, Pelluru D, Shiromani PJ. Unihemispheric Sleep: An Enigma for Current Models of Sleep-Wake Regulation. Sleep 2016; 39:491-4. [PMID: 26856898 DOI: 10.5665/sleep.5508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Roda Rani Konadhode
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina
| | - Dheeraj Pelluru
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina
| | - Priyattam J Shiromani
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
23
|
Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, López-Hill X, Chase MH, Monti JM. Melanin-Concentrating Hormone (MCH): Role in REM Sleep and Depression. Front Neurosci 2015; 9:475. [PMID: 26733789 PMCID: PMC4681773 DOI: 10.3389/fnins.2015.00475] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/26/2015] [Indexed: 12/05/2022] Open
Abstract
The melanin-concentrating hormone (MCH) is a peptidergic neuromodulator synthesized by neurons of the lateral sector of the posterior hypothalamus and zona incerta. MCHergic neurons project throughout the central nervous system, including areas such as the dorsal (DR) and median (MR) raphe nuclei, which are involved in the control of sleep and mood. Major Depression (MD) is a prevalent psychiatric disease diagnosed on the basis of symptomatic criteria such as sadness or melancholia, guilt, irritability, and anhedonia. A short REM sleep latency (i.e., the interval between sleep onset and the first REM sleep period), as well as an increase in the duration of REM sleep and the density of rapid-eye movements during this state, are considered important biological markers of depression. The fact that the greatest firing rate of MCHergic neurons occurs during REM sleep and that optogenetic stimulation of these neurons induces sleep, tends to indicate that MCH plays a critical role in the generation and maintenance of sleep, especially REM sleep. In addition, the acute microinjection of MCH into the DR promotes REM sleep, while immunoneutralization of this peptide within the DR decreases the time spent in this state. Moreover, microinjections of MCH into either the DR or MR promote a depressive-like behavior. In the DR, this effect is prevented by the systemic administration of antidepressant drugs (either fluoxetine or nortriptyline) and blocked by the intra-DR microinjection of a specific MCH receptor antagonist. Using electrophysiological and microdialysis techniques we demonstrated also that MCH decreases the activity of serotonergic DR neurons. Therefore, there are substantive experimental data suggesting that the MCHergic system plays a role in the control of REM sleep and, in addition, in the pathophysiology of depression. Consequently, in the present report, we summarize and evaluate the current data and hypotheses related to the role of MCH in REM sleep and MD.
Collapse
Affiliation(s)
- Pablo Torterolo
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Cecilia Scorza
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Patricia Lagos
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Jessika Urbanavicius
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Luciana Benedetto
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Claudia Pascovich
- Department of Physiology, School of Medicine, Universidad de la República Montevideo, Uruguay
| | - Ximena López-Hill
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Michael H Chase
- WebSciences International and University of California, Los Angeles School of Medicine Los Angeles, CA, USA
| | - Jaime M Monti
- Department of Pharmacology and Therapeutics, School of Medicine, Hospital de Clínicas, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
24
|
Dias Abdo Agamme AL, Aguilar Calegare BF, Fernandes L, Costa A, Lagos P, Torterolo P, D'Almeida V. MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction. Peptides 2015; 74:9-15. [PMID: 26456505 DOI: 10.1016/j.peptides.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 01/07/2023]
Abstract
Neurons that utilize melanin-concentrating hormone (MCH) as neuromodulator are located in the lateral hypothalamus and incerto-hypothalamic area. These neurons project throughout the central nervous system and play a role in sleep regulation. With the hypothesis that the MCHergic system function would be modified by the time of the day as well as by disruptions of the sleep-wake cycle, we quantified in rats the concentration of MCH in the cerebrospinal fluid (CSF), the expression of the MCH precursor (Pmch) gene in the hypothalamus, and the expression of the MCH receptor 1 (Mchr1) gene in the frontal cortex and hippocampus. These analyses were performed during paradoxical sleep deprivation (by a modified multiple platform technique), paradoxical sleep rebound and chronic sleep restriction, both at the end of the active (dark) phase (lights were turned on at Zeitgeber time zero, ZT0) and during the inactive (light) phase (ZT8). We observed that in control condition (waking and sleep ad libitum), Mchr1 gene expression was larger at ZT8 (when sleep predominates) than at ZT0, both in frontal cortex and hippocampus. In addition, compared to control, disturbances of the sleep-wake cycle produced the following effects: paradoxical sleep deprivation for 96 and 120 h reduced the expression of Mchr1 gene in frontal cortex at ZT0. Sleep rebound that followed 96 h of paradoxical sleep deprivation increased the MCH concentration in the CSF also at ZT0. Twenty-one days of sleep restriction produced a significant increment in MCH CSF levels at ZT8. Finally, sleep disruptions unveiled day/night differences in MCH CSF levels and in Pmch gene expression that were not observed in control (undisturbed) conditions. In conclusion, the time of the day and sleep disruptions produced subtle modifications in the physiology of the MCHergic system.
Collapse
Affiliation(s)
| | | | - Leandro Fernandes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alicia Costa
- Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Patricia Lagos
- Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Department of Physiology, School of Medicine, Universidad de la República, Montevideo, Uruguay.
| | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J Neurosci 2015; 43:1298-306. [PMID: 26369866 PMCID: PMC4792792 DOI: 10.1111/ejn.13074] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/27/2015] [Accepted: 09/10/2015] [Indexed: 01/05/2023]
Abstract
A distributed network of neurons regulates wake, non‐rapid eye movement (NREM) sleep, and REM sleep. However, there are also glia in the brain, and there is growing evidence that neurons and astroglia communicate intimately to regulate behaviour. To identify the effect of optogenetic stimulation of astrocytes on sleep, the promoter for the astrocyte‐specific cytoskeletal protein, glial fibrillary acidic protein (GFAP) was used to direct the expression of channelrhodopsin‐2 (ChR2) and the linked reporter gene, enhanced yellow fluorescent protein (EYFP), in astrocytes. rAAV‐GFAP‐ChR2 (H134R)‐EYFP or rAAV‐GFAP‐EYFP was microinjected (750 nL) into the posterior hypothalamus (bilateral) of mice. Three weeks later baseline sleep was recorded (0 Hz) and 24 h later optogenetic stimulation applied during the first 6 h of the lights‐off period. Mice with ChR2 were given 5, 10 or 30 Hz stimulation for 6 h (10‐ms pulses; 1 mW; 1 min on 4 min off). At least 36 h elapsed between the stimulation periods (5, 10, 30 Hz) and although 0 Hz was always first, the order of the other three stimulation rates was randomised. In mice with ChR2 (n = 7), 10 Hz, but not 5 or 30 Hz stimulation increased both NREM and REM sleep during the 6‐h period of stimulation. Delta power did not increase. In control mice (no ChR2; n = 5), 10 Hz stimulation had no effect. This study demonstrates that direct stimulation of astrocytes powerfully induces sleep during the active phase of the sleep–wake cycle and underlines the inclusion of astrocytes in network models of sleep–wake regulation.
Collapse
Affiliation(s)
- Dheeraj Pelluru
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Roda Rani Konadhode
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Narayan R Bhat
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Priyattam J Shiromani
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA.,Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| |
Collapse
|
26
|
Abstract
Sleep is expressed as a circadian rhythm and the two phenomena exist in a poorly understood relationship. Light affects each, simultaneously influencing rhythm phase and rapidly inducing sleep. Light has long been known to modulate sleep, but recent discoveries support its use as an effective nocturnal stimulus for eliciting sleep in certain rodents. “Photosomnolence” is mediated by classical and ganglion cell photoreceptors and occurs despite the ongoing high levels of locomotion at the time of stimulus onset. Brief photic stimuli trigger rapid locomotor suppression, sleep, and a large drop in core body temperature (Tc; Phase 1), followed by a relatively fixed duration interval of sleep (Phase 2) and recovery (Phase 3) to pre-sleep activity levels. Additional light can lengthen Phase 2. Potential retinal pathways through which the sleep system might be light-activated are described and the potential roles of orexin (hypocretin) and melanin-concentrating hormone are discussed. The visual input route is a practical avenue to follow in pursuit of the neural circuitry and mechanisms governing sleep and arousal in small nocturnal mammals and the organizational principles may be similar in diurnal humans. Photosomnolence studies are likely to be particularly advantageous because the timing of sleep is largely under experimenter control. Sleep can now be effectively studied using uncomplicated, nonintrusive methods with behavior evaluation software tools; surgery for EEG electrode placement is avoidable. The research protocol for light-induced sleep is easily implemented and useful for assessing the effects of experimental manipulations on the sleep induction pathway. Moreover, the experimental designs and associated results benefit from a substantial amount of existing neuroanatomical and pharmacological literature that provides a solid framework guiding the conduct and interpretation of future investigations.
Collapse
|
27
|
Konadhode RR, Pelluru D, Shiromani PJ. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 2015; 8:244. [PMID: 25620917 PMCID: PMC4287014 DOI: 10.3389/fnsys.2014.00244] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/12/2014] [Indexed: 01/22/2023] Open
Abstract
Neurons containing orexin (hypocretin), or melanin concentrating hormone (MCH) are intermingled with each other in the perifornical and lateral hypothalamus. Each is a separate and distinct neuronal population, but they project to similar target areas in the brain. Orexin has been implicated in regulating arousal since loss of orexin neurons is associated with the sleep disorder narcolepsy. Microinjections of orexin into the brain or optogenetic stimulation of orexin neurons increase waking. Orexin neurons are active in waking and quiescent in sleep, which is consistent with their role in promoting waking. On the other hand, the MCH neurons are quiet in waking but active in sleep, suggesting that they could initiate sleep. Recently, for the first time the MCH neurons were stimulated optogenetically and it increased sleep. Indeed, optogenetic activation of MCH neurons induced sleep in both mice and rats at a circadian time when they should be awake, indicating the powerful effect that MCH neurons have in suppressing the wake-promoting effect of not only orexin but also of all of the other arousal neurotransmitters. Gamma-Aminobutyric acid (GABA) is coexpressed with MCH in the MCH neurons, although MCH is also inhibitory. The inhibitory tone of the MCH neurons is opposite to the excitatory tone of the orexin neurons. We hypothesize that strength in activity of each determines wake vs. sleep.
Collapse
Affiliation(s)
- Roda Rani Konadhode
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA
| | - Dheeraj Pelluru
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA
| | - Priyattam J Shiromani
- Departments of Psychiatry and Behavioral Sciences, Medical University of South Carolina Charleston, SC, USA ; Ralph H. Johnson VA Medical Center, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
28
|
Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 2014; 34:6896-909. [PMID: 24828644 DOI: 10.1523/jneurosci.5344-13.2014] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Melanin-concentrating hormone (MCH) is a neuropeptide produced in neurons sparsely distributed in the lateral hypothalamic area. Recent studies have reported that MCH neurons are active during rapid eye movement (REM) sleep, but their physiological role in the regulation of sleep/wakefulness is not fully understood. To determine the physiological role of MCH neurons, newly developed transgenic mouse strains that enable manipulation of the activity and fate of MCH neurons in vivo were generated using the recently developed knockin-mediated enhanced gene expression by improved tetracycline-controlled gene induction system. The activity of these cells was controlled by optogenetics by expressing channelrhodopsin2 (E123T/T159C) or archaerhodopsin-T in MCH neurons. Acute optogenetic activation of MCH neurons at 10 Hz induced transitions from non-REM (NREM) to REM sleep and increased REM sleep time in conjunction with decreased NREM sleep. Activation of MCH neurons while mice were in NREM sleep induced REM sleep, but activation during wakefulness was ineffective. Acute optogenetic silencing of MCH neurons using archaerhodopsin-T had no effect on any vigilance states. Temporally controlled ablation of MCH neurons by cell-specific expression of diphtheria toxin A increased wakefulness and decreased NREM sleep duration without affecting REM sleep. Together, these results indicate that acute activation of MCH neurons is sufficient, but not necessary, to trigger the transition from NREM to REM sleep and that MCH neurons also play a role in the initiation and maintenance of NREM sleep.
Collapse
|
29
|
Szymusiak RS. New Insights into Melanin Concentrating Hormone and Sleep: A Critical Topics Forum. Sleep 2013. [DOI: 10.5665/sleep.3184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Ronald S. Szymusiak
- Research Service, V.A. Greater Los Angeles Healthcare System and Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|