1
|
Gaudette LM, Swift AM, Horger MN, Holmes JF, Spencer RMC. Pediatric sleep electrophysiology: Using polysomnography in developmental cognitive neuroscience. Dev Cogn Neurosci 2025; 73:101562. [PMID: 40319672 PMCID: PMC12099918 DOI: 10.1016/j.dcn.2025.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025] Open
Abstract
Research suggests a bidirectional relationship between brain and cognitive development and sleep in early childhood. Polysomnography is essential for the investigation of the mechanisms underlying sleep's role in brain and cognitive development. This paper outlines methods for integrating measures of sleep and sleep physiology into cognitive developmental neuroscience research. There are various options when choosing a polysomnography system depending on the research question. We offer considerations such as application time, recording time, montage density and analysis options, and cost. We also review suggestions for modifying procedures with developmental populations to support high quality polysomnography data collection. We hope that this overview will facilitate more developmental cognitive neuroscience studies of sleep to advance our understanding of early brain and cognitive development.
Collapse
Affiliation(s)
- Lena M Gaudette
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, USA
| | - Allison M Swift
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, USA
| | - Melissa N Horger
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, USA
| | - Jennifer F Holmes
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, USA
| | - Rebecca M C Spencer
- Department of Psychological & Brain Sciences, University of Massachusetts, Amherst, USA; Institute for Applied Life Sciences, University of Massachusetts, Amherst, USA.
| |
Collapse
|
2
|
Ventura S, Mathieson SR, O'Toole JM, Livingstone V, Murray DM, Boylan GB. Infant sleep EEG features at 4 months as biomarkers of neurodevelopment at 18 months. Pediatr Res 2025:10.1038/s41390-025-03893-6. [PMID: 39979586 DOI: 10.1038/s41390-025-03893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Sleep parameters evolve in parallel with neurodevelopment. Sleep participates in synaptic homeostasis and memory consolidation and infant sleep parameters correlate with later aspects of early childhood cognition. METHODS Typically developing, term-born infants had a diurnal sleep-EEG at 4 months and Griffiths III developmental assessment at 18 months. EEG analysis included sleep macrostructure (i.e. durations of total sleep and sleep stages, and latencies to sleep and REM), sleep spindle features, and quantitative EEG features (qEEG): interhemispheric connectivity and spectral power. We assessed the correlations between these EEG features and Griffiths III quotients. RESULTS Sleep recordings from 92 infants were analyzed. Sleep latency was positively associated with the Griffiths III Foundations of Learning subscale and N3 sleep duration was positively correlated with the Personal-Social-Emotional subscale. Sleep spindle synchrony was negatively associated with Eye and Hand Coordination, Personal-Social-Emotional, Gross Motor, and General Development quotients. Sleep spindle duration was negatively associated with the Personal-Social-Emotional and Gross Motor subscales. In some sleep states, delta 1 and 2 EEG spectral power and interhemispheric coherence measures were correlated with subscale quotients. CONCLUSION Certain sleep features in the EEG of 4-month-old infants are associated with neurodevelopment at 18 months and may be useful early biomarkers of neurodevelopment. IMPACT This study shows that the EEG during infant sleep may provide insights into later neurodevelopmental outcomes. We have examined novel EEG sleep spindle features and shown that spindle duration and synchrony may help predict neurodevelopmental outcomes. Sleep macrostructure elements such as latency to sleep, N3 duration, and qEEG features such as interhemispheric coherence and spectral power measures at 4 months may be useful for the assessment of future neurodevelopmental outcomes. Due to exceptional neuroplasticity in infancy, EEG biomarkers of neurodevelopment may support early and targeted intervention to optimize outcomes.
Collapse
Affiliation(s)
- Soraia Ventura
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Sean R Mathieson
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - John M O'Toole
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - Vicki Livingstone
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, University College Cork, Cork, Ireland
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland
| | - Geraldine B Boylan
- INFANT Research Centre, University College Cork, Cork, Ireland.
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Kwon H, Chinappen DM, Kinard EA, Goodman SK, Huang JF, Berja ED, Walsh KG, Shi W, Manoach DS, Kramer MA, Chu CJ. Association of Sleep Spindle Rate With Memory Consolidation in Children With Rolandic Epilepsy. Neurology 2025; 104:e210232. [PMID: 39804468 PMCID: PMC11684947 DOI: 10.1212/wnl.0000000000210232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Rolandic epilepsy (RE), the most common childhood focal epilepsy syndrome, is characterized by a transient period of sleep-activated epileptiform activity in the centrotemporal regions and variable cognitive deficits. Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in RE and related sleep-activated epileptic encephalopathies. To further evaluate the association between this electrographic biomarker and cognitive dysfunction in this common disease, we investigate whether children with RE have deficient sleep-dependent memory consolidation and whether impaired memory consolidation is associated with reduced sleep spindles in the centrotemporal regions. METHODS In this prospective case-control study, children were trained and tested on a validated probe of memory consolidation, the motor sequence task (MST). Sleep spindles were measured from high-density EEG during a 90-minute nap opportunity between MST training and testing using an automated sleep spindle detector validated for use in children with and without epilepsy. RESULTS Twenty-three children with RE (9 with active disease, 5F, age 6.9-12.8 years; 14 with resolved disease, 8F, age 8.8-17.8 years) and 19 age-matched and sex-matched controls (8F, age 6.9-18.7 years) were enrolled. Children with active epilepsy had decreased memory consolidation compared with control children (p = 0.001, mean percentage reduction 25.7%, 95% CI 10.3%-41.2%) and compared with children with resolved epilepsy (p = 0.007, mean percentage reduction 21.9%, 95% CI 6.2%-37.6%). Children with active epilepsy had decreased sleep spindle rates in the centrotemporal region compared with controls (p = 0.008, mean decrease 2.5 spindles per minute, 95% CI 0.7-4.4 spindles per minute). Spindle rate, but not spike rate or spike-wave index, correlated with sleep-dependent memory consolidation (p = 0.004, mean MST improvement of 3.9%, 95% CI 1.3%-6.4%, for each unit increase in spindles per minute). DISCUSSION Children with RE have impaired sleep-dependent memory consolidation during the active period of disease that correlates with a deficit in the sleep spindle rate. This finding identifies a noninvasive biomarker to aid diagnosis and a potential etiologic mechanism to guide therapeutic discovery of cognitive dysfunction in RE and related sleep-activated epilepsy syndromes.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA
| | - Dhinakaran M Chinappen
- Department of Neurology, Massachusetts General Hospital, Boston
- Department of Mathematics and Statistics, Boston University, MA
| | | | | | - Jonathan F Huang
- Department of Neurology, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA
| | - Erin D Berja
- Department of Neurology, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA
| | - Katherine G Walsh
- Department of Neurology, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA
| | - Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA
| | - Dara S Manoach
- Harvard Medical School, Boston, MA
- Department of Psychiatry, Massachusetts General Hospital, Boston
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA; and
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, MA
- Center for Systems Neuroscience, Boston University, MA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston
- Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Kurz EM, Schreiber CM, Kölle K, Tunçel Z, Meyer PT, Ngo-Dehning HVV, Conzelmann A, Prehn-Kristensen A. Does sleep help children to generalise features like adults? J Sleep Res 2024:e14432. [PMID: 39647923 DOI: 10.1111/jsr.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
Children and adults have been shown to benefit from sleep with regard to the consolidation of declarative memories. Especially during childhood, the generalisation of information from social and non-social contexts is important for adaptable behaviour in new situations and might show specific features in children. Here, we investigated whether adults (n = 18) and children (n = 19) differ in their generalisation of features assessed in wake and sleep conditions. In a social paradigm, certain face features were associated with different types of offers (fair, unfair, friendly). While children tended to better recognise these faces, adults were better than children at associating the type of offer to unknown faces sharing these features with the previously encoded faces in the sleep condition. To assess generalisation of features in a non-social context, a probabilistic evaluative conditioning paradigm was used, where stimuli were associated with positive or negative values. We found no difference between children and adults or between the sleep and wake condition in the change in evaluation of the conditioned stimuli when paired congruently with a predefined value (positive/negative). Together, our results suggest a differential feature generalisation from mainly social contexts in children compared with adults.
Collapse
Affiliation(s)
- Eva-Maria Kurz
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Clara Marie Schreiber
- Institute of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, School of Medicine, University Medical Centre Schleswig-Holstein- Campus Kiel, Kiel, Germany
| | - Konstantin Kölle
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Zeynep Tunçel
- Institute of Medical Psychology and Behavioural Neurobiology, University of Tübingen, Tübingen, Germany
| | - Paula Theresa Meyer
- Institute of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, School of Medicine, University Medical Centre Schleswig-Holstein- Campus Kiel, Kiel, Germany
| | | | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
- Department of Psychology (Clinical Psychology II), PFH - Private University of Applied Sciences, Göttingen, Germany
| | - Alexander Prehn-Kristensen
- Institute of Child and Adolescent Psychiatry and Psychotherapy, Centre for Integrative Psychiatry, School of Medicine, University Medical Centre Schleswig-Holstein- Campus Kiel, Kiel, Germany
- Department of Psychology, Faculty of Human Sciences, MSH Medical School Hamburg - University of Applied Sciences and Medical University, Hamburg, Germany
| |
Collapse
|
5
|
Shetty M, Davey MJ, Nixon GM, Walter LM, Horne RSC. Sleep spindles are reduced in children with Down syndrome and sleep-disordered breathing. Pediatr Res 2024; 96:457-470. [PMID: 37845520 PMCID: PMC11343711 DOI: 10.1038/s41390-023-02854-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB). We investigated sleep spindle activity, as a marker of sleep quality, and its relationship with daytime functioning in children with DS compared to typically developing (TD) children. METHODS Children with DS and SDB (n = 44) and TD children matched for age, sex and SDB severity underwent overnight polysomnography. Fast or Slow sleep spindles were identified manually during N2/N3 sleep. Spindle activity was characterized as spindle number, density (number of spindles/h) and intensity (density × average duration) on central (C) and frontal (F) electrodes. Parents completed the Child Behavior Check List and OSA-18 questionnaires. RESULTS In children with DS, spindle activity was lower compared to TD children for F Slow and F Slow&Fast spindles combined (p < 0.001 for all). Furthermore, there were no correlations between spindle activity and CBCL subscales; however, spindle activity for C Fast and C Slow&Fast was negatively correlated with OSA-18 emotional symptoms and caregiver concerns and C Fast activity was also negatively correlated with daytime function and total problems. CONCLUSIONS Reduced spindle activity in children with DS may underpin the increased sleep disruption and negative effects of SDB on quality of life and behavior. IMPACT Children with Down syndrome (DS) are at increased risk of sleep-disordered breathing (SDB), which is associated with sleep disruption affecting daytime functioning. Sleep spindles are a sensitive marker of sleep quality. We identified for the first time that children with DS had reduced sleep spindle activity compared to typically developing children matched for SDB severity. The reduced spindle activity likely underpins the more disrupted sleep and may be associated with reduced daytime functioning and quality of life and may also be an early biomarker for an increased risk of developing dementia later in life in children with DS.
Collapse
Affiliation(s)
- Marisha Shetty
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Margot J Davey
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Gillian M Nixon
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Lisa M Walter
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Rosemary S C Horne
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Kwon H, Chinappen DM, Kinard EA, Goodman SK, Huang JF, Berja ED, Walsh KG, Shi W, Manoach DS, Kramer MA, Chu CJ. Impaired sleep-dependent memory consolidation predicted by reduced sleep spindles in Rolandic epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594515. [PMID: 38798414 PMCID: PMC11118409 DOI: 10.1101/2024.05.16.594515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background and Objectives Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in Rolandic epilepsy and related sleep-activated epileptic encephalopathies. We investigate the relationship between sleep spindle deficits and deficient sleep dependent memory consolidation in children with Rolandic epilepsy. Methods In this prospective case-control study, children were trained and tested on a validated probe of memory consolidation, the motor sequence task (MST). Sleep spindles were measured from high-density EEG during a 90-minute nap opportunity between MST training and testing using a validated automated detector. Results Twenty-three children with Rolandic epilepsy (14 with resolved disease), and 19 age- and sex-matched controls were enrolled. Children with active Rolandic epilepsy had decreased memory consolidation compared to control children (p=0.001, mean percentage reduction: 25.7%, 95% CI [10.3, 41.2]%) and compared to children with resolved Rolandic epilepsy (p=0.007, mean percentage reduction: 21.9%, 95% CI [6.2, 37.6]%). Children with active Rolandic epilepsy had decreased sleep spindle rates in the centrotemporal region compared to controls (p=0.008, mean decrease 2.5 spindles/min, 95% CI [0.7, 4.4] spindles/min). Spindle rate positively predicted sleep-dependent memory consolidation (p=0.004, mean MST improvement of 3.9%, 95% CI [1.3, 6.4]%, for each unit increase in spindles per minute). Discussion Children with Rolandic epilepsy have a sleep spindle deficit during the active period of disease which predicts deficits in sleep dependent memory consolidation. This finding provides a mechanism and noninvasive biomarker to aid diagnosis and therapeutic discovery for cognitive dysfunction in Rolandic epilepsy and related sleep activated epilepsy syndromes.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dhinakaran M. Chinappen
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Elizabeth A. Kinard
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Skyler K. Goodman
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jonathan F. Huang
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Erin D. Berja
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine G. Walsh
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dara S. Manoach
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA
| | - Mark A. Kramer
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Catherine J. Chu
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Vitali H, Campus C, Signorini S, De Giorgis V, Morelli F, Varesio C, Pasca L, Sammartano A, Gori M. Blindness affects the developmental trajectory of the sleeping brain. Neuroimage 2024; 286:120508. [PMID: 38181867 DOI: 10.1016/j.neuroimage.2024.120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
Sleep plays a crucial role in brain development, sensory information processing, and consolidation. Sleep spindles are markers of these mechanisms as they mirror the activity of the thalamocortical circuits. Spindles can be subdivided into two groups, slow (10-13 Hz) and fast (13-16 Hz), which are each associated with different functions. Specifically, fast spindles oscillate in the high-sigma band and are associated with sensorimotor processing, which is affected by visual deprivation. However, how blindness influences spindle development has not yet been investigated. We recorded nap video-EEG of 50 blind/severely visually impaired (BSI) and 64 sighted children aged 5 months to 6 years old. We considered aspects of both macro- and micro-structural spindles. The BSI children lacked the evolution of developmental spindles within the central area. Specifically, young BSI children presented low central high-sigma and high-beta (25-30 Hz) event-related spectral perturbation and showed no signs of maturational decrease. High-sigma and high-beta activity in the BSI group correlated with clinical indices predicting perceptual and motor disorders. Our findings suggest that fast spindles are pivotal biomarkers for identifying an early developmental deviation in BSI children. These findings are critical for initial therapeutic intervention.
Collapse
Affiliation(s)
- Helene Vitali
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy; DIBRIS, University of Genova, Genoa 16145, Italy
| | - Claudio Campus
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy
| | - Sabrina Signorini
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Federica Morelli
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Alessia Sammartano
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia 27100, Italy; Member of European Reference Network for Rare and Complex Epilepsies, EpiCARE, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Center for Human Technologies, Fondazione Istituto Italiano di Tecnologia, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, Genoa 16152, Italy.
| |
Collapse
|
8
|
Özbudak P, Özaslan A, Temel EÜ, Güney E, Serdaroğlu A, Arhan E. New Electrographic Marker? Evaluation of Sleep Spindles in Children with Attention Deficit Hyperactivity Disorder. Clin EEG Neurosci 2024; 55:4-10. [PMID: 36259661 DOI: 10.1177/15500594221134025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction: Attention deficit and hyperactivity disorder (ADHD) is one of the most common developmental disorders in childhood which lasts lifelong. Sleep structure and sleep spindle features are disorganized in ADHD. In this study, we aimed to look for a new, simple, inexpensive, and an easily detectable electrographic marker in the diagnosis of ADHD by using electroencephalography (EEG). Method: We included treatment free 35 patients with ADHD and 32 healthy children (HC) who were examined by polysomnography (PSG) and EEG for sleep disorders. The ADHD group were separated into three groups according to predominant presentations of ADHD. We determined the sleep staging and slow and fast sleep spindles, calculated each spindle's amplitude, frequency, activity, duration and density at non rapid eye movement (REM) sleep stage 2. Results: Slow sleep spindle's amplitude, duration, density and activity are significantly higher in ADHD group (most significant in ADHD-I) than the HC group (p < 0,05). Sleep spindle's features are not statistically significant between in ADHD subgroups. Conclusions: In children with ADHD, slow sleep spindles showed higher amplitude, activity, density and duration in the frontal regions. These results indicate that slow sleep spindles in children with ADHD may reflect executive dysfunction and slow frontal spindles may be useful as a new electrographic marker in children with ADHD. This is the first study of its kind evaluating all aspects of sleep spindles in ADHD patients.
Collapse
Affiliation(s)
- Pınar Özbudak
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ahmet Özaslan
- Department of Child and Adolescent Psychiatry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Esra Ülgen Temel
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Esra Güney
- Department of Child and Adolescent Psychiatry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ayşe Serdaroğlu
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ebru Arhan
- Department of Child Neurology, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
9
|
Kozhemiako N, Buckley AW, Chervin RD, Redline S, Purcell SM. Mapping neurodevelopment with sleep macro- and micro-architecture across multiple pediatric populations. Neuroimage Clin 2023; 41:103552. [PMID: 38150746 PMCID: PMC10788305 DOI: 10.1016/j.nicl.2023.103552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Profiles of sleep duration and timing and corresponding electroencephalographic activity reflect brain changes that support cognitive and behavioral maturation and may provide practical markers for tracking typical and atypical neurodevelopment. To build and evaluate a sleep-based, quantitative metric of brain maturation, we used whole-night polysomnography data, initially from two large National Sleep Research Resource samples, spanning childhood and adolescence (total N = 4,013, aged 2.5 to 17.5 years): the Childhood Adenotonsillectomy Trial (CHAT), a research study of children with snoring without neurodevelopmental delay, and Nationwide Children's Hospital (NCH) Sleep Databank, a pediatric sleep clinic cohort. Among children without neurodevelopmental disorders (NDD), sleep metrics derived from the electroencephalogram (EEG) displayed robust age-related changes consistently across datasets. During non-rapid eye movement (NREM) sleep, spindles and slow oscillations further exhibited characteristic developmental patterns, with respect to their rate of occurrence, temporal coupling and morphology. Based on these metrics in NCH, we constructed a model to predict an individual's chronological age. The model performed with high accuracy (r = 0.93 in the held-out NCH sample and r = 0.85 in a second independent replication sample - the Pediatric Adenotonsillectomy Trial for Snoring (PATS)). EEG-based age predictions reflected clinically meaningful neurodevelopmental differences; for example, children with NDD showed greater variability in predicted age, and children with Down syndrome or intellectual disability had significantly younger brain age predictions (respectively, 2.1 and 0.8 years less than their chronological age) compared to age-matched non-NDD children. Overall, our results indicate that sleep architectureoffers a sensitive window for characterizing brain maturation, suggesting the potential for scalable, objective sleep-based biomarkers to measure neurodevelopment.
Collapse
Affiliation(s)
- N Kozhemiako
- Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - A W Buckley
- Sleep & Neurodevelopment Core, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - R D Chervin
- Sleep Disorders Center and Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - S Redline
- Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA; Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - S M Purcell
- Brigham and Women's Hospital & Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Joechner AK, Hahn MA, Gruber G, Hoedlmoser K, Werkle-Bergner M. Sleep spindle maturity promotes slow oscillation-spindle coupling across child and adolescent development. eLife 2023; 12:e83565. [PMID: 37999945 PMCID: PMC10672804 DOI: 10.7554/elife.83565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023] Open
Abstract
The synchronization of canonical fast sleep spindle activity (12.5-16 Hz, adult-like) precisely during the slow oscillation (0.5-1 Hz) up peak is considered an essential feature of adult non-rapid eye movement sleep. However, there is little knowledge on how this well-known coalescence between slow oscillations and sleep spindles develops. Leveraging individualized detection of single events, we first provide a detailed cross-sectional characterization of age-specific patterns of slow and fast sleep spindles, slow oscillations, and their coupling in children and adolescents aged 5-6, 8-11, and 14-18 years, and an adult sample of 20- to 26-year-olds. Critically, based on this, we then investigated how spindle and slow oscillation maturity substantiate age-related differences in their precise orchestration. While the predominant type of fast spindles was development-specific in that it was still nested in a frequency range below the canonical fast spindle range for the majority of children, the well-known slow oscillation-spindle coupling pattern was evident for sleep spindles in the adult-like canonical fast spindle range in all four age groups-but notably less precise in children. To corroborate these findings, we linked personalized measures of fast spindle maturity, which indicate the similarity between the prevailing development-specific and adult-like canonical fast spindles, and slow oscillation maturity, which reflects the extent to which slow oscillations show frontal dominance, with individual slow oscillation-spindle coupling patterns. Importantly, we found that fast spindle maturity was uniquely associated with enhanced slow oscillation-spindle coupling strength and temporal precision across the four age groups. Taken together, our results suggest that the increasing ability to generate adult-like canonical fast sleep spindles actuates precise slow oscillation-spindle coupling patterns from childhood through adolescence and into young adulthood.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
- Hertie-Institute for Clinical Brain Research, University Medical Center Tuebingen, Tuebingen, Germany
| | - Georg Gruber
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- The Siesta Group, Vienna, Austria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of Salzburg, Salzburg, Austria
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
11
|
McLaren JR, Luo Y, Kwon H, Shi W, Kramer MA, Chu CJ. Preliminary evidence of a relationship between sleep spindles and treatment response in epileptic encephalopathy. Ann Clin Transl Neurol 2023; 10:1513-1524. [PMID: 37363864 PMCID: PMC10502632 DOI: 10.1002/acn3.51840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE Epileptic encephalopathy with spike-wave activation in sleep (EE-SWAS) is a challenging neurodevelopmental disease characterized by abundant epileptiform spikes during non-rapid eye movement (NREM) sleep accompanied by cognitive dysfunction. The mechanism of cognitive dysfunction is unknown, but treatment with high-dose diazepam may improve symptoms. Spike rate does not predict treatment response, but spikes may disrupt sleep spindles. We hypothesized that in patients with EE-SWAS: (1) spikes and spindles would be anti-correlated, (2) high-dose diazepam would increase spindles and decrease spikes, and (3) spindle response would be greater in those with cognitive improvement. METHODS Consecutive EE-SWAS patients treated with high-dose diazepam that met the criteria were included. Using a validated automated spindle detector, spindle rate, duration, and percentage were computed in pre- and post-treatment NREM sleep. Spikes were quantified using a validated automated spike detector. The cognitive response was determined from a chart review. RESULTS Spindle rate was anti-correlated with the spike rate in the channel with the maximal spike rate (p = 0.002) and averaged across all channels (p = 0.0005). Spindle rate, duration, and percentage each increased, and spike rate decreased, after high-dose diazepam treatment (p ≤ 2e-5, all tests). Spindle rate, duration, and percentage (p ≤ 0.004, all tests) were increased in patients with cognitive improvement after treatment, but not those without. Changes in spindle rate but not changes in spike rate distinguished between groups. INTERPRETATION These findings confirm thalamocortical disruption in EE-SWAS, identify a mechanism through which benzodiazepines may support cognitive recovery, and introduce sleep spindles as a promising mechanistic biomarker to detect treatment response in severe epileptic encephalopathies.
Collapse
Affiliation(s)
- John R. McLaren
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Yancheng Luo
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Hunki Kwon
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Wen Shi
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| | - Mark A. Kramer
- Department of Mathematics and Statistics & Center for Systems NeuroscienceBoston UniversityBoston02215MassachusettsUSA
| | - Catherine J. Chu
- Department of NeurologyMassachusetts General HospitalBoston02114MassachusettsUSA
- Harvard Medical SchoolBoston02115MassachusettsUSA
| |
Collapse
|
12
|
Teh JZ, Grummitt L, Haroutonian C, Cross NE, Skinner B, Bartlett DJ, Yee B, Grunstein RR, Naismith SL, D’Rozario AL. Overnight declarative memory consolidation and non-rapid eye movement sleep electroencephalographic oscillations in older adults with obstructive sleep apnea. Sleep 2023; 46:zsad087. [PMID: 37052122 PMCID: PMC10666962 DOI: 10.1093/sleep/zsad087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/01/2023] [Indexed: 04/14/2023] Open
Abstract
STUDY OBJECTIVES To compare overnight declarative memory consolidation and non-rapid eye movement (NREM) sleep electroencephalogram (EEG) oscillations in older adults with obstructive sleep apnea (OSA) to a control group and assess slow-wave activity (SWA) and sleep spindles as correlates of memory consolidation. METHODS Forty-six older adults (24 without OSA and 22 with OSA) completed a word-pair associate's declarative memory task before and after polysomnography. Recall and recognition were expressed as a percentage of the morning relative to evening scores. Power spectral analysis was performed on EEG recorded at frontal (F3-M2, F4-M1) and central (C3-M2, C4-M1) sites. We calculated NREM absolute slow oscillation (0.25-1 Hz) and delta (0.5-4.5 Hz) EEG power, and slow (11-13 Hz) spindle density (number of events per minute of N2 sleep) and fast (13-16 Hz) spindle density. RESULTS There were no significant differences in overnight recall and recognition between OSA (mean age 58.7 ± 7.1 years, apnea-hypopnea index (AHI) 41.9 ± 29.7 events/hour) and non-OSA (age 61.1 ± 10.3 years, AHI 6.6 ± 4.2 events/hour) groups. The OSA group had lower fast spindle density in the frontal region (p = 0.007). No between-group differences in SWA were observed. In the Control group, overnight recognition positively correlated with slow spindle density in frontal (rho = 0.555, p = 0.020) and central regions (rho = 0.490, p = 0.046). Overnight recall was not related to SWA or spindle measures in either group. CONCLUSIONS Older adults with OSA had deficits in fast sleep spindles but showed preserved overnight declarative memory consolidation. It is possible that compensatory mechanisms are being recruited by OSA patients to preserve declarative memory consolidation despite the presence of sleep spindle deficits.
Collapse
Affiliation(s)
- Jun Z Teh
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Lucinda Grummitt
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Carla Haroutonian
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Nathan E Cross
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Bradley Skinner
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Delwyn J Bartlett
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Brendon Yee
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D’Rozario
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- CIRUS Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
13
|
McLaren JR, Luo Y, Kwon H, Shi W, Kramer MA, Chu CJ. Preliminary evidence of a relationship between sleep spindles and treatment response in epileptic encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537937. [PMID: 37163098 PMCID: PMC10168273 DOI: 10.1101/2023.04.22.537937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Objective Epileptic encephalopathy with spike wave activation in sleep (EE-SWAS) is a challenging neurodevelopmental disease characterized by abundant epileptiform spikes during non-rapid eye movement (NREM) sleep accompanied by cognitive dysfunction. The mechanism of cognitive dysfunction is unknown, but treatment with high-dose diazepam may improve symptoms. Spike rate does not predict treatment response, but spikes may disrupt sleep spindles. We hypothesized that in patients with EE-SWAS: 1) spikes and spindles would be anticorrelated, 2) high-dose diazepam would increase spindles and decrease spikes, and 3) spindle response would be greater in those with cognitive improvement. Methods Consecutive EE-SWAS patients treated with high-dose diazepam that met criteria were included. Using a validated automated spindle detector, spindle rate, duration, and percentage were computed in pre- and post-treatment NREM sleep. Spikes were quantified using a validated automated spike detector. Cognitive response was determined from chart review. Results Spindle rate was anticorrelated with spike rate in the channel with the maximal spike rate ( p =0.002) and averaged across all channels ( p =0.0005). Spindle rate, duration, and percentage each increased, and spike rate decreased, after high-dose diazepam treatment ( p≤ 2e-5, all tests). Spindle rate, duration, and percentage ( p ≤0.004, all tests) were increased in patients with cognitive improvement after treatment, but not those without. Changes in spike rate did not distinguish between groups. Interpretation These findings confirm thalamocortical disruption in EE-SWAS, identify a mechanism through which benzodiazepines may support cognitive recovery, and introduce sleep spindles as a promising mechanistic biomarker to detect treatment response in severe epileptic encephalopathies.
Collapse
Affiliation(s)
- John R McLaren
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Yancheng Luo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Wen Shi
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| | - Mark A Kramer
- Department of Mathematics and Statistics & Center for Systems Neuroscience, Boston University, Boston, MA, USA 02215
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA 02114
- Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
14
|
Kwon H, Walsh KG, Berja ED, Manoach DS, Eden UT, Kramer MA, Chu CJ. Sleep spindles in the healthy brain from birth through 18 years. Sleep 2023; 46:zsad017. [PMID: 36719044 PMCID: PMC10091086 DOI: 10.1093/sleep/zsad017] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/16/2022] [Indexed: 02/01/2023] Open
Abstract
STUDY OBJECTIVE Sleep spindles are present from birth and reflect cognitive functions across the lifespan, but normative values for this cognitive biomarker across development are lacking. This study aims to establish normative spindle features over development. METHODS All available normal 19-channel electroencephalograms from developmentally normal children between February 2002 and June 2021 in the MGH EEG lab were analyzed. Approximately, 20 000 spindles were hand-marked to train and validate an automated spindle detector across ages. Normative values for spindle rate, duration, frequency, refractory period, and interhemispheric lag are provided for each channel and each age. RESULTS Sleep EEGs from 567 developmentally normal children (range 0 days to 18 years) were included. The detector had excellent performance (F1 = 0.47). Maximal spindle activity is seen over central regions during infancy and adolescence and frontopolar regions during childhood. Spindle rate and duration increase nonlinearly, with the most rapid changes during the first 4 months of life and between ages 3 and 14 years. Peak spindle frequency follows a U-shaped curve and discrete frontal slow and central fast spindles are evident by 18 months. Spindle refractory periods decrease between ages 1 and 14 years while interhemispheric asynchrony decreases over the first 3 months of life and between ages 1 and 14 years. CONCLUSIONS These data provide age- and region-specific normative values for sleep spindles across development, where measures that deviate from these values can be considered pathological. As spindles provide a noninvasive biomarker for cognitive function across the lifespan, these normative measures can accelerate the discovery and diagnosis in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katherine G Walsh
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Erin D Berja
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dara S Manoach
- Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Uri T Eden
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Chen C, Wang K, Belkacem AN, Lu L, Yi W, Liang J, Huang Z, Ming D. A comparative analysis of sleep spindle characteristics of sleep-disordered patients and normal subjects. Front Neurosci 2023; 17:1110320. [PMID: 37065923 PMCID: PMC10098120 DOI: 10.3389/fnins.2023.1110320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/24/2023] [Indexed: 03/31/2023] Open
Abstract
Spindles differ in density, amplitude, and frequency, and these variations reflect different physiological processes. Sleep disorders are characterized by difficulty in falling asleep and maintaining sleep. In this study, we proposed a new spindle wave detection algorithm, which was more effective compared with traditional detection algorithms such as wavelet algorithm. Besides, we recorded EEG data from 20 subjects with sleep disorders and 10 normal subjects, and then we compared the spindle characteristics of sleep-disordered subjects and normal subjects (those without any sleep disorder) to assess the spindle activity during human sleep. Specifically, we scored 30 subjects on the Pittsburgh Sleep Quality Index and then analyzed the association between their sleep quality scores and spindle characteristics, reflecting the effect of sleep disorders on spindle characteristics. We found a significant correlation between the sleep quality score and spindle density (p = 1.84 × 10−8, p-value <0.05 was considered statistically significant.). We, therefore, concluded that the higher the spindle density, the better the sleep quality. The correlation analysis between the sleep quality score and mean frequency of spindles yielded a p-value of 0.667, suggesting that the spindle frequency and sleep quality score were not significantly correlated. The p-value between the sleep quality score and spindle amplitude was 1.33 × 10−4, indicating that the mean amplitude of the spindle decreases as the score increases, and the mean spindle amplitude is generally slightly higher in the normal population than in the sleep-disordered population. The normal and sleep-disordered groups did not show obvious differences in the number of spindles between symmetric channels C3/C4 and F3/F4. The difference in the density and amplitude of the spindles proposed in this paper can be a reference characteristic for the diagnosis of sleep disorders and provide valuable objective evidence for clinical diagnosis. In summary, our proposed detection method can effectively improve the accuracy of sleep spindle wave detection with stable performance. Meanwhile, our study shows that the spindle density, frequency and amplitude are different between the sleep-disordered and normal populations.
Collapse
Affiliation(s)
- Chao Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, China
| | - Kun Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Lin Lu
- Zhonghuan Information College Tianjin University of Technology, Tianjin, China
| | - Weibo Yi
- Beijing Machine and Equipment Institute, Beijing, China
| | - Jun Liang
- Department of Rehabilitation, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
- *Correspondence: Zhaoyang Huang,
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Dong Ming,
| |
Collapse
|
16
|
The effects of sleep disordered breathing on sleep spindle activity in children and the relationship with sleep, behavior and neurocognition. Sleep Med 2023; 101:468-477. [PMID: 36521367 DOI: 10.1016/j.sleep.2022.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
STUDY OBJECTIVES Obstructive sleep disordered breathing (SDB), has adverse neurocognitive and behavioral sequelae in children, despite conventional measures of sleep disruption being unaffected. There is growing evidence that sleep spindles may serve as a more sensitive marker of sleep quality. We investigated the relationship between sleep spindles and sleep fragmentation and neurocognition across the spectrum of SDB severity in children. METHODS Children 3-12 years old referred for clinical assessment of SDB and age matched control children from the community were recruited and underwent polysomnography. Sleep spindles were identified manually during N2 and N3 sleep. Spindle activity was characterised as spindle number, density (number of spindles/h) and intensity (spindle density x average spindle duration). Children completed a battery of tests assessing global intellectual ability, language, attention, visuospatial ability, sensorimotor skills, adaptive behaviors and skills and problem behaviors and emotional difficulties. RESULTS Children were grouped into control, Primary Snoring, Mild OSA and Moderate/severe OSA, N = 10/group. All measures of spindle activity were lower in the SDB groups compared to the Control children and this reached statistical significance for Mild OSA (p < 0.05 for all). Higher spindle indices were associated with better performance on executive function and visual ability assessments but poorer performance on auditory attention and communication skills. Higher spindle indices were associated with better behavior. CONCLUSION The reduced spindle activity observed in the children with SDB, particularly Mild OSA, indicates that sleep micro-architecture is disrupted and that this disruption may underpin the negative effects of SDB on attention, learning and memory.
Collapse
|
17
|
Ganz M, Jacobs M, Alessandro C, Sabzanov S, Karp A, Wei L, Miller D. Physical Activity and Sleeping Duration Among Adolescents in the US. Cureus 2022; 14:e29669. [DOI: 10.7759/cureus.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
|
18
|
Belli A, Breda M, Di Maggio C, Esposito D, Marcucci L, Bruni O. Children with neurodevelopmental disorders: how do they sleep? Curr Opin Psychiatry 2022; 35:345-351. [PMID: 35165244 DOI: 10.1097/yco.0000000000000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review we summarized the available evidence on sleep disorders in children with neurodevelopmental disorders (NDDs) in particular: intellectual disability (including some genetic conditions such as Prader-Willi Syndrome, Smith-Magenis Syndrome), Autism spectrum disorder, attention-deficit/hyperactivity disorder (ADHD), Developmental Coordination Disorder, language disorders, and specific learning disorders. RECENT FINDINGS Children with NDDs frequently suffer from sleep disturbances, with a higher prevalence than that of the general pediatric population. SUMMARY These problems tend to be chronic and may cause additional cognitive and behavioral difficulties, often affecting the whole family's well-being. Sleep behaviors are also related to other important developmental skills, such as attention and listening. Investigating sleep disorders in children with NDDs is therefore crucial in clinical practice. For a systematic approach in clinical practice, we propose the use of a short and easy to remember sleep screening tool.
Collapse
Affiliation(s)
- Arianna Belli
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences
| | - Maria Breda
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences
| | - Chiara Di Maggio
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences
- PhD Program in Behavioral Neuroscience, Department of Psychology
| | - Dario Esposito
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences
| | - Lavinia Marcucci
- Child Neurology and Psychiatry Unit, Department of Human Neurosciences
| | - Oliviero Bruni
- Department of Social and Developmental Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
19
|
Neurocognitive Consequences in Children with Sleep Disordered Breathing: Who Is at Risk? CHILDREN 2022; 9:children9091278. [PMID: 36138586 PMCID: PMC9497121 DOI: 10.3390/children9091278] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Sleep-disordered breathing (SDB) is a prevalent disease in children characterized by snoring and narrowing of the upper airway leading to gas exchange abnormalities during sleep as well as sleep fragmentation. SDB has been consistently associated with problematic behaviors and adverse neurocognitive consequences in children but causality and determinants of susceptibility remain incompletely defined. Since the 1990s several studies have enlightened these associations and consistently reported poorer academic performance, lower scores on neurocognitive tests, and behavioral abnormalities in children suffering from SDB. However, not all children with SDB develop such consequences, and severity of SDB based on standard diagnostic indices has often failed to discriminate among those children with or without neurocognitive risk. Accordingly, a search for discovery of markers and clinically useful tools that can detect those children at risk for developing cognitive and behavioral deficits has been ongoing. Here, we review the advances in this field and the search for possible detection approaches and unique phenotypes of children with SDB who are at greater risk of developing neurocognitive consequences.
Collapse
|
20
|
Malerba P, Whitehurst L, Mednick SC. The space-time profiles of sleep spindles and their coordination with slow oscillations on the electrode manifold. Sleep 2022; 45:6603295. [PMID: 35666552 PMCID: PMC9366646 DOI: 10.1093/sleep/zsac132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep spindles are important for sleep quality and cognitive functions, with their coordination with slow oscillations (SOs) potentially organizing cross-region reactivation of memory traces. Here, we describe the organization of spindles on the electrode manifold and their relation to SOs. We analyzed the sleep night EEG of 34 subjects and detected spindles and SOs separately at each electrode. We compared spindle properties (frequency, duration, and amplitude) in slow wave sleep (SWS) and Stage 2 sleep (S2); and in spindles that coordinate with SOs or are uncoupled. We identified different topographical spindle types using clustering analysis that grouped together spindles co-detected across electrodes within a short delay (±300 ms). We then analyzed the properties of spindles of each type, and coordination to SOs. We found that SWS spindles are shorter than S2 spindles, and spindles at frontal electrodes have higher frequencies in S2 compared to SWS. Furthermore, S2 spindles closely following an SO (about 10% of all spindles) show faster frequency, shorter duration, and larger amplitude than uncoupled ones. Clustering identified Global, Local, Posterior, Frontal-Right and Left spindle types. At centro-parietal locations, Posterior spindles show faster frequencies compared to other types. Furthermore, the infrequent SO-spindle complexes are preferentially recruiting Global SO waves coupled with fast Posterior spindles. Our results suggest a non-uniform participation of spindles to complexes, especially evident in S2. This suggests the possibility that different mechanisms could initiate an SO-spindle complex compared to SOs and spindles separately. This has implications for understanding the role of SOs-spindle complexes in memory reactivation.
Collapse
Affiliation(s)
- Paola Malerba
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children’s Hospital , Columbus, OH , USA
- School of Medicine, The Ohio State University , Columbus, OH , USA
| | - Lauren Whitehurst
- Department of Psychology, University of Kentucky , Lexington, KY , USA
| | - Sara C Mednick
- Department of Cognitive Science, University of California Irvine , Irvine, CA , USA
| |
Collapse
|
21
|
Lah S, Bogdanov S, Brookes N, Epps A, Teng A, Ocampo IMB, Naismith S. Convergent validity of the child behavior checklist sleep items in children with moderate to severe traumatic brain injury. Brain Inj 2022; 36:750-758. [PMID: 35622928 DOI: 10.1080/02699052.2022.2077444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AIM The Child Behavior Checklist (CBCL) includes several sleep items. We aimed to examine the convergent validity of CBCL sleep scores with validated sleep measures, and to explore their functional correlates. METHODS This cross-sectional study included 44 children with moderate to severe TBI, aged 6-15 years. Parents completed the CBCL and Sleep Disturbance Scale for Children (SDSC), and children wore actigraphy watches. RESULTS We found significant, albeit differential, associations between CBCL and SDSC sleep scores. Specifically: (i) "trouble sleeping" with SDSC total score, (ii) "trouble sleeping" and "nightmares" with SDSC initiating and maintaining sleep, (iii) "talks/walks in sleep" with SDSC arousal, and (iv) "overtired," "sleeps more" and CBCL sleep composite with SDSC excessive somnolence. The CBCL item "sleeps less" was the only significant predictor of functioning; children who slept less had lower social competence. No associations were found between CBCL sleep scores and actigraphy. CONCLUSIONS The CBCL does not provide a comprehensive assessment of sleep disturbances in children with moderate to severe TBI. Nevertheless, certain CBCL sleep items demonstrate initial convergent validity with subscales of the SDSC assessing select types of sleep disturbances. The CBCL may be useful in research and clinical situations when administration of more comprehensive assessment sleep tools is not viable.
Collapse
Affiliation(s)
- Suncica Lah
- School of Psychology, The University of Sydney, Camperdown, New South Wales, Australia
| | - Stefan Bogdanov
- School of Psychology, The University of Sydney, Camperdown, New South Wales, Australia
| | - Naomi Brookes
- Rehab2Kids, Rehabilitation Unit, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Adrienne Epps
- Rehab2Kids, Rehabilitation Unit, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Arthur Teng
- Department of Sleep Medicine, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Paediatrics and Women's Health, University of New South Wales, Kensington, New South Wales, Australia
| | | | - Sharon Naismith
- School of Psychology, The University of Sydney, Camperdown, New South Wales, Australia.,Brain and Mind Centre, and Charles Perkins Centre, The University of Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Page J, Wakschlag LS, Norton ES. Nonrapid eye movement sleep characteristics and relations with motor, memory, and cognitive ability from infancy to preadolescence. Dev Psychobiol 2021; 63:e22202. [PMID: 34813099 PMCID: PMC8898567 DOI: 10.1002/dev.22202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
Sleep plays a critical role in neural neurodevelopment. Hallmarks of sleep reflected in the electroencephalogram during nonrapid eye movement (NREM) sleep are associated with learning processes, cognitive ability, memory, and motor functioning. Research in adults is well-established; however, the role of NREM sleep in childhood is less clear. Growing evidence suggests the importance of two NREM sleep features: slow-wave activity and sleep spindles. These features may be critical for understanding maturational change and the functional role of sleep during development. Here, we review the literature on NREM sleep from infancy to preadolescence to provide insight into the network dynamics of the developing brain. The reviewed findings show distinct relations between topographical and maturational aspects of slow waves and sleep spindles; however, the direction and consistency of these relationships vary, and associations with cognitive ability remain unclear. Future research investigating the role of NREM sleep and development would benefit from longitudinal approaches, increased control for circadian and homeostatic influences, and in early childhood, studies recording daytime naps and overnight sleep to yield increased precision for detecting age-related change. Such evidence could help explicate the role of NREM sleep and provide putative physiological markers of neurodevelopment.
Collapse
Affiliation(s)
- Jessica Page
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
| | - Lauren S. Wakschlag
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| | - Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication
Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Northwestern University Institute for Innovations in
Developmental Sciences, Chicago, Illinois, USA
- Department of Medical Social Sciences, Feinberg School of
Medicine, Northwestern, University, Chicago, Illinois, USA
| |
Collapse
|
23
|
Ventura S, Mathieson SR, O'Toole JM, Livingstone V, Ryan MA, Boylan GB. EEG sleep macrostructure and sleep spindles in early infancy. Sleep 2021; 45:6424963. [PMID: 34755881 PMCID: PMC8754499 DOI: 10.1093/sleep/zsab262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/22/2021] [Indexed: 11/29/2022] Open
Abstract
Study Objectives Sleep features in infancy are potential biomarkers for brain maturation but poorly characterized. We describe normative values for sleep macrostructure and sleep spindles at 4–5 months of age. Methods Healthy term infants were recruited at birth and had daytime sleep electroencephalograms (EEGs) at 4–5 months. Sleep staging was performed and five features were analyzed. Sleep spindles were annotated and seven quantitative features were extracted. Features were analyzed across sex, recording time (am/pm), infant age, and from first to second sleep cycles. Results We analyzed sleep recordings from 91 infants, 41% females. Median (interquartile range [IQR]) macrostructure results: sleep duration 49.0 (37.8–72.0) min (n = 77); first sleep cycle duration 42.8 (37.0–51.4) min; rapid eye movement (REM) percentage 17.4 (9.5–27.7)% (n = 68); latency to REM 36.0 (30.5–41.1) min (n = 66). First cycle median (IQR) values for spindle features: number 241.0 (193.0–286.5), density 6.6 (5.7–8.0) spindles/min (n = 77); mean frequency 13.0 (12.8–13.3) Hz, mean duration 2.9 (2.6–3.6) s, spectral power 7.8 (4.7–11.4) µV2, brain symmetry index 0.20 (0.16–0.29), synchrony 59.5 (53.2–63.8)% (n = 91). In males, spindle spectral power (µV2) was 24.5% lower (p = .032) and brain symmetry index 24.2% higher than females (p = .011) when controlling for gestational and postnatal age and timing of the nap. We found no other significant associations between studied sleep features and sex, recording time (am/pm), or age. Spectral power decreased (p < .001) on the second cycle. Conclusion This normative data may be useful for comparison with future studies of sleep dysfunction and atypical neurodevelopment in infancy. Clinical Trial Registration: BABY SMART (Study of Massage Therapy, Sleep And neurodevelopMenT) (BabySMART) URL: https://clinicaltrials.gov/ct2/show/results/NCT03381027?view=results. ClinicalTrials.gov Identifier: NCT03381027
Collapse
Affiliation(s)
- Soraia Ventura
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Sean R Mathieson
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - John M O'Toole
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Vicki Livingstone
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Mary-Anne Ryan
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| | - Geraldine B Boylan
- Department of Paediatrics & Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, University College Cork, Ireland
| |
Collapse
|
24
|
Piro JM, Ortiz C, Manouvrier L. Sleep Behaviors and Handedness in Gifted and Non-Gifted Children. Dev Neuropsychol 2021; 46:425-434. [PMID: 34553664 DOI: 10.1080/87565641.2021.1973473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Patterns of sleep behaviors appear to differ across students with special needs including those classified with developmental disorders, attention-deficit/hyperactivity disorder, and autism. One understudied segment of the special needs population is that of gifted children, students who bring their own unique set of behavioral characteristics. In the present study, it was hypothesized that because of unique cognitive and socio-emotional intensities, gifted children would experience elevated levels of sleep disturbance in comparison to their non-gifted peers. Handedness was also surveyed for additional insight into cerebral organization. The study's participants were 35 gifted and 23 non-gifted students between the ages of 8-12. To measure sleep behaviors, data from the Child Sleep Habits Questionnaire (Abbreviated), Sleep Self-Report, and a sleep diary were collected. To assess handedness, the Edinburgh Handedness Inventory was administered. Results indicated that although gifted students did trend toward experiencing more sleep disturbance, when compared to non-gifted students, no significant differences were found in mean bedtime, hours slept, sleeping problems, or use of electronic devices before bedtime. In terms of handedness, gifted participants displayed more left-hand bias. Although no differences were found between sleep patterns of gifted vs. non-gifted children, this study adds to the limited evidential base on gifted children, handedness, and sleep. Additional research on sleep behaviors within this special needs cohort may be warranted.
Collapse
Affiliation(s)
- Joseph M Piro
- College of Education and Information Technology, Long Island University, Brookville, New York, USA.,Center for Gifted Youth, Long Island University, Brookville, New York, USA
| | | | - Lynne Manouvrier
- College of Education and Information Technology, Long Island University, Brookville, New York, USA.,Center for Gifted Youth, Long Island University, Brookville, New York, USA
| |
Collapse
|
25
|
Sex and Pubertal Differences in the Maturational Trajectories of Sleep Spindles in the Transition from Childhood to Adolescence: A Population-Based Study. eNeuro 2021; 8:ENEURO.0257-21.2021. [PMID: 34168053 PMCID: PMC8281264 DOI: 10.1523/eneuro.0257-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
Sleep spindles, bursts of electroencephalogram (EEG) activity in the σ-frequency (11–16 Hz) range, may be biomarkers of cortical development. Studies capturing the transition to adolescence are needed to delineate age-related, sex-related, and pubertal-related changes in sleep spindles at the population-level. We analyzed the sleep EEG of 572 subjects 6–21 years (48% female) and 332 subjects 5–12 years (46% female) followed-up at 12–22 years. From 6 to 21 years, spindle density (p quadratic = 0.019) and fast (12–16 Hz) spindle percent (p quadratic = 0.016) showed inverted U-shaped trajectories, with plateaus after 15 and 19 years, respectively. Spindle frequency increased (p linear < 0.001), while spindle power decreased (p linear < 0.001) from 6 to 21 years. The trajectories of spindle density, frequency, and fast spindle percent diverged between females and males, in whom density plateaued by 14 years, fast spindle percent by 16 years, and frequency by 18 years, while fast spindle percent and spindle frequency continued to increase until 21 years in females. Males experienced a longitudinal increase in spindle density 31% greater than females by 12–14 years (p = 0.006). Females experienced an increase in spindle frequency and fast spindle percent 2% and 41% greater, respectively, than males by 18–22 years (both p = 0.004), while males experienced a 14% greater decline in spindle power by 18–22 years (p = 0.018). Less mature adolescents (86% male) experienced a longitudinal increase in spindle density 36% greater than mature adolescents by 12–14 years (p = 0.002). Overall, males experience greater maturational changes in spindle density in the transition to adolescence, driven by later pubertal development, and sex differences become prominent in early adulthood when females have greater spindle power, frequency, and fast spindle percent.
Collapse
|
26
|
Campbell IG, Cruz-Basilio A, Darchia N, Zhang ZY, Feinberg I. Effects of sleep restriction on the sleep electroencephalogram of adolescents. Sleep 2021; 44:6121931. [PMID: 33507305 DOI: 10.1093/sleep/zsaa280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES This report describes findings from an ongoing longitudinal study of the effects of varied sleep durations on wake and sleep electroencephalogram (EEG) and daytime function in adolescents. Here, we focus on the effects of age and time in bed (TIB) on total sleep time (TST) and nonrapid eye movement (NREM) and rapid eye movement (REM) EEG. METHODS We studied 77 participants (41 male) ranging in age from 9.9 to 16.2 years over the 3 years of this study. Each year, participants adhered to each of three different sleep schedules: four consecutive nights of 7, 8.5, or 10 h TIB. RESULTS Altering TIB successfully modified TST, which averaged 406, 472 and 530 min on the fourth night of 7, 8.5, and 10 h TIB, respectively. As predicted by homeostatic models, shorter sleep durations produced higher delta power in both NREM and REM although these effects were small. Restricted sleep more substantially reduced alpha power in both NREM and REM sleep. In NREM but not REM sleep, sleep restriction strongly reduced both the all-night accumulation of sigma EEG activity (11-15 Hz energy) and the rate of sigma production (11-15 Hz power). CONCLUSIONS The EEG changes in response to TIB reduction are evidence of insufficient sleep recovery. The decrease in sigma activity presumably reflects depressed sleep spindle activity and suggests a manner by which sleep restriction reduces waking cognitive function in adolescents. Our results thus far demonstrate that relatively modest TIB manipulations provide a useful tool for investigating adolescent sleep biology.
Collapse
Affiliation(s)
- Ian G Campbell
- Department of Psychiatry, University of California Davis
| | - Alejandro Cruz-Basilio
- Department of Psychiatry, University of California Davis.,Department of Psychology, Northwestern University, Evanston, IL
| | | | - Zoey Y Zhang
- Department of Psychiatry, University of California Davis
| | - Irwin Feinberg
- Department of Psychiatry, University of California Davis
| |
Collapse
|
27
|
Kurz EM, Conzelmann A, Barth GM, Renner TJ, Zinke K, Born J. How do children with autism spectrum disorder form gist memory during sleep? A study of slow oscillation-spindle coupling. Sleep 2021; 44:zsaa290. [PMID: 33367905 PMCID: PMC8193554 DOI: 10.1093/sleep/zsaa290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep is assumed to support memory through an active systems consolidation process that does not only strengthen newly encoded representations but also facilitates the formation of more abstract gist memories. Studies in humans and rodents indicate a key role of the precise temporal coupling of sleep slow oscillations (SO) and spindles in this process. The present study aimed at bolstering these findings in typically developing (TD) children, and at dissecting particularities in SO-spindle coupling underlying signs of enhanced gist memory formation during sleep found in a foregoing study in children with autism spectrum disorder (ASD) without intellectual impairment. Sleep data from 19 boys with ASD and 20 TD boys (9-12 years) were analyzed. Children performed a picture-recognition task and the Deese-Roediger-McDermott (DRM) task before nocturnal sleep (encoding) and in the next morning (retrieval). Sleep-dependent benefits for visual-recognition memory were comparable between groups but were greater for gist abstraction (recall of DRM critical lure words) in ASD than TD children. Both groups showed a closely comparable SO-spindle coupling, with fast spindle activity nesting in SO-upstates, suggesting that a key mechanism of memory processing during sleep is fully functioning already at childhood. Picture-recognition at retrieval after sleep was positively correlated to frontocortical SO-fast-spindle coupling in TD children, and less in ASD children. Critical lure recall did not correlate with SO-spindle coupling in TD children but showed a negative correlation (r = -.64, p = .003) with parietal SO-fast-spindle coupling in ASD children, suggesting other mechanisms specifically conveying gist abstraction, that may even compete with SO-spindle coupling.
Collapse
Affiliation(s)
- Eva-Maria Kurz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
- PFH – Private University of Applied Sciences, Department of Psychology (Clinical Psychology II), Göttingen, Germany
| | - Gottfried Maria Barth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Tobias J Renner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Psychiatry and Psychotherapy, Tübingen, Germany
| | - Katharina Zinke
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute for Diabetes Research & Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
| |
Collapse
|
28
|
Joechner AK, Wehmeier S, Werkle-Bergner M. Electrophysiological indicators of sleep-associated memory consolidation in 5- to 6-year-old children. Psychophysiology 2021; 58:e13829. [PMID: 33951193 DOI: 10.1111/psyp.13829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
In adults, the synchronized interplay of sleep spindles (SP) and slow oscillations (SO) supports memory consolidation. Given tremendous developmental changes in SP and SO morphology, it remains elusive whether across childhood the same mechanisms as identified in adults are functional. Based on topography and frequency, we characterize slow and fast SPs and their temporal coupling to SOs in 24 pre-school children. Further, we ask whether slow and fast SPs and their modulation during SOs are associated with behavioral indicators of declarative memory consolidation as suggested by the literature on adults. Employing an individually tailored approach, we reliably identify an inherent, development-specific fast centro-parietal SP type, nested in the adult-like slow SP frequency range, along with a dominant slow frontal SP type. Further, we provide evidence that the modulation of fast centro-parietal SPs during SOs is already present in pre-school children. However, the temporal coordination between fast centro-parietal SPs and SOs is weaker and less precise than expected from research on adults. While we do not find evidence for a critical contribution of SP-SO coupling for memory consolidation, crucially, slow frontal and fast centro-parietal SPs are each differentially related to sleep-associated consolidation of items of varying quality. Whereas a higher number of slow frontal SPs is associated with stronger maintenance of medium-quality memories, a higher number of fast centro-parietal SPs is linked to a greater gain of low-quality items. Our results demonstrate two functionally relevant inherent SP types in pre-school children although SP-SO coupling is not yet fully mature.
Collapse
Affiliation(s)
- Ann-Kathrin Joechner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Sarah Wehmeier
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
29
|
Ruiz-Herrera N, Cellini N, Prehn-Kristensen A, Guillén-Riquelme A, Buela-Casal G. Characteristics of sleep spindles in school-aged children with attention-deficit/hyperactivity disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 112:103896. [PMID: 33607483 DOI: 10.1016/j.ridd.2021.103896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Attention deficit/hyperactivity disorder (ADHD) is a complex disorder, characterized by different presentations with distinct cognitive and neurobiological characterizations. Here we aimed to investigate whether sleep spindle activity, which has been associated with brain maturation, may be a potential biomarker able to differentiate ADHD presentations in school-aged children (7-11 years). METHOD Spindle characteristics were extracted from overnight polysomnography in 74 children (27 ADHD-Inattentive [IQ = 96.04], 25 ADHD-hyperactive/impulsive [IQ = 98.9], and 22 ADHD-combined [IQ = 96.1]). We obtained data of the frontal (Fz) and parietal (Pz) derivations using a validated spindle detection algorithm. RESULTS Children with ADHD showed a higher number and density of slow compared to fast spindles which were more frequent in frontal area. No differences were observed among ADHD presentations for any spindle characteristics. Spindle frequency and density increased with age, indicating an age-dependent maturation of different sleep spindles. However, no associations between IQ and spindle characteristics were observed. CONCLUSIONS In children with ADHD the spindle characteristics evolve with age but sleep spindle activity does not seem to be a valid biomarker of ADHD phenotypes or general cognitive ability.
Collapse
Affiliation(s)
- Noelia Ruiz-Herrera
- Department of Health Sciences, International University of La Rioja, La Rioja, Spain.
| | - Nicola Cellini
- Department of General Psychology, University of Padova, Italy
| | - Alexander Prehn-Kristensen
- Department of Child and Adolescent Psychiatry and Psychotherapy, Center for Integrative Psychiatry, School of Medicine, Christian-Albrechts-University Kiel, Germany
| | | | - Gualberto Buela-Casal
- Sleep and Health Promotion Laboratory, Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Spain
| |
Collapse
|
30
|
DelRosso LM, Mogavero MP, Brockmann P, Bruni O, Ferri R. Sleep spindles in children with restless sleep disorder, restless legs syndrome and normal controls. Clin Neurophysiol 2021; 132:1221-1225. [PMID: 33867265 DOI: 10.1016/j.clinph.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To analyze and identify differences in sleep spindles in children with restless sleep disorder (RSD), restless legs syndrome (RLS) and normal controls. METHODS PSG (polysomnography) from children with RSD, RLS and normal controls were analyzed. Sleep spindle activity was detected on one frontal and one central electrode, for each epoch of N2 and N3 sleep. Sleep spindle density, duration and intensity (density × duration) were then obtained and used for analysis. RESULTS Thirty-eight children with RSD, twenty-three children with RLS and twenty-nine controls were included. The duration of frontal spindles in sleep stage N2 was longer in children with RSD than in controls. Frontal spindle density and intensity tended to be increased in RSD children. No significant differences were found for central spindles. CONCLUSION Children with RSD had longer frontal spindles. This finding may contribute to explain the occurrence of excessive movement activity during sleep and the presence of daytime symptoms. SIGNIFICANCE Recent research has demonstrated that children with RSD have increased NREM instability and sympathetic activation during sleep. Analyzing sleep spindles in children with RSD in comparison with children with RLS and controls adds to our understanding of the pathophysiology or RSD and its effects on daytime impairment.
Collapse
Affiliation(s)
- Lourdes M DelRosso
- Seattle Children's Hospital, Seattle, WA, USA; University of Washington, Seattle, WA, USA.
| | - Maria Paola Mogavero
- Istituti Clinici Scientifici Maugeri, IRCCS, Scientific Institute of Pavia, Italy
| | | | - Oliviero Bruni
- Department of Social and Developmental Psychology, Sapienza University, Rome, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
31
|
Basile C, Gigliotti F, Cesario S, Bruni O. The relation between sleep and neurocognitive development in infancy and early childhood: A neuroscience perspective. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 60:9-27. [PMID: 33641802 DOI: 10.1016/bs.acdb.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sleep is essential for human life. It has different characteristics in the early stages of life compared to later periods: during development, qualitative and quantitative changes in sleep features occur such as the onset of REM/NREM sleep at 3 months, the progressive increase of night sleep duration, and the reduction of total sleep time. Sleep seems to be essential in the cognitive functions' development, especially in the first period of life. Indeed, higher rates of night sleep at the age of 12 and 18 months are associated with higher executive functions' performance. Furthermore, memory consolidation occurs during sleep and sleep contributes to children's learning not only in retaining information but also in organizing memories most efficiently. Therefore, sleep problems could cause negative effects on some features of cognitive development like memory, executive functions, and learning process. There is also an intimate relationship between sleep and regulation of emotional brain functions, with a link between sleep disturbance and behavioral problems.
Collapse
Affiliation(s)
- Consuelo Basile
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Federica Gigliotti
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Serena Cesario
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
32
|
Luongo A, Lukowski A, Protho T, Van Vorce H, Pisani L, Edgin J. Sleep's role in memory consolidation: What can we learn from atypical development? ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2021; 60:229-260. [PMID: 33641795 DOI: 10.1016/bs.acdb.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research conducted over the last century has suggested a role for sleep in the processes guiding healthy cognition and development, including memory consolidation. Children with intellectual and developmental disabilities (IDDs) tend to have higher rates of sleep disturbances, which could relate to behavior issues, developmental delays, and learning difficulties. While several studies examine whether sleep exacerbates daytime difficulties and attention deficits in children with IDDs, this chapter focuses on the current state of knowledge regarding sleep and memory consolidation in typically developing (TD) groups and those at risk for learning difficulties. In particular, this chapter summarizes the current literature on sleep-dependent learning across developmental disabilities, including Down syndrome, Williams syndrome, Autism Spectrum Disorder, and Learning Disabilities (Attention-Deficit/Hyperactivity Disorder and Dyslexia). We also highlight the gaps in the current literature and identify challenges in studying sleep-dependent memory in children with different IDDs. This burgeoning new field highlights the importance of considering the role of sleep in memory retention across long delays when evaluating children's memory processes. Further, an understanding of typical and atypical development can mutually inform recent theories of sleep's role in memory.
Collapse
Affiliation(s)
- A Luongo
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - A Lukowski
- Department of Psychological Sciences, University of California Irvine, Irvine, CA, United States
| | - T Protho
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - H Van Vorce
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - L Pisani
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States
| | - J Edgin
- Department of Psychology, University of Arizona, Tucson, AZ, Unites States; University of Arizona Sonoran UCEDD, Tucson, AZ, United States.
| |
Collapse
|
33
|
Kathrin B, Michael A H, Ines W, Kerstin H. The relation between sigma power and internalizing problems across development. J Psychiatr Res 2021; 135:302-310. [PMID: 33524677 DOI: 10.1016/j.jpsychires.2021.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Internalizing problems are characterized by deficits in emotion processing and regulation. They are among the most common problems in children and adolescents and mark an increased risk for depressive and anxiety disorders in later life. First evidence suggests that sleep alterations are related to the development and/or persistence of mood and anxiety disorders in children, adolescents, and adults. Most recently, data from clinical samples showed that brain activity in the sigma frequency band (9-16 Hz, i.e. sleep spindle frequency) is associated with internalizing problems in children and adolescents. However, less is known about the association between sigma power and internalizing problems in healthy participants within this age group. Here, we re-analyzed longitudinal data (25 healthy subjects (18 females) at two time points (T1: childhood mean age: 9.52 ± 0.77; T2: adolescence mean age: 16.08 ± 0.91) by correlating sigma power with measures for internalizing problems. Moreover, we calculated sigma power ratios (frontal/central, frontal/parietal, frontal/occipital) to examine whether these measures would reflect developmental changes more accurately. We found that higher values of internalizing problems at T1 were related to a lower decrease in sigma power from T1 to T2 at frontal and central derivations. Furthermore, higher values of internalizing problems at T1 as well as at T2 were related to higher sigma power ratios at T2. We suggest that sigma power may reflect maturational processes (e.g. network efficiency, integrity) related to the development of internalizing problems. In particular, a stronger decrease in frontal sigma power from childhood to adolescence may indicate a healthier development. Thus, our results emphasize the role of sigma power as a useful marker for internalizing problems during adolescence.
Collapse
Affiliation(s)
- Bothe Kathrin
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Hahn Michael A
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Wilhelm Ines
- Translational Psychiatry Unit (TPU), Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany.
| | - Hoedlmoser Kerstin
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
34
|
Sulkamo S, Hagström K, Huupponen E, Isokangas S, Lapinlampi AM, Alakuijala A, Saarenpää-Heikkilä O, Himanen SL. Sleep Spindle Features and Neurobehavioral Performance in Healthy School-Aged Children. J Clin Neurophysiol 2021; 38:149-155. [PMID: 31800466 DOI: 10.1097/wnp.0000000000000655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE In adults, central fast-frequency sleep spindles are involved in learning and memory functions. The density of local spindles is higher than global spindles, emphasizing the importance of local plastic neural processes. In children, findings on the association of spindles with cognition are more variable. Hence, we aim to study whether the local spindles are also important for neurobehavioral performance in children. METHODS We studied the correlations between local (occurring in only one channel: Fp1, Fp2, C3, or C4), bilateral, and diffuse (occurring in all four channels) spindles and neurobehavioral performance in 17 healthy children (median age 9.6 years). RESULTS Local spindles were not as frequent as bilateral spindles (P-values < 0.05). Central spindle types had significant correlations with sensorimotor and language functions (e.g., the density of bilateral central spindles correlated positively with the Object Assembly in NEPSY, r = 0.490). Interestingly, frontopolar spindles correlated with behavior (e.g., the more bilateral the frontopolar spindles, the less hyperactive the children, r = -0.618). CONCLUSIONS In children, the local spindles, but also more widespread central spindles, seem to be involved in the cognitive processes. Based on our findings, it is important that ageadjusted frequency limits are used in studies evaluating the frequencies of spindles in children.
Collapse
Affiliation(s)
- Saramia Sulkamo
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Kati Hagström
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Eero Huupponen
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
| | - Sirkku Isokangas
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna-Maria Lapinlampi
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
| | - Anniina Alakuijala
- Department of Clinical Neurophysiology, HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
- Department of Neurological Sciences, University of Helsinki, Helsinki, Finland ; and
| | | | - Sari-Leena Himanen
- Department of Clinical Neurophysiology, Medical Imaging Centre and Hospital Pharmacy, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
35
|
Reda F, Gorgoni M, D’Atri A, Scarpelli S, Carpi M, Di Cola E, Menghini D, Vicari S, Stella G, De Gennaro L. Sleep-Related Declarative Memory Consolidation in Children and Adolescents with Developmental Dyslexia. Brain Sci 2021; 11:73. [PMID: 33429959 PMCID: PMC7826880 DOI: 10.3390/brainsci11010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Sleep has a crucial role in memory processes, and maturational changes in sleep electrophysiology are involved in cognitive development. Albeit both sleep and memory alterations have been observed in Developmental Dyslexia (DD), their relation in this population has been scarcely investigated, particularly concerning topographical aspects. The study aimed to compare sleep topography and associated sleep-related declarative memory consolidation in participants with DD and normal readers (NR). Eleven participants with DD and 18 NR (9-14 years old) underwent a whole-night polysomnography. They were administered a word pair task before and after sleep to assess for declarative memory consolidation. Memory performance and sleep features (macro and microstructural) were compared between the groups, and the intercorrelations between consolidation rate and sleep measures were assessed. DD showed a deeper worsening in memory after sleep compared to NR and reduced slow spindles in occipito-parietal and left fronto-central areas. Our results suggest specific alterations in local sleep EEG (i.e., sleep spindles) and in sleep-dependent memory consolidation processes in DD. We highlight the importance of a topographical approach, which might shed light on potential alteration in regional cortical oscillation dynamics in DD. The latter might represent a target for therapeutic interventions aimed at enhancing cognitive functioning in DD.
Collapse
Affiliation(s)
- Flaminia Reda
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.G.); (M.C.); (E.D.C.)
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.G.); (M.C.); (E.D.C.)
| | - Aurora D’Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | | | - Matteo Carpi
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.G.); (M.C.); (E.D.C.)
| | - Erica Di Cola
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.G.); (M.C.); (E.D.C.)
| | - Deny Menghini
- Child and Adolescent Psychiatry Unit, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (D.M.); (S.V.)
| | - Stefano Vicari
- Child and Adolescent Psychiatry Unit, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; (D.M.); (S.V.)
- Department of Life Science and Public Health, Catholic University of the Sacred Heart, 00153 Rome, Italy
| | - Giacomo Stella
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy;
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.G.); (M.C.); (E.D.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| |
Collapse
|
36
|
Mark Lawrence W, Esther Yuet Ying L, Yeuk Ching L, Benjamin R, Chia-Huei T, Tatia Mei Chun L, Yun Kwok W. The protective effect of daytime sleep on planning and risk-related decision-making in emerging adults. Soc Cogn Affect Neurosci 2020; 15:1228-1237. [PMID: 33064803 PMCID: PMC7745149 DOI: 10.1093/scan/nsaa140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/20/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022] Open
Abstract
We assessed the effect of a daytime sleep opportunity on planning and risk-related decision-making in emerging adults using multiple neurobehavioral assessments. A total of 136 healthy emerging adults (20.0 ± 1.5 years), 65% female, performed the Risky-Gains Task and the Tower of London test twice. Between these assessments, they were randomized to either have a sleep opportunity monitored by polysomnography (Sleep group, n = 101) or to stay awake (Wake group, n = 35). During Test 2, in comparison to the Sleep group, the Wake group showed increased sleepiness, worse planning ability and more decrease in reaction times when selecting risky choices. Changes in Tower of London test steps used and Risky-Gains Task response time correlated with the number of central and frontal fast sleep spindles, respectively. These results indicate that among emerging adults who commonly have poor sleep patterns, a daytime sleep opportunity was related to better planning ability, better psychomotor vigilance and stable response speeds in risk-related decision-making. Changes in planning and risk-related decision-making correlated with the number of sleep spindles during the nap, supporting a specific role for sleep in modulating planning and potentially other higher-order cognitive functions.
Collapse
Affiliation(s)
| | - Lau Esther Yuet Ying
- Department of Psychology, The Education University of Hong Kong, Hong Kong.,Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong.,Centre for Religious and Spirituality Education, The Education University of Hong Kong, Hong Kong
| | - Lam Yeuk Ching
- Department of Psychology, The Education University of Hong Kong, Hong Kong.,Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong
| | - Rusak Benjamin
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tseng Chia-Huei
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | | | - Wing Yun Kwok
- Sleep Assessment Unit, Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
37
|
Au CH, Harvey CJ. Systematic review: the relationship between sleep spindle activity with cognitive functions, positive and negative symptoms in psychosis. Sleep Med X 2020; 2:100025. [PMID: 33870177 PMCID: PMC8041130 DOI: 10.1016/j.sleepx.2020.100025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sleep disturbances are associated with worse cognitive and psychotic symptoms in individuals with schizophrenia. Growing literature reveals sleep spindle deficits in schizophrenia may be an endophenotype reflecting a dysfunctional thalamo-thalamic reticular nucleus-cortical circuit. Since thalamic functions link to cognitive, positive and negative symptoms, it is possible that sleep spindle activity is associated with these symptoms. The primary objectives of this systematic review were to assess the associations of sleep spindle activity in psychotic patients with 1) cognitive functions; and 2) positive and negative symptom severity. A secondary objective was to examine which spindle parameter would be the most consistent parameter correlating with cognitive functions, and positive and negative symptoms. METHOD Observational studies reporting an association between sleep spindle activity and cognitive functions, positive and negative symptoms in patients with psychotic disorders were considered eligible. We developed a comprehensive electronic search strategy to identify peer-reviewed studies in Pubmed, Embase, PsycINFO and CINAHL covering all dates up to the search date in May 2020 with no language restriction. The references of published articles were hand-searched for additional materials. The authors of published articles were contacted for newer or unpublished data. Risk of bias was assessed by Appraisal of Cross-sectional Studies (AXIS). RESULTS A total 11 cross-sectional studies (n = 255) with low-to-moderate quality, were selected for the systematic review. 8 of them addressed the association between sleep spindle activity and cognitive functions (n = 193), of which 6 studies reported positive correlations (r only reported in 4 studies, from 0.45 to 0.75). Out of multiple cognitive domains, we have only found attention/cognitive processing speed to have a more consistent positive association with sleep spindle activity. On the other hand, 8 studies investigated the relationship between sleep spindle and positive/negative symptom severity (n = 190), but findings were inconsistent. Spindle density is the most consistent parameter correlating with cognitive functions, while the best spindle parameter for correlating with positive and negative symptom severity cannot be identified due to mixed results. DISCUSSION This systematic review confirms the linkage between sleep spindle activity and cognitive functions. However, included studies had small sample sizes, with high risks of sampling and response bias. Moreover, confounders were often not controlled. The heterogeneous report of spindle parameters and use of cognitive assessment tools rendered meta-analysis infeasible. It is necessary to examine the longitudinal change of sleep spindle activity with the course of illness, as well as the effect of sleep spindle enhancing agents on cognitive function.
Collapse
|
38
|
Abstract
Abstract
Purpose of Review
This short review article aims at emphasizing interesting and important new insights about investigating sleep and memory in children aged between 6 and 13 years (middle childhood).
Recent Findings
That sleep in comparison to wakefulness benefits the consolidation of memories is well established—especially for the adult population. However, the underlying theoretical frameworks trying to explain the benefits of sleep for memory still strive for more substantiate findings including biological and physiological correlates.
Summary
Based on the most recent literature about sleep-related memory consolidation and its physiological markers during middle childhood, this article provides a review and highlights recent updates in this field.
Collapse
|
39
|
Satomaa AL, Mäkelä T, Saarenpää-Heikkilä O, Kylliäinen A, Huupponen E, Himanen SL. Slow-wave activity and sigma activities are associated with psychomotor development at 8 months of age. Sleep 2020; 43:5813737. [PMID: 32227230 DOI: 10.1093/sleep/zsaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/09/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES The electrophysiological properties of non-rapid eye movement sleep (NREM) EEG are homeostatically modulated on global and local use-dependent levels. Furthermore, the local NREM quality reflects age-dependent brain maturation and individual, age-independent, and psychomotor potential. Cortical maturation and its electrophysiological marker, Slow-wave activity (SWA), as well as sleep spindles are known to change in topography and quality during the early years of life, but their associations with psychomotor development in infants are unknown. Therefore, we aimed to evaluate the local properties of SWA and spindles (sigma power) and ascertain whether they correlate with psychomotor development in 8-month-old infants. METHODS Ambulatory polysomnographies were recorded in 56 infants at 8 months of age to calculate the local SWA and sigma powers. The associations between the SWA and sigma powers and psychomotor development (Bayley-III) were examined in 36 of these infants. RESULTS In both hemispheres, the highest SWA and sigma powers were found occipitally and centrally, respectively, with higher powers in the right hemisphere than in the left. The Bayley-III correlated with local SWA and sigma powers: the occipital SWA and centro-occipital sigma correlated with cognitive scales, and the frontal and occipital SWA and centro-occipital sigma correlated with language and fine motor scales. Most of the correlations were unilateral. CONCLUSIONS In 8-month-old infants, the NREM sleep quality shows local differences that are mostly attributable to the topical phase of brain maturation. The local NREM parameters correlate with psychomotor development.
Collapse
Affiliation(s)
- Anna-Liisa Satomaa
- Department of Clinical Neurophysiology, Tampere University Hospital, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere, Finland
| | - Tiina Mäkelä
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Outi Saarenpää-Heikkilä
- Center for Child Health Research, Tampere University, Faculty of Medicine and Health Technology and Tampere University Hospital, Tampere, Finland
| | - Anneli Kylliäinen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Eero Huupponen
- Department of Clinical Neurophysiology, Tampere University Hospital, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere, Finland
| | - Sari-Leena Himanen
- Department of Clinical Neurophysiology, Tampere University Hospital, Medical Imaging Centre and Hospital Pharmacy, Pirkanmaa Hospital District, Tampere, Finland.,Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
40
|
Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. eLife 2020; 9:e53730. [PMID: 32579108 PMCID: PMC7314542 DOI: 10.7554/elife.53730] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Precise temporal coordination of slow oscillations (SO) and sleep spindles is a fundamental mechanism of sleep-dependent memory consolidation. SO and spindle morphology changes considerably throughout development. Critically, it remains unknown how the precise temporal coordination of these two sleep oscillations develops during brain maturation and whether their synchronization indexes the development of memory networks. Here, we use a longitudinal study design spanning from childhood to adolescence, where participants underwent polysomnography and performed a declarative word-pair learning task. Performance on the memory task was better during adolescence. After disentangling oscillatory components from 1/f activity, we found frequency shifts within SO and spindle frequency bands. Consequently, we devised an individualized cross-frequency coupling approach, which demonstrates that SO-spindle coupling strength increases during maturation. Critically, this increase indicated enhanced memory formation from childhood to adolescence. Our results provide evidence that improved coordination between SOs and spindles indexes the development of sleep-dependent memory networks.
Collapse
Affiliation(s)
- Michael A Hahn
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Dominik Heib
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Manuel Schabus
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Kerstin Hoedlmoser
- Department of Psychology, Laboratory for Sleep, Cognition and Consciousness Research, University of SalzburgSalzburgAustria
- Centre for Cognitive Neuroscience Salzburg (CCNS), University of SalzburgSalzburgAustria
| | - Randolph F Helfrich
- Hertie-Institute for Clinical Brain Research, University of TübingenTübingenGermany
| |
Collapse
|
41
|
|
42
|
Smith D, Fang Z, Thompson K, Fogel S. Sleep and individual differences in intellectual abilities. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Brockmann PE, Ferri R, Bruni O. Association of sleep spindle activity and sleepiness in children with sleep-disordered breathing. J Clin Sleep Med 2020; 16:583-589. [PMID: 32022667 DOI: 10.5664/jcsm.8282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES The association of snoring and sleep-disordered breathing (SDB) with daytime sleepiness is well documented; however, the exact mechanisms, and especially the role of sleep microstructure that may account for this association remain incompletely understood. In a cohort of children with SDB, we aimed to compare sleep spindle activity between children with daytime sleepiness versus those without daytime sleepiness. METHODS Children with SDB who reported daytime sleepiness were recruited and compared with age- and sex-matched SDB controls. Polysomnographic recordings were analyzed evaluating sleep spindle activity. A statistical comparison was carried out in both groups to assess the association between sleepiness and sleep spindle activity. RESULTS Thirty-three children with SDB (mean age: 7.5 ± 1.7 years) were included, 10 with and 23 without daytime sleepiness. Spindle activity was lower in children with daytime sleepiness compared with those without; in stage N2, median (interquartile range) sleep spindle indexes were 77.5 (37.3) and 116.9 (71.2) (P = .015), respectively. CONCLUSIONS Spindles were significantly reduced in children with SDB and daytime sleepiness. The exact mechanisms of this association remain unknown and future research is needed in order to establish the exact role of sleep spindle activity on daytime symptoms in children with SDB.
Collapse
Affiliation(s)
- Pablo E Brockmann
- Department of Pediatric Cardiology and Pulmonology, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Pediatric Sleep Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute-Istituto di Ricovero e Cura Carattere Scientifico, Troina, Italy
| | - Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
44
|
Solomonova E, Dubé S, Blanchette-Carrière C, Sandra DA, Samson-Richer A, Carr M, Paquette T, Nielsen T. Different Patterns of Sleep-Dependent Procedural Memory Consolidation in Vipassana Meditation Practitioners and Non-meditating Controls. Front Psychol 2020; 10:3014. [PMID: 32038390 PMCID: PMC6989470 DOI: 10.3389/fpsyg.2019.03014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
Aim Rapid eye movement (REM) sleep, non-rapid eye movement (NREM) sleep, and sleep spindles are all implicated in the consolidation of procedural memories. Relative contributions of sleep stages and sleep spindles were previously shown to depend on individual differences in task processing. However, no studies to our knowledge have focused on individual differences in experience with Vipassana meditation as related to sleep. Vipassana meditation is a form of mental training that enhances proprioceptive and somatic awareness and alters attentional style. The goal of this study was to examine a potential role for Vipassana meditation experience in sleep-dependent procedural memory consolidation. Methods Groups of Vipassana meditation practitioners (N = 22) and matched meditation-naïve controls (N = 20) slept for a daytime nap in the laboratory. Before and after the nap they completed a procedural task on the Wii Fit balance platform. Results Meditators performed slightly better on the task before the nap, but the two groups improved similarly after sleep. The groups showed different patterns of sleep-dependent procedural memory consolidation: in meditators, task learning was positively correlated with density of slow occipital spindles, while in controls task improvement was positively associated with time in REM sleep. Sleep efficiency and sleep architecture did not differ between groups. Meditation practitioners, however, had a lower density of occipital slow sleep spindles than controls. Conclusion Results suggest that neuroplastic changes associated with meditation practice may alter overall sleep microarchitecture and reorganize sleep-dependent patterns of memory consolidation. The lower density of occipital spindles in meditators may mean that meditation practice compensates for some of the memory functions of sleep.
Collapse
Affiliation(s)
- Elizaveta Solomonova
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montréal, QC, Canada.,Culture, Mind and Brain Research Group, Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Simon Dubé
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Department of Psychology, Concordia University, Montréal, QC, Canada
| | - Cloé Blanchette-Carrière
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada
| | - Dasha A Sandra
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Arnaud Samson-Richer
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada
| | - Michelle Carr
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Sleep Laboratory, Swansea University, Swansea, United Kingdom
| | - Tyna Paquette
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada
| | - Tore Nielsen
- Dream and Nightmare Laboratory, Centre for Advanced Research in Sleep Medicine, CIUSSS NÎM - HSCM, Montréal, QC, Canada.,Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
45
|
Gorgoni M, D'Atri A, Scarpelli S, Reda F, De Gennaro L. Sleep electroencephalography and brain maturation: developmental trajectories and the relation with cognitive functioning. Sleep Med 2020; 66:33-50. [PMID: 31786427 DOI: 10.1016/j.sleep.2019.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023]
Abstract
Sleep has a crucial role in brain functioning and cognition, and several sleep electroencephalography (EEG) hallmarks are associated with intellectual abilities, neural plasticity, and learning processes. Starting from this evidence, a growing interest has been raised regarding the involvement of the sleep EEG in brain maturation and cognitive functioning during typical development (TD). The aim of this review is to provide a general framework about the maturational changes and the functional role of the human sleep EEG during TD from birth to late adolescence (≤22 years). The reviewed findings show large developmental modifications in several sleep EEG hallmarks (slow wave activity, sleep spindles, theta activity, and cyclic alternating pattern) during TD, and many studies support the notion of an active role of sleep slow wave activity in supporting brain maturation. Moreover, we focus on the possible relation between sleep microstructure, intelligence, and several memory domains (declarative, emotional, procedural), showing that sleep EEG oscillations seem involved in intellectual abilities and learning processes during TD, although results are often conflicting and divergent from findings in adults. Starting from the present literature, we propose that larger methodological uniformity, greater attention to the topographical and maturational aspects of the sleep EEG oscillations and their mutual interactions, and a higher number of longitudinal studies will be essential to clarify the role of the sleep EEG in cognitive functioning during TD.
Collapse
Affiliation(s)
- M Gorgoni
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - A D'Atri
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - S Scarpelli
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - F Reda
- Department of Psychology, University of Rome "Sapienza", Rome, Italy
| | - L De Gennaro
- Department of Psychology, University of Rome "Sapienza", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
46
|
Li W, Duan Y, Yan J, Gao H, Li X. Association between Loss of Sleep-specific Waves and Age, Sleep Efficiency, Body Mass Index, and Apnea-Hypopnea Index in Human N3 Sleep. Aging Dis 2020; 11:73-81. [PMID: 32010482 PMCID: PMC6961777 DOI: 10.14336/ad.2019.0420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/20/2019] [Indexed: 12/22/2022] Open
Abstract
Sleep spindles (SS) and K-complexes (KC) play important roles in human sleep. It has been reported that age, body mass index (BMI), and apnea-hypopnea index (AHI) may influence the number of SS or KC in non-rapid-eye-movement (NREM) 2 (N2) sleep. In this study, we investigated whether the loss of SS or KC is associated with the above factors in NREM 3 (N3) sleep. A total of 152 cases were enrolled from 2013 to 2017. The correlations between the number of SS or KC in N3 sleep and participants’ characteristics were analyzed using Spearman rank correlation. Chi-squared test was used to assess the effects of age, sleep efficiency, and BMI on the loss of N3 sleep, N3 spindle and N3 KC. Our results showed that there were negative correlations between the number of SS in N3 sleep with age, BMI, and AHI (P < 0.001), and similar trends were found for KC as well. The loss of SS and KC in N3 sleep was related with age, BMI, and AHI (P < 0.01), as was the loss of N3 sleep (P < 0.01). However, sleep efficiency was not related with the loss of N3 sleep, SS and KC in N3 sleep (P > 0.05). The present study supports that age, BMI, and AHI are all influencing factors of SS and KC loss in human N3 sleep, but sleep efficiency was not an influencing factor in the loss of N3 sleep and the loss of SS and KC in N3 sleep.
Collapse
Affiliation(s)
- Weiguang Li
- 1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ying Duan
- 2Clinical Sleep Medical Center, Air Force Medical Center, PLA, Beijing 100036, China
| | - Jiaqing Yan
- 3College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China
| | - He Gao
- 2Clinical Sleep Medical Center, Air Force Medical Center, PLA, Beijing 100036, China
| | - Xiaoli Li
- 1State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
47
|
Gilad R, Shapiro C. Sleep and Development. Health (London) 2020. [DOI: 10.4236/health.2020.126049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Abstract
Sleep spindles are burstlike signals in the electroencephalogram (EEG) of the sleeping mammalian brain and electrical surface correlates of neuronal oscillations in thalamus. As one of the most inheritable sleep EEG signatures, sleep spindles probably reflect the strength and malleability of thalamocortical circuits that underlie individual cognitive profiles. We review the characteristics, organization, regulation, and origins of sleep spindles and their implication in non-rapid-eye-movement sleep (NREMS) and its functions, focusing on human and rodent. Spatially, sleep spindle-related neuronal activity appears on scales ranging from small thalamic circuits to functional cortical areas, and generates a cortical state favoring intracortical plasticity while limiting cortical output. Temporally, sleep spindles are discrete events, part of a continuous power band, and elements grouped on an infraslow time scale over which NREMS alternates between continuity and fragility. We synthesize diverse and seemingly unlinked functions of sleep spindles for sleep architecture, sensory processing, synaptic plasticity, memory formation, and cognitive abilities into a unifying sleep spindle concept, according to which sleep spindles 1) generate neural conditions of large-scale functional connectivity and plasticity that outlast their appearance as discrete EEG events, 2) appear preferentially in thalamic circuits engaged in learning and attention-based experience during wakefulness, and 3) enable a selective reactivation and routing of wake-instated neuronal traces between brain areas such as hippocampus and cortex. Their fine spatiotemporal organization reflects NREMS as a physiological state coordinated over brain and body and may indicate, if not anticipate and ultimately differentiate, pathologies in sleep and neurodevelopmental, -degenerative, and -psychiatric conditions.
Collapse
Affiliation(s)
- Laura M J Fernandez
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
49
|
Halonen R, Kuula L, Lahti J, Makkonen T, Räikkönen K, Pesonen AK. BDNF Val66Met polymorphism moderates the association between sleep spindles and overnight visual recognition. Behav Brain Res 2019; 375:112157. [DOI: 10.1016/j.bbr.2019.112157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 10/26/2022]
|
50
|
Associations between cognitive performance and sigma power during sleep in children with attention-deficit/hyperactivity disorder, healthy children, and healthy adults. PLoS One 2019; 14:e0224166. [PMID: 31648258 PMCID: PMC6812820 DOI: 10.1371/journal.pone.0224166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/06/2019] [Indexed: 01/07/2023] Open
Abstract
Sigma power during sleep is associated with cognitive abilities in healthy humans. We examined the relationship between sigma power in sleep EEG and intelligence and alertness in schoolchildren with ADHD (n = 17) in comparison to mentally healthy children (n = 16) and adults (n = 23). We observed a positive correlation between sigma power in sleep stage 2 and IQ in healthy adults but a negative correlation in children with ADHD. Furthermore, children with ADHD showed slower reaction times in alertness testing than both control groups. In contrast, only healthy children displayed a positive correlation between sigma power and reaction times. These data suggest that the associations between sigma power and cognitive performance underlie distinct developmental processes. A negative association between IQ and sigma power indicates a disturbed function of sleep in cognitive functions in ADHD, whereas the function of sleep appears to be matured early in case of motor-related alertness performance.
Collapse
|