1
|
Freeman SA, Ayoub I, Dauvilliers Y, Liblau RS. Unraveling the pathophysiology of narcolepsy type 1 through hypothesis-driven and hypothesis-generating approaches. Semin Immunol 2025; 78:101962. [PMID: 40373365 DOI: 10.1016/j.smim.2025.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/17/2025]
Abstract
Narcolepsy type 1 (NT1) is a chronic orphan neurological sleep disorder characterized by the loss of hypocretin-producing neurons in the lateral hypothalamus, which play a crucial role in wakefulness. Given the genetic association with the HLA-DQB1 * 06:02 allele and environmental links with the 2009 influenza pandemic, many lines of evidence point towards an immune mechanism, notably autoimmunity, underlying the disease pathophysiology. Autoreactive T cells are found in the blood of NT1 patients, and mouse models demonstrate their migratory capacity and contribution in the selective destruction of hypocretin-producing neurons. However, direct evidence for their role in human NT1 pathophysiology remains elusive. In complementing these findings, hypothesis-generating approaches-including multiparametric immune profiling, transcriptomic sequencing and large-scale proteomic of blood and cerebrospinal fluid-have uncovered promising new avenues into the immune system's involvement in NT1. In this review, we explore the mechanisms driving NT1 pathogenesis, emphasizing both hypothesis-driven and hypothesis-generating approaches, and discuss potential future directions that could pave the way for targeted immunotherapies.
Collapse
Affiliation(s)
- Sean A Freeman
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Neurology, Toulouse University Hospitals, Toulouse, France
| | - Ikram Ayoub
- Department of Neurosciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yves Dauvilliers
- Institute of Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France; Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| |
Collapse
|
2
|
Congiu P, Puligheddu M, Capodiferro AM, Falqui SG, Tamburrino L, Figorilli M, Plazzi G, Gagliano A. Narcolepsy and pediatric acute-onset neuropsychiatric syndrome: A case report that suggests a putative link between the two disorders. Sleep Med 2024; 121:370-374. [PMID: 39079372 DOI: 10.1016/j.sleep.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 08/19/2024]
Abstract
Narcolepsy with cataplexy (NT1) is a rare hypothalamic disorder that presents with a dysregulation of the sleep-wake cycle (i.e., excessive daytime sleepiness and sleep and cataplectic attacks) and other motor, cognitive, psychiatric, metabolic, and autonomic disturbances, with putative autoimmune pathogenesis. Pediatric acute-onset neuropsychiatric syndrome (PANS) is a clinically heterogeneous disorder that presents with acute-onset obsessive-compulsive symptoms and/or a severe eating restriction, with concomitant cognitive, behavioral, or affective symptoms caused by infections and other environmental triggers provoking an inflammatory brain response, which evolves into a chronic or progressive neuroimmune disorder. In this study, we present the case of a 13-year-old boy with vocal tics and syncopal-like episodes, eventually diagnosed as NT1 and PANS, and from this we discuss the hypothesis that both NT1 and PANS might belong to the same immunological spectrum, resulting in comparable imbalances in key neurotransmitter axes (i.e., orexinergic and dopaminergic), with conceptual and operational implications, especially with regards to the pharmacological tretament.
Collapse
Affiliation(s)
- Patrizia Congiu
- Sleep Disorders Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Monica Puligheddu
- Sleep Disorders Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy.
| | - Agata Maria Capodiferro
- Section of Neuroscience & Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Child & Adolescent Neuropsychiatry Unit, "Azienda Ospedaliera Brotzu" Hospital Trust, Cagliari, Italy
| | - Stella Giulia Falqui
- Section of Neuroscience & Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Child & Adolescent Neuropsychiatry Unit, "Azienda Ospedaliera Brotzu" Hospital Trust, Cagliari, Italy
| | - Ludovica Tamburrino
- Sleep Disorders Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Michela Figorilli
- Sleep Disorders Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonella Gagliano
- Section of Neuroscience & Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Child & Adolescent Neuropsychiatry Unit, "Azienda Ospedaliera Brotzu" Hospital Trust, Cagliari, Italy
| |
Collapse
|
3
|
Zou X, Ptáček LJ, Fu YH. The Genetics of Human Sleep and Sleep Disorders. Annu Rev Genomics Hum Genet 2024; 25:259-285. [PMID: 38669479 DOI: 10.1146/annurev-genom-121222-120306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Healthy sleep is vital for humans to achieve optimal health and longevity. Poor sleep and sleep disorders are strongly associated with increased morbidity and mortality. However, the importance of good sleep continues to be underrecognized. Mechanisms regulating sleep and its functions in humans remain mostly unclear even after decades of dedicated research. Advancements in gene sequencing techniques and computational methodologies have paved the way for various genetic analysis approaches, which have provided some insights into human sleep genetics. This review summarizes our current knowledge of the genetic basis underlying human sleep traits and sleep disorders. We also highlight the use of animal models to validate genetic findings from human sleep studies and discuss potential molecular mechanisms and signaling pathways involved in the regulation of human sleep.
Collapse
Affiliation(s)
- Xianlin Zou
- Department of Neurology, University of California, San Francisco, California, USA; , ,
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Institute of Human Genetics, University of California, San Francisco, California, USA
| | - Ying-Hui Fu
- Institute of Human Genetics, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA; , ,
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Plante DT, Hagen EW, Barnet JH, Mignot E, Peppard PE. Prevalence and Course of Idiopathic Hypersomnia in the Wisconsin Sleep Cohort Study. Neurology 2024; 102:e207994. [PMID: 38165322 DOI: 10.1212/wnl.0000000000207994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Idiopathic hypersomnia (IH) is a CNS disorder of hypersomnolence of unknown etiology. Due to the requirement for objective sleep testing to diagnose the disorder, there are currently no population-based estimates of the prevalence of IH nor data regarding the longitudinal course of IH in naturalistic settings. METHODS Subjective and objective data from the Wisconsin Sleep Cohort study were used to identify cases with probable IH from participants with polysomnography and multiple sleep latency test data. Demographic, polysomnographic, and symptom-level data were compared between those with and without IH. Longitudinal trajectories of daytime sleepiness among those with IH were assessed to evaluate symptom persistence or remission over time. RESULTS From 792 cohort study participants with available polysomnography and multiple sleep latency test data, 12 cases with probable IH were identified resulting in an estimated prevalence of IH of 1.5% (95% CI 0.7-2.5, p < 0.0001). Consistent with inclusion/exclusion criteria, cases with IH had more severe sleepiness and sleep propensity, despite similar or longer sleep times. Longitudinal data (spanning 12.1 ± 4.3 years) demonstrated a chronic course of sleepiness for most of the cases with IH, though pathologic somnolence remitted in roughly 40% of cases. DISCUSSION These results demonstrate IH is more common in the working population than generally assumed with a prevalence on par with other common neurologic and psychiatric conditions. Further efforts to identify and diagnose those impaired by unexplained daytime somnolence may help clarify the causes of IH and the mechanisms underlying symptomatic remission.
Collapse
Affiliation(s)
- David T Plante
- From the Department of Psychiatry (D.T.P.), and Department of Population Health Sciences (E.W.H., J.H.B., P.E.P.), University of Wisconsin-Madison; and Stanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA
| | - Erika W Hagen
- From the Department of Psychiatry (D.T.P.), and Department of Population Health Sciences (E.W.H., J.H.B., P.E.P.), University of Wisconsin-Madison; and Stanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA
| | - Jodi H Barnet
- From the Department of Psychiatry (D.T.P.), and Department of Population Health Sciences (E.W.H., J.H.B., P.E.P.), University of Wisconsin-Madison; and Stanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA
| | - Emmanuel Mignot
- From the Department of Psychiatry (D.T.P.), and Department of Population Health Sciences (E.W.H., J.H.B., P.E.P.), University of Wisconsin-Madison; and Stanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA
| | - Paul E Peppard
- From the Department of Psychiatry (D.T.P.), and Department of Population Health Sciences (E.W.H., J.H.B., P.E.P.), University of Wisconsin-Madison; and Stanford University Center for Sleep Sciences (E.M.), Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA
| |
Collapse
|
5
|
Valizadeh P, Momtazmanesh S, Plazzi G, Rezaei N. Connecting the dots: An updated review of the role of autoimmunity in narcolepsy and emerging immunotherapeutic approaches. Sleep Med 2024; 113:378-396. [PMID: 38128432 DOI: 10.1016/j.sleep.2023.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Narcolepsy type 1 (NT1) is a chronic disorder characterized by pathological daytime sleepiness and cataplexy due to the disappearance of orexin immunoreactive neurons in the hypothalamus. Genetic and environmental factors point towards a potential role for inflammation and autoimmunity in the pathogenesis of the disease. This study aims to comprehensively review the latest evidence on the autoinflammatory mechanisms and immunomodulatory treatments aimed at suspected autoimmune pathways in NT1. METHODS Recent relevant literature in the field of narcolepsy, its autoimmune hypothesis, and purposed immunomodulatory treatments were reviewed. RESULTS Narcolepsy is strongly linked to specific HLA alleles and T-cell receptor polymorphisms. Furthermore, animal studies and autopsies have found infiltration of T cells in the hypothalamus, supporting T cell-mediated immunity. However, the role of autoantibodies has yet to be definitively established. Increased risk of NT1 after H1N1 infection and vaccination supports the autoimmune hypothesis, and the potential role of coronavirus disease 2019 and vaccination in triggering autoimmune neurodegeneration is a recent finding. Alterations in cytokine levels, gut microbiota, and microglial activation indicate a potential role for inflammation in the disease's development. Reports of using immunotherapies in NT1 patients are limited and inconsistent. Early treatment with IVIg, corticosteroids, plasmapheresis, and monoclonal antibodies has seldomly shown some potential benefits in some studies. CONCLUSION The current body of literature supports that narcolepsy is an autoimmune disorder most likely caused by T-cell involvement. However, the potential for immunomodulatory treatments to reverse the autoinflammatory process remains understudied. Further clinical controlled trials may provide valuable insights into this area.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Giuseppe Plazzi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic, and Neural Sciences, Università Degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 2024; 24:33-48. [PMID: 37400646 DOI: 10.1038/s41577-023-00902-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.
Collapse
Affiliation(s)
- Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France.
- Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| | | | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France
- INSERM Institute for Neurosciences of Montpellier, Montpellier, France
| | - Emmanuel J Mignot
- Stanford University, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA.
| |
Collapse
|
7
|
Dye TJ. Clinical Evaluation and Management of Narcolepsy in Children and Adolescents. Semin Pediatr Neurol 2023; 48:101089. [PMID: 38065636 DOI: 10.1016/j.spen.2023.101089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 12/18/2023]
Abstract
While sleepiness is common among children, and particularly adolescents, profound sleepiness in the setting of apparently adequate sleep should prompt consideration of a central disorder of hypersomnolence. These disorders, which include narcolepsy, idiopathic hypersomnia, Kleine-Levin syndrome, and others, are likely underrecognized in the pediatric population. Narcolepsy in particular should be of interest to child neurologists as the unique signs and symptoms of this disease often prompt evaluation in pediatric neurology clinics. While sleepiness may appear to be a straightforward complaint, its evaluation requires a nuanced approach. Cataplexy, a hallmark of narcolepsy, can be confused for other neurologic conditions, though understanding its various manifestations makes it readily identifiable. Clinicians should be aware of these symptoms, as delay in diagnosis and misdiagnosis are common in childhood narcolepsy. While treatment options have been limited in the past, many new therapeutic options have become available and can result in significant improvement in symptoms. Given the age at presentation, paroxysmal and chronic features, diagnostic modalities, and available treatment options, the field of child neurology is well equipped to see patients with narcolepsy. In this review, I will focus on the presentation, evaluation, and management of pediatric patients with narcolepsy.
Collapse
Affiliation(s)
- Thomas J Dye
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Pulmonary - Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
8
|
Miano S, Barateau L, De Pieri M, Riccardi S, Thevenin C, Manconi M, Dauvilliers Y. A series of 7 cases of patients with narcolepsy with hypocretin deficiency without the HLA DQB1*06:02 allele. J Clin Sleep Med 2023; 19:2053-2057. [PMID: 37539640 PMCID: PMC10692923 DOI: 10.5664/jcsm.10748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
STUDY OBJECTIVES We report data collected from 2 reference European sleep centers on a series of patients with narcolepsy with hypocretin-1 deficiency and absence of the human leukocyte antigens (HLA) DQB1*06:02 allele. METHODS Clinical data, HLA DQ markers, and cerebrospinal fluid assessments were collected retrospectively from Caucasian patients with a diagnosis of narcolepsy type 1 with cerebrospinal fluid hypocretin-1 deficiency (< 110 pg/ml) and absence of the HLA DQB1*06:02 allele, with follow-up with at least 1 visit within the last 4 years, consecutively admitted to 2 European sleep centers (Lugano, Switzerland and Montpellier, France). RESULTS Seven patients (3 of 29 patients in Lugano and 4 of 328 in Montpellier) were diagnosed with narcolepsy with hypocretin-1 deficiency and absence of HLA DQB1*06:02 (ie, 2% of patients with narcolepsy type 1). Regarding the HLA-DQB1 genotyping, 4 cases were positive for HLA DQB1*03:01, 1 for DQB1*03:02, and 3 for DQB1*02:01. Three patients had atypical cataplexy and 1 had no cataplexy. Only 2 patients had both a mean sleep latency of less than 8 minutes and more than 2 sleep onset rapid eye movement periods on the Multiple Sleep Latency Test, indicative of a less severe condition. CONCLUSIONS Although rare, this series of 7 cases confirms that hypocretin-deficient narcolepsy should not be excluded in the absence of HLA DQB1*06:02, especially if patients are carriers of other high-risk HLA-DQB1 alleles (DQB1*03:01, *03:02, *02:01). These data support the hypothesis that narcolepsy type 1 is a wider disease spectrum linked to the loss of hypocretin peptide. CITATION Miano S, Barateau L, De Pieri M, et al. A series of 7 cases of patients with narcolepsy with hypocretin deficiency without the HLA DQB1*06:02 allele. J Clin Sleep Med. 2023;19(12):2053-2057.
Collapse
Affiliation(s)
- Silvia Miano
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
- National Reference Network for Narcolepsy, Montpellier, Institute for Neurosciences of Montpellier (INM), INSERM, University of Montpellier, Montpellier, France
| | - Marco De Pieri
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- General Psychiatry Service, Hopitaux Universitaires de Genève, Geneva, Switzerland
| | - Silvia Riccardi
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Celine Thevenin
- Département d’Immunologie, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Mauro Manconi
- Sleep Unit, Neurocenter of Southern Switzerland, Civic Hospital of Lugano (EOC), Faculty of Biomedical Sciences, University of Southern Switzerland, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
9
|
Li C, Spruyt K, Xie L, Zhang C, Xu Z, Han F. Development and validation of the narcolepsy severity scale in school aged children. Sleep Med 2023; 110:17-24. [PMID: 37517284 DOI: 10.1016/j.sleep.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE To develop and psychometrically test the pediatric narcolepsy severity scale (P-NSS) for pediatric with narcolepsy type 1 (NT1). METHODS Item pool was formed based on literature review, clinical judgement of the expert panel and input of the narcoleptic patients and their parents. Psychometric properties were evaluated after applying the P-NSS in a sample of 200 patients (8-18 years age) with narcolepsy. Analyses included item analysis, validity analysis and reliability analysis. RESULTS P-NSS consisted four factors with a total of 17 items. Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) revealed four distinct and theoretically coherent factors, explaining 63.4% of the total variance. The fitting results of the CFA model were χ2/dƒ = 2.235, GFI = 0.876, AGFI = 0.822, RMSEA = 0.079, TLI = 0.908, CFI = 0.927. P-NSS score is correlated with Pediatric Daytime Sleepiness Scale (r = 0.512, P < 0.01), Epworth Sleepiness Scale for Children and Adolescents (r = 0.355, P < 0.01) and Narcolepsy quality-of-life instrument with 21 questions (r = -0.512, P < 0.01). Cronbach's α coefficient for P-NSS and four dimensions were from 0.732 to 0.915. The split-half reliability was 0.882 (P < 0.01). CONCLUSION P-NSS is proved to be a reliable and valid measure for Chinese children with NT1. It may serve in China as a valuable and easily accessible outcome measure for using in narcolepsy trials, the clinic with improved responsiveness and long term follow-up.
Collapse
Affiliation(s)
- Chenyang Li
- Capital Medical University School of Nursing, Beijing, China; Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Karen Spruyt
- NeuroDiderot INSERM, Université de Paris, Paris, France
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chi Zhang
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Zhifei Xu
- Respiratory Department, Beijing Children's Hospital, Beijing, China
| | - Fang Han
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
10
|
Abstract
OBJECTIVE The goals of this article are to describe the clinical approach to and management of patients with central disorders of hypersomnolence, and to understand and differentiate available diagnostic tools. LATEST DEVELOPMENTS Updated clinical practice guidelines for the treatment of central disorders of hypersomnolence and narcolepsy specifically highlight new treatment options. Approval for a lower-sodium oxybate formulation that contains 92% less sodium than the standard sodium oxybate for the treatment of narcolepsy and idiopathic hypersomnia adds to the number of medications available for these disorders, allowing for a more tailored management of symptoms. ESSENTIAL POINTS Central disorders of hypersomnolence are characterized by excessive daytime sleepiness that impacts daily functions. These disorders can be differentiated by obtaining a detailed clinical sleep history and by a thoughtful interpretation of sleep diagnostic testing. Tailoring treatment approaches to meet the needs of individuals and accounting for medical and psychiatric comorbidities may improve quality of life.
Collapse
|
11
|
Blattner M, Maski K. Narcolepsy and Idiopathic Hypersomnia. Sleep Med Clin 2023; 18:183-199. [PMID: 37120161 DOI: 10.1016/j.jsmc.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Narcolepsy types 1 and 2 and idiopathic hypersomnia are primary Central Nervous System (CNS) disorders of hypersomnolence characterized by profound daytime sleepiness and/or excessive sleep need. Onset of symptoms begins typically in childhood or adolescence, and children can have unique presentations compared with adults. Narcolepsy type 1 is likely caused by immune-mediated loss of orexin (hypocretin) neurons in the hypothalamus; however, the causes of narcolepsy type 2 and idiopathic hypersomnia are unknown. Existing treatments improve daytime sleepiness and cataplexy but there is no cure for these disorders.
Collapse
Affiliation(s)
- Margaret Blattner
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Kiran Maski
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, BCH3443, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Wang J, Yan Z, Dong X, Li J, Zhao L, Zhang X, Lv C, Zhao Z, Strohl KP, Han F. Diurnal changes in blood pressure and heart rate in children with narcolepsy with cataplexy. J Sleep Res 2023; 32:e13736. [PMID: 36163423 DOI: 10.1111/jsr.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
The hypocretin neurons in the lateral hypothalamus are connected not only to brain alertness systems but also to brainstem nuclei that regulate blood pressure and heart rate. The premise is that regulation of blood pressure and heart rate is altered and affected by methylphenidate, a stimulant drug in children with narcolepsy with cataplexy. The changes in 24-hr ambulatory systolic and diastolic blood pressure and heart rate were compared among pre-treated narcolepsy with cataplexy patients (40 males, 10 females), with mean age 10.4 ± 3.5 years (M ± SD, range 5-17 years) with values from 100 archival age-sex-body mass index matched controls. Patients had a lower diurnal systolic blood pressure (-6.5 mmHg; p = 0.000) but higher heart rate (+11.0 bpm; p = 0.000), particularly evident in the waketime, while diastolic blood pressure was comparable. With methylphenidate (18 mg sustained release at 08:00 hours), patients with narcolepsy with cataplexy had higher systolic blood pressure (+4.6 mmHg, p = 0.015), diastolic blood pressure (+3.3 mmHg, p = 0.005) and heart rate (+7.1 bpm, p = 0.028) during wake time, but nighttime cardiovascular values were unchanged from pre-treated values; amplitude variation in cardiovascular values was unchanged over 24 hr. In conclusion, children with narcolepsy with cataplexy had downregulation blood pressure profile but a higher heart rate, and lesser non-dipping profiles. Daytime methylphenidate treatment increases only waketime blood pressure and further elevated heart rate values.
Collapse
Affiliation(s)
- Jingyu Wang
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China.,Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Zhihui Yan
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinnan, China
| | - Xiaosong Dong
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Jing Li
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Long Zhao
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Xueli Zhang
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Ziyan Zhao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinnan, China
| | - Kingman P Strohl
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, and Cleveland Louis Stokes VA Medical Center, Cleveland, Ohio, USA
| | - Fang Han
- Division of Sleep Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
13
|
Mogavero MP, DelRosso LM, Bruni O, Salemi M, Salsone M, Novellino F, Zucconi M, Ferini Strambi L, Ferri R. Genetics and epigenetics of rare hypersomnia. Trends Genet 2023; 39:415-429. [PMID: 36842900 DOI: 10.1016/j.tig.2023.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/28/2023]
Abstract
Herein we focus on connections between genetics and some central disorders of hypersomnolence - narcolepsy types 1 and 2 (NT1, NT2), idiopathic hypersomnia (IH), and Kleine-Levin syndrome (KLS) - for a better understanding of their etiopathogenetic mechanisms and a better diagnostic and therapeutic definition. Gene pleiotropism influences neurological and sleep disorders such as hypersomnia; therefore, genetics allows us to uncover common pathways to different pathologies, with potential new therapeutic perspectives. An important body of evidence has accumulated on NT1 and IH, allowing a better understanding of etiopathogenesis, disease biomarkers, and possible new therapeutic approaches. Further studies are needed in the field of epigenetics, which has a potential role in the modulation of biological specific hypersomnia pathways.
Collapse
Affiliation(s)
- Maria Paola Mogavero
- Vita-Salute San Raffaele University, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Lourdes M DelRosso
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Oliviero Bruni
- Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Maria Salsone
- Vita-Salute San Raffaele University, Milan, Italy; Institute of Molecular Bioimaging and Physiology, National Research Council, Milan, Italy
| | - Fabiana Novellino
- Institute of Molecular Bioimaging and Physiology, National Research Council, Catanzaro, Italy
| | - Marco Zucconi
- Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Ferini Strambi
- Vita-Salute San Raffaele University, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
14
|
Sanni A, Goli M, Zhao J, Wang J, Barsa C, El Hayek S, Talih F, Lanuzza B, Kobeissy F, Plazzi G, Moresco M, Mondello S, Ferri R, Mechref Y. LC-MS/MS-Based Proteomics Approach for the Identification of Candidate Serum Biomarkers in Patients with Narcolepsy Type 1. Biomolecules 2023; 13:420. [PMID: 36979356 PMCID: PMC10046664 DOI: 10.3390/biom13030420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Narcolepsy type 1 (NT1) is the most common type of narcolepsy known to be caused by the loss of specific neurons responsible for producing peptide neurotransmitters (orexins/hypocretins), resulting in a sleep-wake cycle disorder. It is characterized by its association with cataplexy and abnormalities in rapid eye movement. To date, no cure has been established for this life-threatening condition. Misdiagnosis of NT1 is also quite common, although it is not exceedingly rare. Therefore, successfully identifying candidate serum biomarkers for NT1 would be a head start for accurate diagnosis and development of therapeutics for this disorder. This study aims to identify such potential serum biomarkers. A depletion protocol was employed for 27 human serum samples (16 NT1 and 11 healthy controls), followed by applying LC-MS/MS bottom-up proteomics analysis, then LC-PRM-MS for validation. The comparison of the proteome profiles of the low-abundant proteins in the samples was then investigated based on age, sex, sample groups, and the presence of the Human Leukocyte Antigen (HLA) DQB1*0602 allele. The results were tracked to gene expression studies as well as system biology to identify key proteins and understand their relationship in the pathogenesis of NT1. Our results revealed 36 proteins significantly and differentially expressed. Among the impaired pathways and bioprocesses, the complement activation pathway is impaired by six of the differentially expressed proteins (DEPs). They are coded by the genes C2, CFB, C5, C1R, C1S, and MASP1, while 11 DEPs are involved in Acute Phase Response Signaling (APRS), which are coded by the genes FN1, AMBP, APOH, CFB, CP, ITIH2, C5, C2, F2, C1, and ITIH4. The combined AUCs of the downregulated and upregulated DEPs are 0.95 and 0.76, respectively. Overall, this study reveals potential serum-protein biomarkers of NT1 and explains the possible correlation between the biomarkers and pathophysiological effects, as well as important biochemical pathways involved in NT1.
Collapse
Affiliation(s)
- Akeem Sanni
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Mona Goli
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Jingfu Zhao
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Junyao Wang
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Chloe Barsa
- Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Samer El Hayek
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33124, USA
| | - Farid Talih
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Bartolo Lanuzza
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Firas Kobeissy
- Faculty of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107 2020, Lebanon
- Multiomics & Biomarkers, Department of Neurobiology, Center for Neurotrauma, Morehouse School of Medicine (MSM), Atlanta, GA 30310, USA
| | - Giuseppe Plazzi
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Moresco
- IRCCS, Instituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98122 Messina, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Department of Neurology IC, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Yehia Mechref
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
15
|
van der Hoeven AE, van Waaij K, Bijlenga D, Roelandse FWC, Overeem S, Bakker JA, Fronczek R, Lammers GJ. Hypocretin-1 measurements in cerebrospinal fluid using radioimmunoassay: within and between assay reliability and limit of quantification. Sleep 2022; 45:6581446. [PMID: 35512685 PMCID: PMC9272241 DOI: 10.1093/sleep/zsac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Study Objectives The most sensitive and specific investigative method for the diagnosis of narcolepsy type 1 (NT1) is the determination of hypocretin-1 (orexin-A) deficiency (≤110 pg/mL) in cerebrospinal fluid using a radioimmunoassay (RIA). We aimed to assess the reliability of the Phoenix Pharmaceuticals hypocretin-1 RIA, by determining the lower limit of quantification (LLOQ), the variability around the cutoff of 110 pg/mL, and the inter- and intra-assay variability. Methods Raw data of 80 consecutive hypocretin-1 RIAs were used to estimate the intra- and inter-assay coefficient of variation (CV). The LLOQ was established and defined as the lowest converted concentration with a CV <25%; the conversion is performed using a harmonization sample which is internationally used to minimize variation between RIAs. Results The mean intra-assay CV was 4.7%, while the unconverted inter-assay CV was 28.3% (18.5% excluding 2 outliers) and 7.5% when converted to international values. The LLOQ was determined as 27.9 pg/mL. The intra-assay CV of RIAs with lower specific radioactive activity showed a median of 5.6% (n = 41, range 1.6%–17.0%), which was significantly higher than in RIAs with higher specific activity (n = 36; median 3.2%, range 0.4%–11.6%, p = .013). The CV around the 110 pg/mL cutoff was <7%. Conclusions Hypocretin-1 RIAs should always be harmonized using standard reference material. The specific activity of an RIA has a significant impact on its reliability, because of the decay of 125I radioactivity. Values around the hypocretin-1 cut-off can reliably be measured. Hypocretin-1 concentrations below 28 pg/mL should be reported as “undetectable” when measured with the Phoenix Pharmaceuticals RIA. Clinical Trial Information This study is not registered in a clinical trial register, as it has a retrospective database design
Collapse
Affiliation(s)
- Adrienne Elisabeth van der Hoeven
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| | - Kevin van Waaij
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
| | - Denise Bijlenga
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| | | | | | - Jaap Adriaan Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center , Leiden , the Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Center , Leiden , the Netherlands
- Sleep-Wake Center, Stichting Epilepsie Instellingen Nederland (SEIN) , Heemstede , the Netherlands
| |
Collapse
|
16
|
Honda M, Shigematsu Y, Shimada M, Honda Y, Tokunaga K, Miyagawa T. Low carnitine palmitoyltransferase 1 activity is a risk factor for narcolepsy type 1 and other hypersomnia. Sleep 2022; 45:6639424. [DOI: 10.1093/sleep/zsac160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/06/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
Study Objectives
Narcolepsy type 1 (NT1) is associated with metabolic abnormalities but their etiology remains largely unknown. The gene for carnitine palmitoyltransferase 1B (CPT1B) and abnormally low serum acylcarnitine levels have been linked to NT1. To elucidate the details of altered fatty acid metabolism, we determined levels of individual acylcarnitines and evaluated CPT1 activity in patients with NT1 and other hypersomnia.
Methods
Blood samples from 57 NT1, 51 other hypersomnia patients, and 61 healthy controls were analyzed. The levels of 25 major individual acylcarnitines were determined and the C0/(t[C16] + t[C18]) ratio was used as a CPT1 activity marker. We further performed transcriptome analysis using independent blood samples from 42 NT1 and 42 healthy controls to study the relevance of fatty acid metabolism. NT1-specific changes in CPT1 activity and in expression of related genes were investigated.
Results
CPT1 activity was lower in patients with NT1 (p = 0.00064) and other hypersomnia (p = 0.0014) than in controls. Regression analysis revealed that CPT1 activity was an independent risk factor for NT1 (OR: 1.68; p = 0.0031) and for other hypersomnia (OR: 1.64; p = 0.0042). There was a significant interaction between obesity (BMI <25, ≥25) and the SNP rs5770917 status such that nonobese NT1 patients without risk allele had better CPT1 activity (p = 0.0089). The expression levels of carnitine-acylcarnitine translocase (CACT) and CPT2 in carnitine shuttle were lower in NT1 (p = 0.000051 and p = 0.00014, respectively).
Conclusions
These results provide evidences that abnormal fatty acid metabolism is involved in the pathophysiology of NT1 and other hypersomnia.
Collapse
Affiliation(s)
- Makoto Honda
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
- Japan Somnology Center and Seiwa Hospital, Institute of Neuropsychiatry , Tokyo , Japan
| | - Yosuke Shigematsu
- Department of Health Science, Faculty of Medical Sciences, University of Fukui , Fukui , Japan
| | - Mihoko Shimada
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine , Tokyo , Japan
| | - Yoshiko Honda
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine , Tokyo , Japan
| | - Taku Miyagawa
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science , Tokyo , Japan
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| |
Collapse
|
17
|
Li C, Spruyt K, Zhang C, Zuo Y, Shang S, Dong X, Ouyang H, Zhang J, Han F. Reliability and validity of the Chinese version of Narcolepsy Severity Scale in adult patients with narcolepsy type 1. Sleep Med 2021; 81:86-92. [PMID: 33640842 DOI: 10.1016/j.sleep.2021.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate reliability and validity of the Chinese version of Narcolepsy Severity Scale (NSS) in adult patients with narcolepsy type 1 (NT1). METHODS One hundred and fifty-one adult patients (≥18 years) with NT1 were recruited. All filled out the 15-item Chinese version of NSS. Item analysis included critical ratio and correlation analysis. The validity of NSS was assessed by exploratory factor analysis, discriminant validity and convergent validity. Reliability of NSS was assessed by Cronbach's α coefficient, spilt-half reliability and test-retest reliability. RESULTS Critical value of all 15 items ranged from 3.01 to 13.36. Each item was significantly correlated with the total score by a correlation coefficient (r) ranging from 0.219 to 0.700. Three common domains were extracted and 15 items explained 54.86% of the total variance. There was a shift in domains compared to the English version likely due to cultural differences. Cronbach's α coefficient for the total scale of 15 items was 0.821 and for three factors was 0.726, 0.748 and 0.760 respectively. The NSS had good correlation with Epworth sleepiness scale scores, Insomnia severity index scores and moderate correlation with mean the sleep latency of polysomnographic recording, and European Quality of Life-5 Dimensions Questionnaire. The Chinese version of NSS showed good spilt-half reliability and test-retest reliability. CONCLUSION The Chinese version of NSS shows satisfactory psychometric properties with good validity and reliability. It is applicable to evaluate the severity and consequences of symptoms in Chinese adult patients with NT1.
Collapse
Affiliation(s)
- Chenyang Li
- Peking University School of Nursing, Beijing, China
| | | | - Chi Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Yuhua Zuo
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | | | - Xiaosong Dong
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Hui Ouyang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| | - Jun Zhang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| | - Fang Han
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
18
|
Giannoccaro MP, Liguori R, Plazzi G, Pizza F. Reviewing the Clinical Implications of Treating Narcolepsy as an Autoimmune Disorder. Nat Sci Sleep 2021; 13:557-577. [PMID: 34007229 PMCID: PMC8123964 DOI: 10.2147/nss.s275931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 (NT1) is a lifelong sleep disorder, primarily characterized clinically by excessive daytime sleepiness and cataplexy and pathologically by the loss of hypocretinergic neurons in the lateral hypothalamus. Despite being a rare disorder, the NT1-related burden for patients and society is relevant due to the early onset and chronic nature of this condition. Although the etiology of narcolepsy is still unknown, mounting evidence supports a central role of autoimmunity. To date, no cure is available for this disorder and current treatment is symptomatic. Based on the hypothesis of the autoimmune etiology of this disease, immunotherapy could possibly represent a valid therapeutic option. However, contrasting and limited results have been provided so far. This review discusses the evidence supporting the use of immunotherapy in narcolepsy, the outcomes obtained so far, current issues and future directions.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Kachooei-Mohaghegh-Yaghoobi L, Rezaei-Rad F, Sadeghniiat-Haghighi K, Zamani M. The impact of the HLA DQB1 gene and amino acids on the development of narcolepsy. Int J Neurosci 2020; 132:706-713. [PMID: 33045884 DOI: 10.1080/00207454.2020.1835903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Narcolepsy is a chronic neurological and a genetic disorder of autoimmune origin, which is characterized by five main symptoms, including excessive day time sleepiness, sudden loss of muscle tone or cataplexy, sleep paralysis, hypnagogic hallucinations, and disturbed nocturnal sleep. While there are several diagnostic tests for Narcolepsy such as MSLT (mean sleep latency test), polysomnography and low range of hypocretin in cerebrospinal fluid (CSF), sensitivity and specificity in these methodologies are not sufficient enough. Therefore, methods with higher sensitivity for the accurate diagnosis and confirmation of the disease are necessary. METHODS According to the infrequent prevalence of narcolepsy disease, we scheduled a case-control association study with 20 narcoleptic patients and 150 healthy individuals in a high-resolution HLA typing procedure employing SSP-PCR. RESULTS Our study demonstrates that the DQB1*06:02 allele provides the highest susceptibility with absolute risk of 0.13%, for Narcolepsy (P = 1x10-14, RR = 60.5, PcPPV = 0.13%), while, HLA-DQB1* 03:05 allele presents protection to Narcolepsy (P = 1x10-4, PcPPV = 3.19x10-4%). Furthermore, for the first time, the AA analysis displayed that AA serine182 and threonine185 located on epitope of DQβ1 chain receptor (DQB1Ser182,Thr185) present significant susceptibility for Narcolepsy (Pc= 87.03 × 10-13, PcPPV = 0.024%) while, asparagine182 located on epitope of DQβ1 protein receptor (DQB1Asn182) confers the highest protection against development of Narcolepsy (Pc= 2.16 × 10-5, PcPPV = 0.0012%). CONCLUSION Thus, this can be proposed that the polymorphic differences in the epitope of the HLA receptor could contribute to their differential association with the Narcolepsy in Iranian population.
Collapse
Affiliation(s)
| | - Fatemeh Rezaei-Rad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Zamani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This article discusses the central disorders of hypersomnolence, a group of disorders resulting in pathologic daytime sleepiness, particularly narcolepsy type 1 and narcolepsy type 2, idiopathic hypersomnia, and Kleine-Levin syndrome. Disease features, diagnostic testing, epidemiology, pathophysiology, and treatment are reviewed. RECENT FINDINGS Increasing evidence implicates autoimmunity in narcolepsy type 1, including a strong association with human leukocyte antigen-DQB1*06:02, association with a polymorphism in the T-cell receptor alpha locus in genome-wide association, and the identification of autoreactive T cells in patients with this type of narcolepsy. In contrast, the cause or causes of narcolepsy type 2 and idiopathic hypersomnia are unknown. Multiple treatment options exist, including two medications approved for the treatment of narcolepsy by the US Food and Drug Administration (FDA) in 2019. These include solriamfetol, a dopamine- and norepinephrine-reuptake inhibitor, and pitolisant, an H3-inverse agonist/antagonist that increases histaminergic neurotransmission. SUMMARY The central disorders of hypersomnolence all cause severe sleepiness but can be differentiated based on ancillary symptoms, diagnostic testing, and pathophysiology. It is important that these disorders are identified because multiple treatments are available to improve functioning and quality of life.
Collapse
|
21
|
Song J, Kim TW, Kim SM, Um YH, Jeong JH, Seo HJ, Oh JH, Hong SC. Nocturnal Sleep Onset Rapid Eye Movement Sleep Periods as a Predictor of the Severity of Narcolepsy in Korea. SLEEP MEDICINE RESEARCH 2020. [DOI: 10.17241/smr.2019.00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Ouyang H, Zhou Z, Zheng Q, Zhang J. Analyzing Functional Pathways and constructing gene-gene network for Narcolepsy based on candidate genes. Int J Med Sci 2020; 17:1508-1514. [PMID: 32669953 PMCID: PMC7359385 DOI: 10.7150/ijms.41812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/15/2020] [Indexed: 12/02/2022] Open
Abstract
Aims: To investigate the interactions among narcolepsy-associated genes and reveal the pathways these genes involved through bioinformatics analyses. Methods: The study was performed with the following steps: 1) Selected the previously discovered narcolepsy risk genes through literature review, 2) pathway enrichment analysis, and construction of gene-gene and protein-protein interaction (PPI) networks for narcolepsy. Results: 1) GO analysis revealed the positive regulation of interferon-gamma production as the most enriched terms in biological process, and C-C chemokine receptor activity as the most enriched term in molecular function, 2) KEGG pathway enrichment analysis revealed selective enrichment of genes in cytokine-cytokine receptor interaction signaling pathways, and 3) five hub genes were identified (IFNAR1, IL10RB, DNMT1, TNFSF4 and NFATC2). Conclusion: The bioinformatics results provide new insights into the molecular pathogenesis of narcolepsy and the identification of potential therapeutic targets for narcolepsy treatment.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| | - Zechen Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Qiwen Zheng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Neuromedicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
23
|
Ouyang H, Wang S, Zheng Q, Zhang J. Constructing gene network for type 1 narcolepsy based on genome-wide association study and differential gene expression analysis (STROBE). Medicine (Baltimore) 2020; 99:e19985. [PMID: 32358372 PMCID: PMC7440059 DOI: 10.1097/md.0000000000019985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although many genes that affect narcolepsy risk have been identified, the interactions among these genes are still unclear. Moreover, there is a lack of research on the construction of the genetic network of narcolepsy. To screen candidate genes related to the onset of narcolepsy type 1, the function and distribution of important genes related to narcolepsy type 1 were studied and a gene network was constructed to study the pathogenesis of narcolepsy type 1.A case-control study (observational study) of 1075 Chinese narcoleptic patients and 1997 controls was conducted. The gene-sequencing data was analyzed using genome-wide association analysis. The candidate genes related to narcolepsy were identified by differential gene expression analysis and literature research. Then, the 28 candidate genes were input into the KEGG database and 32 pathway data related to candidate genes were obtained. A gene network, with the pathways as links and the genes as nodes, was constructed. According to our results, TNF, MHC II, NFATC2, and CXCL8 were the top genes in the gene network.TNF, MHC II, NFATC2, and CXCL8 are closely related to narcolepsy type I and require further study. By analyzing the pathways of disease-related genes and the network of gene interaction, we can provide an outlinefor the study of specific mechanisms of and treatments for narcolepsy.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Clinical Neurology, Peking University, People's Hospital
| | - Shiying Wang
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing, China
| | - Qiwen Zheng
- Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Clinical Neurology, Peking University, People's Hospital
| |
Collapse
|
24
|
Ding Q, Li J, Xiao F, Zhang C, Dong X, Han F. Anti-streptococcal antibodies in Chinese patients with type -1 narcolepsy. Sleep Med 2020; 72:37-40. [PMID: 32540635 DOI: 10.1016/j.sleep.2020.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Narcolepsy type 1 (NT1) is considered to be an autoimmune disease, and streptococcal infection may be an environmental trigger. However, previous studies from Asian narcolepsy patients did not reveal elevated anti-streptolysin O [ASO]. The aim is to investigate whether large sample Chinese patients with NT1 have an increase in antistreptococcal antibody titers. METHODS A total of 214 narcolepsy patients and 360 healthy controls were recruited. All patients were DQB1∗0602 positive with clear-cut cataplexy or had low CSF hypocretin-1. Participants were tested for ASO and anti DNAse B [ADB]. These patients were divided into five groups according to disease duration, including 29 patients less than 3 months; 25 from 3 months to 1 year; 40 from 1 to 3 years; 61 from 3 to 10 years and 59 patients over 10 years. Comparison was also made between children and adults with age matched controls, respectively. RESULTS There were no significant differences between patients and healthy controls in regard to both ASO ≥200 IU (19.2% vs. 16.9%, p = 0.50) and ADB≥480IU (9.8% vs. 10.3%, p = 0.86). For children narcolepsy patients, ASO positive rates (19.8% vs. 18%, p = 0.68) and ADB positive rates (10.4% vs. 12%, p = 0.72) had no differences compared to age matched controls. No difference was observed in adult narcolepsy patients either, with ASO positive rates (18.5% vs. 13.8%, p = 0.39) and ADB positive rates (9.3% vs. 5.3%, p = 0.42) compared to age matched controls, respectively. ASO and ADB positive rates had no significant differences among different disease duration groups (p = 0.55 and 0.9, respectively). CONCLUSION Streptococcus infection reflected by increase of ASO and ADB levels was not found in Chinese patients with type 1 narcolepsy, additional triggers for narcolepsy need to be addressed in this population.
Collapse
Affiliation(s)
- Qidi Ding
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Fulong Xiao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Chi Zhang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaosong Dong
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Fang Han
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
25
|
Ravel JM, Mignot EJM. [Narcolepsy: From the discovery of a wake promoting peptide to autoimmune T cell biology and molecular mimicry with flu epitopes]. Biol Aujourdhui 2019; 213:87-108. [PMID: 31829930 DOI: 10.1051/jbio/2019026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 11/14/2022]
Abstract
Narcolepsy-cataplexy was first described in the late 19th century in Germany and France. Prevalence was established to be 0.05 % and a canine model was discovered in the 1970s. In 1983, a Japanese study found that all patients carried HLA-DR2, suggesting autoimmunity as the cause of the disease. Studies in the canine model established that dopaminergic stimulation underlies anti-narcoleptic action of psychostimulants, while antidepressants were found to suppress cataplexy through adrenergic reuptake inhibition. No HLA association was found in canines. A linkage study initiated in 1988 revealed in hypocretin (orexin) receptor two mutations as the cause of canine narcolepsy in 1999. In 1992, studies on African Americans showed that DQ0602 was a better marker than DR2 across all ethnic groups. In 2000, hypocretin-1/orexin A levels were measured in the cerebrospinal fluid (CSF) and found to be undetectable in most patients, establishing hypocretin deficiency as the cause of narcolepsy. Decreased CSF hypocretin-1 was then found to be secondary to the loss of the 70,000 neurons producing hypocretin in the hypothalamus, suggesting immune destruction of these cells as the cause of the disease. Additional genetic studies, notably genome wide associations (GWAS), found multiple genetic predisposing factors for narcolepsy. These were almost all involved in other autoimmune diseases, although a strong and unique association with T cell receptor (TCR) alpha and beta loci were observed. Nonetheless, all attempts to demonstrate presence of autoantibodies against hypocretin cells in narcolepsy failed, and the presumed autoimmune cause remained unproven. In 2009, association with strep throat infections were found, and narcolepsy onsets were found to occur more frequently in spring and summer, suggesting upper away infections as triggers. Following reports that narcolepsy cases were triggered by vaccinations and infections against influenza A 2009 pH1N1, a new pandemic strain that erupted in 2009, molecular mimicry with influenza A virus was suggested in 2010. This hypothesis was later confirmed by peptide screening showing higher activity of CD4+ T cell reactivity to a specific post-translationally amidated segment of hypocretin (HCRT-NH2) and cross-reactivity of specific TCRs with a pH1N1-specific segment of hemagglutinin that shares homology with HCRT-NH2. Strikingly, the most frequent TCR recognizing these antigens was found to carry sequences containing TRAJ24 or TRVB4-2, segments modulated by narcolepsy-associated genetic polymorphisms. Cross-reactive CD4+ T cells with these cross-reactive TCRs likely subsequently recruit CD8+ T cells that are then involved in hypocretin cell destruction. Additional flu mimics are also likely to be discovered since narcolepsy existed prior to 2009. The work that has been conducted over the years on narcolepsy offers a unique perspective on the conduct of research on the etiopathogeny of a specific disease.
Collapse
Affiliation(s)
- Jean-Marie Ravel
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| | - Emmanuel J M Mignot
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Medicine, Stanford University, 3615 Porter Drive, Palo Alto, CA, USA
| |
Collapse
|
26
|
Edwards K, Hanquet G, Black S, Mignot E, Jankosky C, Shimabukuro T, Miller E, Nohynek H, Neels P. Meeting report narcolepsy and pandemic influenza vaccination: What we know and what we need to know before the next pandemic? A report from the 2nd IABS meeting. Biologicals 2019; 60:1-7. [PMID: 31130313 DOI: 10.1016/j.biologicals.2019.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
A group of scientific and public health experts and key stakeholders convened to discuss the state of knowledge on the relationship between adjuvanted monovalent inactivated 2009 influenza A H1N1 vaccines used during the 2009 influenza pandemic and narcolepsy. There was consensus that an increased risk of narcolepsy was consistently observed after Pandemrix (AS03-adjuvanted) vaccine, but similar associations following Arepanrix (AS03-adjuvanted) or Focetria (MF59-adjuvanted) vaccines were not observed. Whether the differences are due to vaccine composition or other factors such as the timing of large-scale vaccination programs relative to H1N1pdm09 wild-type virus circulation in different geographic regions is not clear. The limitations of retrospective observational methodologies could also be contributing to some of the differences across studies. More basic and epidemiologic research is needed to further elucidate the association between adjuvanted influenza vaccine and narcolepsy and its mechanism and to inform planning and preparation for vaccination programs in advance of the next influenza pandemic.
Collapse
Affiliation(s)
- Kathryn Edwards
- Medical Center North, Vanderbilt University School of Medicine, Nashville, TN, D7227, USA.
| | - Germaine Hanquet
- Brussels, and Antwerp University, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Steve Black
- Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA
| | - Christopher Jankosky
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Tom Shimabukuro
- Immunization Safety Office, Centers for Disease Control and Prevention (CDC), 1600, Clifton Road, Atlanta, GA, USA.
| | | | - Hanna Nohynek
- National Institute for Health and Welfare THL Department of Health Security, Infectious Disease Control and Vaccinations Unit Helsinki, Finland
| | - Pieter Neels
- IABS, Rue de la Vallée 3, 1204, Genève, Switzerland.
| |
Collapse
|
27
|
Foschi M, Rizzo G, Liguori R, Avoni P, Mancinelli L, Lugaresi A, Ferini-Strambi L. Sleep-related disorders and their relationship with MRI findings in multiple sclerosis. Sleep Med 2019; 56:90-97. [PMID: 30803830 DOI: 10.1016/j.sleep.2019.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/23/2022]
|
28
|
Pedersen NW, Holm A, Kristensen NP, Bjerregaard AM, Bentzen AK, Marquard AM, Tamhane T, Burgdorf KS, Ullum H, Jennum P, Knudsen S, Hadrup SR, Kornum BR. CD8 + T cells from patients with narcolepsy and healthy controls recognize hypocretin neuron-specific antigens. Nat Commun 2019; 10:837. [PMID: 30783092 PMCID: PMC6381094 DOI: 10.1038/s41467-019-08774-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Narcolepsy Type 1 (NT1) is a neurological sleep disorder, characterized by the loss of hypocretin/orexin signaling in the brain. Genetic, epidemiological and experimental data support the hypothesis that NT1 is a T-cell-mediated autoimmune disease targeting the hypocretin producing neurons. While autoreactive CD4+ T cells have been detected in patients, CD8+ T cells have only been examined to a minor extent. Here we detect CD8+ T cells specific toward narcolepsy-relevant peptides presented primarily by NT1-associated HLA types in the blood of 20 patients with NT1 as well as in 52 healthy controls, using peptide-MHC-I multimers labeled with DNA barcodes. In healthy controls carrying the disease-predisposing HLA-DQB1*06:02 allele, the frequency of autoreactive CD8+ T cells was lower as compared with both NT1 patients and HLA-DQB1*06:02-negative healthy individuals. These findings suggest that a certain level of CD8+ T-cell reactivity combined with HLA-DQB1*06:02 expression is important for NT1 development.
Collapse
Affiliation(s)
- Natasja Wulff Pedersen
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anja Holm
- Department of Clinical Biochemistry, Molecular Sleep Laboratory, Rigshospitalet, 2600 Glostrup, Denmark
| | - Nikolaj Pagh Kristensen
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Anne-Mette Bjerregaard
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Amalie Kai Bentzen
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Andrea Marion Marquard
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Tripti Tamhane
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark
| | - Kristoffer Sølvsten Burgdorf
- Department of Clinical Immunology 2034, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology 2034, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Poul Jennum
- Department of Clinical Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet, 2600 Glostrup, Denmark
| | - Stine Knudsen
- Department of Clinical Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet, 2600 Glostrup, Denmark
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (Nevsom), Department of Rare Disorders, Oslo University Hospital, Ullevål, 0424 Oslo, Norway
| | - Sine Reker Hadrup
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Birgitte Rahbek Kornum
- Department of Clinical Biochemistry, Molecular Sleep Laboratory, Rigshospitalet, 2600 Glostrup, Denmark.
- Department of Clinical Neurophysiology, Danish Center for Sleep Medicine, Rigshospitalet, 2600 Glostrup, Denmark.
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
29
|
Pandemrix-induced narcolepsy is associated with genes related to immunity and neuronal survival. EBioMedicine 2019; 40:595-604. [PMID: 30711515 PMCID: PMC6413474 DOI: 10.1016/j.ebiom.2019.01.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background The incidence of narcolepsy rose sharply after the swine influenza A (H1N1) vaccination campaign with Pandemrix. Narcolepsy is an immune-related disorder with excessive daytime sleepiness. The most frequent form is strongly associated with HLA-DQB1*06:02, but only a minority of carriers develop narcolepsy. We aimed to identify genetic markers that predispose to Pandemrix-induced narcolepsy. Methods We tested for genome-wide and candidate gene associations in 42 narcolepsy cases and 4981 controls. Genotyping was performed on Illumina arrays, HLA alleles were imputed using SNP2HLA, and single nucleotide polymorphisms were imputed using the haplotype reference consortium panel. The genome-wide significance threshold was p < 5 × 10−8, and the nominal threshold was p < 0.05. Results were replicated in 32 cases and 7125 controls. Chromatin data was used for functional annotation. Findings Carrying HLA-DQB1*06:02 was significantly associated with narcolepsy, odds ratio (OR) 39.4 [95% confidence interval (CI) 11.3, 137], p = 7.9 × 10−9. After adjustment for HLA, GDNF-AS1 (rs62360233) was significantly associated, OR = 8.7 [95% CI 4.2, 17.5], p = 2.6 × 10−9, and this was replicated, OR = 3.4 [95% CI 1.2–9.6], p = 0.022. Functional analysis revealed variants in high LD with rs62360233 that might explain the detected association. The candidate immune-gene locus TRAJ (rs1154155) was nominally associated in both the discovery and replication cohorts, meta-analysis OR = 2.0 [95% CI 1.4, 2.8], p = 0.0002. Interpretation We found a novel association between Pandemrix-induced narcolepsy and the non-coding RNA gene GDNF-AS1, which has been shown to regulate expression of the essential neurotrophic factor GDNF. Changes in regulation of GDNF have been associated with neurodegenerative diseases. This finding may increase the understanding of disease mechanisms underlying narcolepsy. Associations between Pandemrix-induced narcolepsy and immune-related genes were replicated.
Collapse
|
30
|
Abstract
This work shows that the amidated terminal ends of the secreted hypocretin (HCRT) peptides (HCRTNH2) are autoantigens in type 1 narcolepsy, an autoimmune disorder targeting HCRT neurons. The autoimmune process is usually initiated by influenza A flu infections, and a particular piece of the hemagglutinin (HA) flu protein of the pandemic 2009 H1N1 strain was identified as a likely trigger. This HA epitope has homology with HCRTNH2 and T cells cross-reactive to both epitopes are involved in the autoimmune process by molecular mimicry. Genes associated with narcolepsy mark the particular HLA heterodimer (DQ0602) involved in presentation of these antigens and modulate expression of the specific T cell receptor segments (TRAJ24 and TRBV4-2) involved in T cell receptor recognition of these antigens, suggesting causality. Type 1 narcolepsy (T1N) is caused by hypocretin/orexin (HCRT) neuronal loss. Association with the HLA DQB1*06:02/DQA1*01:02 (98% vs. 25%) heterodimer (DQ0602), T cell receptors (TCR) and other immune loci suggest autoimmunity but autoantigens are unknown. Onset is seasonal and associated with influenza A, notably pandemic 2009 H1N1 (pH1N1) infection and vaccination (Pandemrix). Peptides derived from HCRT and influenza A, including pH1N1, were screened for DQ0602 binding and presence of cognate DQ0602 tetramer-peptide–specific CD4+ T cells tested in 35 T1N cases and 22 DQ0602 controls. Higher reactivity to influenza pHA273–287 (pH1N1 specific), PR8 (H1N1 pre-2009 and H2N2)-specific NP17–31 and C-amidated but not native version of HCRT54–66 and HCRT86–97 (HCRTNH2) were observed in T1N. Single-cell TCR sequencing revealed sharing of CDR3β TRBV4-2-CASSQETQGRNYGYTF in HCRTNH2 and pHA273–287-tetramers, suggesting molecular mimicry. This public CDR3β uses TRBV4-2, a segment modulated by T1N-associated SNP rs1008599, suggesting causality. TCR-α/β CDR3 motifs of HCRT54–66-NH2 and HCRT86–97-NH2 tetramers were extensively shared: notably public CDR3α, TRAV2-CAVETDSWGKLQF-TRAJ24, that uses TRAJ24, a chain modulated by T1N-associated SNPs rs1154155 and rs1483979. TCR-α/β CDR3 sequences found in pHA273–287, NP17–31, and HCRTNH2 tetramer-positive CD4+ cells were also retrieved in single INF-γ–secreting CD4+ sorted cells stimulated with Pandemrix, independently confirming these results. Our results provide evidence for autoimmunity and molecular mimicry with flu antigens modulated by genetic components in the pathophysiology of T1N.
Collapse
|
31
|
Stephansen JB, Olesen AN, Olsen M, Ambati A, Leary EB, Moore HE, Carrillo O, Lin L, Han F, Yan H, Sun YL, Dauvilliers Y, Scholz S, Barateau L, Hogl B, Stefani A, Hong SC, Kim TW, Pizza F, Plazzi G, Vandi S, Antelmi E, Perrin D, Kuna ST, Schweitzer PK, Kushida C, Peppard PE, Sorensen HBD, Jennum P, Mignot E. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat Commun 2018; 9:5229. [PMID: 30523329 PMCID: PMC6283836 DOI: 10.1038/s41467-018-07229-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/15/2018] [Indexed: 01/01/2023] Open
Abstract
Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph-a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies.
Collapse
Affiliation(s)
- Jens B Stephansen
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Alexander N Olesen
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, 2600, Denmark
| | - Mads Olsen
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, 2600, Denmark
| | - Aditya Ambati
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Eileen B Leary
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Hyatt E Moore
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Oscar Carrillo
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Ling Lin
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Fang Han
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Han Yan
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yun L Sun
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, 34295, France
- INSERM, U1061, Université Montpellier 1, Montpellier, 34090, France
| | - Sabine Scholz
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, 34295, France
- INSERM, U1061, Université Montpellier 1, Montpellier, 34090, France
| | - Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, 34295, France
- INSERM, U1061, Université Montpellier 1, Montpellier, 34090, France
| | - Birgit Hogl
- Department of Neurology, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Ambra Stefani
- Department of Neurology, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Seung Chul Hong
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Seoul, 16247, Korea
| | - Tae Won Kim
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Seoul, 16247, Korea
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Dimitri Perrin
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, 4001, Australia
| | - Samuel T Kuna
- Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Paula K Schweitzer
- Sleep Medicine and Research Center, St. Luke's Hospital, Chesterfield, 63017, MO, USA
| | - Clete Kushida
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Paul E Peppard
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, 53726, WI, USA
| | - Helge B D Sorensen
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, 2600, Denmark
| | - Emmanuel Mignot
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA.
| |
Collapse
|
32
|
HLA-DQB1*06:02 allele frequency and clinic-polysomnographic features in Saudi Arabian patients with narcolepsy. Sleep Breath 2018; 23:303-309. [PMID: 30187366 DOI: 10.1007/s11325-018-1717-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Narcolepsy is an uncommon neurological disorder characterised by irresistible spells of sleep associated with abnormal rapid eye movement (REM) sleep. The association between narcolepsy and human leukocyte antigen HLA- DQB1*06:02 has been established elsewhere but remains to be investigated among Saudi Arabian patients with narcolepsy. METHODS A total of 29 Saudi patients with type I or type 2 narcolepsy comprising of 23 (79%) males and 6 (21%) females with a mean age of 17.2 ± 9.6 years were included in this study. Type 1 or type 2 narcolepsy was diagnosed by full polysomnography followed by a multiple sleep latency test in accordance with International Classifications of Sleep Disorders-3 criteria. HLA typing for DQB1 alleles was performed by polymerase chain reaction and hybridization with sequence-specific oligonucleotide probes. Differences in clinical and sleep parameters were compared by univariable analyses. HLA-DQB1*06:02 frequency was systematically compared with the published literature. RESULTS Type 1 narcolepsy was diagnosed in 19/29 (65.5%) patients, whereas 10/29 (34.5%) patients had type 2 narcolepsy. DQB1*06:02 was present in 25/29 (86.2%) patients; 15/19 (78.9%) narcolepsy type 1 patients and 10/10 (100%) narcolepsy type 2 patients harboured the DQB1*06:02 allele. REM latency was significantly lower in DQB1*06:02-positive patients compared to DQB1*06:02-negative patients (17.6 ± 32.3 min vs. 106.0 ± 86.0 min; p = 0.025). Epworth Sleepiness Scale scores were significantly higher among type 1 than type 2 narcolepsy patients (19.7 ± 3.2 vs 15.3 ± 3.6; p = 0.02). CONCLUSIONS DQB1*06:02 allele frequencies among Saudi patients with narcolepsy were consistent with previously published data.
Collapse
|
33
|
Sturzenegger C, Baumann CR, Lammers GJ, Kallweit U, van der Zande WLM, Bassetti CL. Swiss Narcolepsy Scale. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2018. [DOI: 10.1177/2514183x18794175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Gerd J Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Sleep Wake Center SEIN Heemstede, Heemstede, The Netherlands
| | - Ulf Kallweit
- Department of Neurology, Bern University Hospital, Switzerland
| | | | - Claudio L Bassetti
- Department of Neurology, University Hospital, Zurich, Switzerland
- Department of Neurology, Bern University Hospital, Switzerland
| |
Collapse
|
34
|
Juvodden HT, Alnæs D, Lund MJ, Agartz I, Andreassen OA, Dietrichs E, Thorsby PM, Westlye LT, Knudsen S. Widespread white matter changes in post-H1N1 patients with narcolepsy type 1 and first-degree relatives. Sleep 2018; 41:5054638. [PMID: 30016530 DOI: 10.1093/sleep/zsy145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hilde T Juvodden
- Department of Rare Disorders, Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Martina J Lund
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen Dietrichs
- Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per M Thorsby
- Department of Medical Biochemistry, Hormone Laboratory, Oslo University Hospital, Aker, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stine Knudsen
- Department of Rare Disorders, Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias (NevSom), Oslo University Hospital, Ullevål, Norway
| |
Collapse
|
35
|
The clinical spectrum of childhood narcolepsy. Sleep Med Rev 2018; 38:70-85. [DOI: 10.1016/j.smrv.2017.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
|
36
|
Huang YS, Hsiao IT, Liu FY, Hwang FM, Lin KL, Huang WC, Guilleminault C. Neurocognition, sleep, and PET findings in type 2 vs type 1 narcolepsy. Neurology 2018; 90:e1478-e1487. [PMID: 29602910 DOI: 10.1212/wnl.0000000000005346] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/04/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To analyze differences in functional brain images collected in patients with type 2 and type 1 narcolepsy compared to normal controls and the relationship among brain images, objective neuropsychologic tests, and sleep findings. METHODS Data collection included comprehensive clinical investigation, study of sleep/wake with actigraphy, polysomnography, Multiple Sleep Latency Test, human leukocyte antigen typing, 18F-fluorodeoxyglucose PET, and cognitive tests obtained from 29 patients with type 2 narcolepsy, 104 patients with type 1 narcolepsy, and 26 sex- and age-matched normal control individuals. Conners' Continuous Performance Test (CPT II) and Wisconsin Card-Sorting Task were performed simultaneously with the FDG-PET examination. After analyses of variance, data between patients with type 1 and type 2 narcolepsy were compared by post hoc analysis, and correlation between functional brain imaging findings and results of neurocognitive tests was obtained. RESULTS All patients with narcolepsy presented with at least 2 sleep-onset REM periods (SOREMP) and subjective sleepiness. Patients with type 2 narcolepsy compared to patients with type 1 narcolepsy had significantly less SOREMP, longer mean sleep latencies, and lower body mass indexes, apnea-hypopnea indexes, and frequency of human leukocyte antigen DQ-Beta1*0602. In patients with type 2 narcolepsy, FDG-PET studies showed significantly less hypermetabolism in the fusiform gyrus, striatum, hippocampus, thalamus, basal ganglia, and cerebellum than in patients with type 1 narcolepsy, and significantly less hypometabolism in the regions of frontal lobe, posterior cingulum, angular gyrus, and part of the parietal lobe; these changes were associated with fewer errors on the CPT. CONCLUSION Young patients with type 2 narcolepsy have fewer clinical impairments and less distinct brain functional abnormalities than patients with type 1 narcolepsy, who are significantly more affected.
Collapse
Affiliation(s)
- Yu-Shu Huang
- From the Department of Child Psychiatry, Sleep Center and Craniofacial Research Center (Y.-S.H.), Department of Nuclear Medicine and Molecular Imaging Center (I.-T.H., F.-Y.L., W.-C.H.), and Division of Pediatric Neurology (K.-L.L.), Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Department of Medical Imaging and Radiological Sciences, College of Medicine (I.-T.H., F.-Y.L.), Chang Gung University, Taoyuan; Department of Education (F.-M.H.), National Chia-Yi University, Chiayi, Taiwan; and Stanford University Sleep Medicine Division (C.G.), Redwood City, CA
| | - Ing-Tsung Hsiao
- From the Department of Child Psychiatry, Sleep Center and Craniofacial Research Center (Y.-S.H.), Department of Nuclear Medicine and Molecular Imaging Center (I.-T.H., F.-Y.L., W.-C.H.), and Division of Pediatric Neurology (K.-L.L.), Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Department of Medical Imaging and Radiological Sciences, College of Medicine (I.-T.H., F.-Y.L.), Chang Gung University, Taoyuan; Department of Education (F.-M.H.), National Chia-Yi University, Chiayi, Taiwan; and Stanford University Sleep Medicine Division (C.G.), Redwood City, CA
| | - Feng-Yuan Liu
- From the Department of Child Psychiatry, Sleep Center and Craniofacial Research Center (Y.-S.H.), Department of Nuclear Medicine and Molecular Imaging Center (I.-T.H., F.-Y.L., W.-C.H.), and Division of Pediatric Neurology (K.-L.L.), Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Department of Medical Imaging and Radiological Sciences, College of Medicine (I.-T.H., F.-Y.L.), Chang Gung University, Taoyuan; Department of Education (F.-M.H.), National Chia-Yi University, Chiayi, Taiwan; and Stanford University Sleep Medicine Division (C.G.), Redwood City, CA
| | - Fang-Ming Hwang
- From the Department of Child Psychiatry, Sleep Center and Craniofacial Research Center (Y.-S.H.), Department of Nuclear Medicine and Molecular Imaging Center (I.-T.H., F.-Y.L., W.-C.H.), and Division of Pediatric Neurology (K.-L.L.), Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Department of Medical Imaging and Radiological Sciences, College of Medicine (I.-T.H., F.-Y.L.), Chang Gung University, Taoyuan; Department of Education (F.-M.H.), National Chia-Yi University, Chiayi, Taiwan; and Stanford University Sleep Medicine Division (C.G.), Redwood City, CA
| | - Kuang-Lin Lin
- From the Department of Child Psychiatry, Sleep Center and Craniofacial Research Center (Y.-S.H.), Department of Nuclear Medicine and Molecular Imaging Center (I.-T.H., F.-Y.L., W.-C.H.), and Division of Pediatric Neurology (K.-L.L.), Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Department of Medical Imaging and Radiological Sciences, College of Medicine (I.-T.H., F.-Y.L.), Chang Gung University, Taoyuan; Department of Education (F.-M.H.), National Chia-Yi University, Chiayi, Taiwan; and Stanford University Sleep Medicine Division (C.G.), Redwood City, CA
| | - Wen-Cheng Huang
- From the Department of Child Psychiatry, Sleep Center and Craniofacial Research Center (Y.-S.H.), Department of Nuclear Medicine and Molecular Imaging Center (I.-T.H., F.-Y.L., W.-C.H.), and Division of Pediatric Neurology (K.-L.L.), Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Department of Medical Imaging and Radiological Sciences, College of Medicine (I.-T.H., F.-Y.L.), Chang Gung University, Taoyuan; Department of Education (F.-M.H.), National Chia-Yi University, Chiayi, Taiwan; and Stanford University Sleep Medicine Division (C.G.), Redwood City, CA
| | - Christian Guilleminault
- From the Department of Child Psychiatry, Sleep Center and Craniofacial Research Center (Y.-S.H.), Department of Nuclear Medicine and Molecular Imaging Center (I.-T.H., F.-Y.L., W.-C.H.), and Division of Pediatric Neurology (K.-L.L.), Chang Gung Memorial Hospital and Chang Gung University College of Medicine; Department of Medical Imaging and Radiological Sciences, College of Medicine (I.-T.H., F.-Y.L.), Chang Gung University, Taoyuan; Department of Education (F.-M.H.), National Chia-Yi University, Chiayi, Taiwan; and Stanford University Sleep Medicine Division (C.G.), Redwood City, CA.
| |
Collapse
|
37
|
Sadam H, Pihlak A, Kivil A, Pihelgas S, Jaago M, Adler P, Vilo J, Vapalahti O, Neuman T, Lindholm D, Partinen M, Vaheri A, Palm K. Prostaglandin D2 Receptor DP1 Antibodies Predict Vaccine-induced and Spontaneous Narcolepsy Type 1: Large-scale Study of Antibody Profiling. EBioMedicine 2018; 29:47-59. [PMID: 29449194 PMCID: PMC5925455 DOI: 10.1016/j.ebiom.2018.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. METHODS Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. FINDINGS Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. INTERPRETATION We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.
Collapse
Affiliation(s)
- Helle Sadam
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Arno Pihlak
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Anri Kivil
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia
| | | | | | - Priit Adler
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Olli Vapalahti
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin Katu 2, 00014 University of Helsinki, Finland; Virology and Immunology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Toomas Neuman
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; IPDx Immunoprofiling Diagnostics GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medicum, Haartmaninkatu 8, 00014 University of Helsinki, Finland; Minerva Foundation Medical Research Institute, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Markku Partinen
- Finnish Narcolepsy Research Center, Helsinki Sleep Clinic, Vitalmed Research Center, Valimotie 21, 00380, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland
| | - Kaia Palm
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
38
|
Hypersomnia with ADHD: a possible subtype of narcolepsy type 2. Sleep Biol Rhythms 2017. [DOI: 10.1007/s41105-017-0139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Absence of anti-hypocretin receptor 2 autoantibodies in post pandemrix narcolepsy cases. PLoS One 2017; 12:e0187305. [PMID: 29220370 PMCID: PMC5722318 DOI: 10.1371/journal.pone.0187305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
Background A recent publication suggested molecular mimicry of a nucleoprotein (NP) sequence from A/Puerto Rico/8/1934 (PR8) strain, the backbone used in the construction of the reassortant strain X-179A that was used in Pandemrix® vaccine, and reported on anti-hypocretin (HCRT) receptor 2 (anti-HCRTR2) autoantibodies in narcolepsy, mostly in post Pandemrix® narcolepsy cases (17 of 20 sera). In this study, we re-examined this hypothesis through mass spectrometry (MS) characterization of Pandemrix®, and two other pandemic H1N1 (pH1N1)-2009 vaccines, Arepanrix® and Focetria®, and analyzed anti-HCRTR2 autoantibodies in narcolepsy patients and controls using three independent strategies. Methods MS characterization of Pandemrix® (2 batches), Arepanrix® (4 batches) and Focetria® (1 batch) was conducted with mapping of NP 116I or 116M spectrogram. Two sets of narcolepsy cases and controls were used: 40 post Pandemrix® narcolepsy (PP-N) cases and 18 age-matched post Pandemrix® controls (PP-C), and 48 recent (≤6 months) early onset narcolepsy (EO-N) cases and 70 age-matched other controls (O-C). Anti-HCRTR2 autoantibodies were detected using three strategies: (1) Human embryonic kidney (HEK) 293T cells with transient expression of HCRTR2 were stained with human sera and then analyzed by flow cytometer; (2) In vitro translation of [35S]-radiolabelled HCRTR2 was incubated with human sera and immune complexes of autoantibody and [35S]-radiolabelled HCRTR2 were quantified using a radioligand-binding assay; (3) Optical density (OD) at 450 nm (OD450) of human serum immunoglobulin G (IgG) binding to HCRTR2 stably expressed in Chinese hamster ovary (CHO)-K1 cell line was measured using an in-cell enzyme-linked immunosorbent assay (ELISA). Results NP 116M mutations were predominantly present in all batches of Pandemrix®, Arepanrix® and Focetria®. The wild-type NP109-123 (ILYDKEEIRRIWRQA), a mimic to HCRTR234-45 (YDDEEFLRYLWR), was not found to bind to DQ0602. Three or four subjects were found positive for anti-HCRTR2 autoantibodies using two strategies or the third one, respectively. None of the post Pandemrix® narcolepsy cases (0 of 40 sera) was found positive with all three strategies. Conclusion Anti-HCRTR2 autoantibody is not a significant biological feature of narcolepsy or of post Pandemrix® autoimmune responses.
Collapse
|
40
|
Abstract
Narcolepsy type 1 (NT1) is a rare sleep disorder caused by the very specific loss of hypothalamic hypocretin (Hcrt)/orexin neurons. The exact underlying process leading to this destruction is yet unknown, but indirect evidence strongly supports an autoimmune origin. The association with immune-related genetic factors, in particular the strongest association ever reported in a disease with an allele of a human leukocyte antigen (HLA) gene, and with environmental factors (i.e., the H1N1 influenza infection and vaccination during the pandemic in 2009) are in favor of such a hypothesis. The loss of Hcrt neurons is irreversible, and NT1 is currently an incurable and disabling condition. Patients are managed with symptomatic medication, targeting the main symptoms (excessive daytime sleepiness, cataplexy, disturbed nocturnal sleep), and they require a lifelong treatment. Improved diagnostic tools, together with an increased understanding of the pathogenesis of NT1, may lead to new therapeutic and even preventive interventions. One future treatment could include Hcrt replacement, but this neuropeptide does not cross the blood-brain barrier. However, Hcrt receptor agonists may be promising candidates to treat NT1. Another option is immune-based therapies, administered at disease onset, with already some initiatives to slow down or stop the dysimmune process. Whether immune-based therapy could be beneficial in NT1 remains, however, to be proven.
Collapse
|
41
|
Affiliation(s)
- Jun Zhang
- Department of Neurology, Peking University People's Hospital, 11, Xi Zhi Men Nan Da Jie, Xi Chen Qu, Beijing 100044, China
| | - Fang Han
- Department of Respiratory Medicine, Peking University People's Hospital, 11, Xi Zhi Men Nan Da Jie, Xi Chen Qu, Beijing 100044, China.
| |
Collapse
|
42
|
Gupta AK, Sahoo S, Grover S. Narcolepsy in Adolescence-A Missed Diagnosis: A Case Report. INNOVATIONS IN CLINICAL NEUROSCIENCE 2017; 14:20-23. [PMID: 29616151 PMCID: PMC5880369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Narcolepsy is an uncommon sleep cycle disorder with a usual onset in adolescence, but it is often misdiagnosed and underdiagnosed. Rarely is the tetrad of excessive daytime sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis seen in patients. The clinical characteristics of narcolepsy are often confused with many psychiatric and neurologic disorders. Lack of clinical awareness about narcolepsy leads to frequent prescriptions of antiepileptics and psychotropics, which can adversely affect the quality of life of children and adolescents. We report a case of an adolescent male who presented with all four cardinal symptoms of narcolepsy and had been misdiagnosed with epilepsy, psychosis, and depression. We discuss various issues regarding narcolepsy in children and adolescents.
Collapse
Affiliation(s)
- Anoop K Gupta
- Dr. Gupta is a junior resident, Dr. Sahoo is a senior resident, and Dr. Grover is a professor in the Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Swapnajeet Sahoo
- Dr. Gupta is a junior resident, Dr. Sahoo is a senior resident, and Dr. Grover is a professor in the Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sandeep Grover
- Dr. Gupta is a junior resident, Dr. Sahoo is a senior resident, and Dr. Grover is a professor in the Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
43
|
Abstract
Narcolepsy is a chronic sleep disorder that has a typical onset in adolescence and is characterized by excessive daytime sleepiness, which can have severe consequences for the patient. Problems faced by patients with narcolepsy include social stigma associated with this disease, difficulties in obtaining an education and keeping a job, a reduced quality of life and socioeconomic consequences. Two subtypes of narcolepsy have been described (narcolepsy type 1 and narcolepsy type 2), both of which have similar clinical profiles, except for the presence of cataplexy, which occurs only in patients with narcolepsy type 1. The pathogenesis of narcolepsy type 1 is hypothesized to be the autoimmune destruction of the hypocretin-producing neurons in the hypothalamus; this hypothesis is supported by immune-related genetic and environmental factors associated with the disease. However, direct evidence in support of the autoimmune hypothesis is currently unavailable. Diagnosis of narcolepsy encompasses clinical, electrophysiological and biological evaluations, but simpler and faster procedures are needed. Several medications are available for the symptomatic treatment of narcolepsy, all of which have quite good efficacy and safety profiles. However, to date, no treatment hinders or slows disease development. Improved diagnostic tools and increased understanding of the pathogenesis of narcolepsy type 1 are needed and might lead to therapeutic or even preventative interventions.
Collapse
Affiliation(s)
- Birgitte R Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Forskerparken, Nordre Ringvej 69, 2600 Glostrup, Denmark.,Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Stine Knudsen
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias, Oslo University Hospital, Oslo, Norway
| | - Hanna M Ollila
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Stanford University, Stanford, California, USA
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, AUSL di Bologna, Bologna, Italy
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Yves Dauvilliers
- Sleep Unit, Narcolepsy Reference Center, Department of Neurology, Gui de Chauliac Hospital, INSERM 1061, Montpellier, France
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands.,Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
44
|
Ponziani V, Gennari M, Pizza F, Balsamo A, Bernardi F, Plazzi G. Growing Up with Type 1 Narcolepsy: Its Anthropometric and Endocrine Features. J Clin Sleep Med 2016; 12:1649-1657. [PMID: 27707443 DOI: 10.5664/jcsm.6352] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/31/2016] [Indexed: 12/22/2022]
Abstract
STUDY OBJECTIVES To evaluate the effect of type 1 narcolepsy (NT1) on anthropometric and endocrine features in childhood/adolescence, focusing on patterns and correlates of weight, pubertal development, and growth in treated and untreated patients. METHODS We collected anthropometric (height, weight, body mass index (BMI) z-scores), pubertal, metabolic, and endocrine data from 72 NT1 patients at diagnosis and all available premorbid anthropometric parameters of patients from their pediatric files (n = 30). New measurements at 1-y reassessment in patients undergoing different treatments were compared with baseline data. RESULTS We detected a high prevalence of overweight (29.2%), obesity (25%), metabolic syndrome (18.8%), and precocious puberty (16.1%), but no signs of linear growth alterations at diagnosis. According to anthropometric records, weight gain started soon after NT1 onset. At 1-y follow-up reassessment, sodium oxybate treatment was associated with a significant BMI z-score reduction (-1.29 ± 0.30, p < 0.0005) after adjusting for baseline age, sex, sleepiness, and BMI. CONCLUSIONS NT1 onset in children/adolescents is associated with rapid weight gain up to overweight/obesity and precocious puberty without affecting growth. In our study, sodium oxybate treatment resulted in a significant weight reduction in NT1 overweight/obese patients at 1-y follow-up.
Collapse
Affiliation(s)
- Virginia Ponziani
- Pediatric Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Monia Gennari
- Pediatric Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy.,IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | - Antonio Balsamo
- Pediatric Endocrinology Unit, Center for Rare Endocrine Diseases, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Filippo Bernardi
- Pediatric Unit, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy.,IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| |
Collapse
|
45
|
Maresova P, Novotny M, Klímová B, Kuča K. Treatment cost of narcolepsy with cataplexy in Central Europe. Ther Clin Risk Manag 2016; 12:1709-1715. [PMID: 27920540 PMCID: PMC5125720 DOI: 10.2147/tcrm.s119888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Narcolepsy is a lifelong, rare neurological sleep disorder characterized by chronic, excessive attacks of daytime sleepiness. This disease is often extremely incapacitating, interfering with every aspect of life, in work and social settings. Objective The purpose of this study is to specify the treatment costs of patients in Central Europe (Czech Republic), while the attention is mainly paid to the drugs that were fully or partially covered by public health insurance. Furthermore, concomitant therapy is also evaluated, since it incurs a certain financial burden for patients and their family members. On the basis of the calculated costs, impact on the public budget is evaluated. Patients and methods This study monitors the direct costs of the drugs for 13 patients, who represent ~1.3% of the total number of diagnosed patients in the Czech Republic, and evaluates the costs associated with their treatment during the period from January 9, 2011 to April 23, 2013. Results Most of the treatment costs (~80%) were covered by publicly available sources. This finding is also true for the concomitant therapy of comorbidities. Additional payments for the drugs constitute about 20% of the total costs.
Collapse
Affiliation(s)
- Petra Maresova
- Department of Economics, Faculty of Informatics and Management
| | - Michal Novotny
- Department of Chemistry, Faculty of Science, University of Hradec Králové; Biomedical Research Center, University Hospital Hradec Králové
| | - Blanka Klímová
- Department of Applied Linguistics, Faculty of Informatics and Management
| | - Kamil Kuča
- Biomedical Research Center, University Hospital Hradec Králové; Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
46
|
Ruoff C, Rye D. The ICSD-3 and DSM-5 guidelines for diagnosing narcolepsy: clinical relevance and practicality. Curr Med Res Opin 2016; 32:1611-1622. [PMID: 27359185 DOI: 10.1080/03007995.2016.1208643] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Narcolepsy is a chronic neurological disease manifesting as difficulty with maintaining continuous wake and sleep. Clinical presentation varies but requires excessive daytime sleepiness (EDS) occurring alone or together with features of rapid-eye movement (REM) sleep dissociation (e.g., cataplexy, hypnagogic/hypnopompic hallucinations, sleep paralysis), and disrupted nighttime sleep. Narcolepsy with cataplexy is associated with reductions of cerebrospinal fluid (CSF) hypocretin due to destruction of hypocretin peptide-producing neurons in the hypothalamus in individuals with a specific genetic predisposition. Updated diagnostic criteria include the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) and International Classification of Sleep Disorders Third Edition (ICSD-3). DSM-5 criteria require EDS in association with any one of the following: (1) cataplexy; (2) CSF hypocretin deficiency; (3) REM sleep latency ≤15 minutes on nocturnal polysomnography (PSG); or (4) mean sleep latency ≤8 minutes on multiple sleep latency testing (MSLT) with ≥2 sleep-onset REM-sleep periods (SOREMPs). ICSD-3 relies more upon objective data in addition to EDS, somewhat complicating the diagnostic criteria: 1) cataplexy and either positive MSLT/PSG findings or CSF hypocretin deficiency; (2) MSLT criteria similar to DSM-5 except that a SOREMP on PSG may count as one of the SOREMPs required on MSLT; and (3) distinct division of narcolepsy into type 1, which requires the presence of cataplexy or documented CSF hypocretin deficiency, and type 2, where cataplexy is absent, and CSF hypocretin levels are either normal or undocumented. We discuss limitations of these criteria such as variability in clinical presentation of cataplexy, particularly when cataplexy may be ambiguous, as well as by age; multiple and/or invasive CSF diagnostic test requirements; and lack of normative diagnostic test data (e.g., MSLT) in certain populations. While ICSD-3 criteria reflect narcolepsy pathophysiology, DSM-5 criteria have greater clinical practicality, suggesting that valid and reliable biomarkers to help standardize narcolepsy diagnosis would be welcomed.
Collapse
Affiliation(s)
- Chad Ruoff
- a Center for Sleep Sciences and Medicine, and Department of Psychiatry and Behavioral Sciences , Stanford University School of Medicine , Palo Alto , CA , USA
| | - David Rye
- b Department of Neurology and Program in Sleep , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
47
|
Wang Z, Wu H, Stone WS, Zhuang J, Qiu L, Xu X, Wang Y, Zhao Z, Han F, Zhao Z. Body weight and basal metabolic rate in childhood narcolepsy: a longitudinal study. Sleep Med 2016; 25:139-144. [PMID: 27823707 DOI: 10.1016/j.sleep.2016.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023]
|
48
|
Sansa G, Gavaldà A, Gaig C, Monreal J, Ercilla G, Casamitjana R, Ribera G, Iranzo A, Santamaria J. Exploring the presence of narcolepsy in patients with schizophrenia. BMC Psychiatry 2016; 16:177. [PMID: 27245445 PMCID: PMC4888670 DOI: 10.1186/s12888-016-0859-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are several case reports of patients with narcolepsy and schizophrenia, but a systematic examination of the association of both disorders has not been done. The aim of this work is to assess the frequency of narcolepsy with cataplexy in a large consecutive series of adult patients with schizophrenia and schizoaffective disorder. METHODS We screened 366 consecutive patients with schizophrenia or schizoaffective disorder with a sleep questionnaire and the Epworth Sleepines scale (ESS) exploring narcoleptiform symptoms. Those who screened positive were assessed by a sleep specialist, and offered an HLA determination. CSF hypocretin-1 determination was proposed to those who were HLA DQB1*06:02 positive. RESULTS On the screening questionnaire, 17 patients had an ESS score ≥11 without cataplexy, 15 had cataplexy-like symptoms with an ESS score < 11, and four had an ESS score ≥11 plus cataplexy-like symptoms. Of those, 24 patients were evaluated by a sleep specialist. Five of these 24 were HLA DQB1*06:02 positive, and three of these five subjects underwent lumbar puncture showing normal hypocretin-1 levels. CONCLUSIONS Our results suggest that narcolepsy with cataplexy is not an unrecognized disease in adult patients with schizophrenia or schizoaffective disorder.
Collapse
Affiliation(s)
- Gemma Sansa
- Neurology Service and Multidisciplinary Sleep Disorders Unit, Hospital Parc Taulí, Sabadell, Spain.
| | - Alba Gavaldà
- Neuropsychology Department, Neurology Service. Hospital Parc Taulí, Sabadell, Spain
| | - Carles Gaig
- Neurology Service and Multidisciplinary Sleep Disorders Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - José Monreal
- Psychiatry Service, Hospital Parc Taulí, Sabadell, Spain
| | - Guadalupe Ercilla
- Immunology Laboratory, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Roser Casamitjana
- Biochemistry and Molecular Genetics Laboratory, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic of Barcelona, Barcelona, Spain
| | - Gisela Ribera
- Neurology Service and Multidisciplinary Sleep Disorders Unit, Hospital Parc Taulí, Sabadell, Spain
| | - Alex Iranzo
- Neurology Service and Multidisciplinary Sleep Disorders Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Joan Santamaria
- Neurology Service and Multidisciplinary Sleep Disorders Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Abstract
We previously reported an increased frequency of antibodies to hypocretin (HCRT) receptor 2 in sera obtained from narcoleptic patients who received the European AS03-adjuvanted vaccine Pandemrix (GlaxoSmithKline Biologicals, s.a.) for the global influenza A H1N1 pandemic in 2009 [A(H1N1)pdm09]. These antibodies cross-reacted with a particular fragment of influenza nucleoprotein (NP) - one of the proteins naturally contained in the virus used to make seasonal influenza vaccine and pandemic influenza vaccines. The purpose of this commentary is to provide additional insights and interpretations of the findings and share additional data not presented in the original paper to help the reader appreciate the key messages of that publication. First, a brief background to narcolepsy and vaccine-induced narcolepsy will be provided. Then, additional insights and clarification will be provided on the following topics: 1) the critical difference identified in the adjuvanted A(H1N1)pdm09 vaccines, 2) the contributing factor likely for the discordant association of narcolepsy between the AS03-adjuvanted pandemic vaccines Pandemrix and Arepanrix (GlaxoSmithKline Biologicals, s.a.), 3) the significance of detecting HCRT receptor 2 (HCRTr2) antibodies in some Finnish control subjects, 4) the approach used for the detection of HCRTr2 antibodies in vaccine-associated narcolepsy, and 5) the plausibility of the proposed mechanism involving HCRTr2 modulation in vaccine-associated narcolepsy.
Collapse
Affiliation(s)
| | - Lawrence Steinman
- b Neurology and Neuroscience , Stanford University School of Medicine , Stanford , CA , USA
| |
Collapse
|
50
|
H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice. Proc Natl Acad Sci U S A 2015; 113:E368-77. [PMID: 26668381 DOI: 10.1073/pnas.1521463112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An increased incidence in the sleep-disorder narcolepsy has been associated with the 2009-2010 pandemic of H1N1 influenza virus in China and with mass vaccination campaigns against influenza during the pandemic in Finland and Sweden. Pathogenetic mechanisms of narcolepsy have so far mainly focused on autoimmunity. We here tested an alternative working hypothesis involving a direct role of influenza virus infection in the pathogenesis of narcolepsy in susceptible subjects. We show that infection with H1N1 influenza virus in mice that lack B and T cells (Recombinant activating gene 1-deficient mice) can lead to narcoleptic-like sleep-wake fragmentation and sleep structure alterations. Interestingly, the infection targeted brainstem and hypothalamic neurons, including orexin/hypocretin-producing neurons that regulate sleep-wake stability and are affected in narcolepsy. Because changes occurred in the absence of adaptive autoimmune responses, the findings show that brain infections with H1N1 virus have the potential to cause per se narcoleptic-like sleep disruption.
Collapse
|