1
|
Biscarini F, Vandi S, Zenesini C, Vignatelli L, Citeroni F, Antelmi E, Franceschini C, Barateau L, Dauvilliers Y, Mignot E, Plazzi G, Pizza F. Use of Portable 24-Hour Polysomnography as Alternative Diagnostic Tool for Narcolepsy Type 1 in Adults and Children. Neurology 2025; 104:e213473. [PMID: 40080737 DOI: 10.1212/wnl.0000000000213473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/21/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND AND OBJECTIVES The diagnosis of narcolepsy type 1 (NT1) currently requires the multiple sleep latency test (MSLT), or a nocturnal sleep-onset REM period (SOREMP) combined with typical cataplexy, or alternatively the determination of CSF hypocretin-1 (CSF-hcrt-1) deficiency. We evaluated the 24-hour polysomnography (PSG) recordings in adult and pediatric patients as an alternative diagnostic tool. METHODS Patients of any age, referred to the narcolepsy center of a university hospital for suspected central disorder of hypersomnolence (CDH), were consecutively recruited between 2013 and 2022. Participants underwent 2 days (day1-night1-day2-night2) of continuous dynamic PSG followed by MSLT. When consent was given, CSF-hcrt-1 was measured. The accuracy of 24-hour PSG variables from night1 and day2 (index test) was assessed with receiver operating characteristic (ROC) curve analysis in identifying NT1 based on current criteria (applied to night2-PSG, MSLT, and CSF-hcrt1). The markers with area under the curve (AUC) ≥0.75 were then tested in adults and children, separately, and to diagnose NT1 and narcolepsy type 2 (NT2) in different scenarios. RESULTS Eight hundred seven patients (30.1% pediatric, 52.4% male) were included, and 709 had CSF-hcrt-1 measured. According to the standard criteria, 322 were diagnosed with NT1 (mean age 26.7 ± 17.1 years, 40.4% pediatric, 54.0% male) and 484 with non-NT1 (mean age 32.7 ± 16.5 years, 23.3% pediatric, 51.3% male), encompassing 31 with NT2, 163 with idiopathic hypersomnia, and 281 with other diagnoses. Detecting SOREMP ≥1 during daytime resulted in AUC = 0.84 (95% CI 0.82-0.87), with 84.4% sensitivity and 84.5% specificity for NT1. Performance was superior to all nighttime-PSG measures (p < 0.001) including nighttime-SOREMP (AUC = 0.77, 95% CI 0.74-0.80; sensitivity = 62.1%, specificity = 91.7%) and did not differ from 24-hour SOREMP ≥1 (AUC = 0.85, 95% CI 0.82-0.87; sensitivity = 89.7%, specificity = 80.2%). The combination of daytime-SOREMP ≥1 with cataplexy showed AUC = 0.89 (95% CI 0.86-0.91) for NT1, superior to the combination of nighttime-SOREMP with cataplexy (AUC = 0.78, 95% CI 0.76-0.81, p < 0.001) and similar to MSLT criteria for narcolepsy (AUC = 0.90, 95% CI 0.88-0.92, p = 0.36). Performances were similar in adults and children. Daytime-SOREMP ≥1 identified NT1 and NT2 combined within all CDH with a sensitivity of 80.8% and specificity of 88.0%. CONCLUSIONS The detection of daytime-SOREMP during dynamic 24-hour PSG is more accurate than nighttime-SOREMP for diagnosing narcolepsy and, combined with cataplexy, is comparable with MSLT criteria for the identification of NT1. These results offer the prospect of 24-hour PSG diagnostics for NT1 in the home setting. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that daytime SOREMP during a 24-hour PSG accurately distinguishes NT1 in patients with a clinical history of possible cataplexy from those who do not have NT1.
Collapse
Affiliation(s)
- Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy
| | | | | | | | - Elena Antelmi
- DIMI Department of engineering and medicine of innovation, University of Verona, Italy
| | | | - Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, France
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, France
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, France
| | - Emmanuel Mignot
- Stanford University Center for Sleep Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA; and
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio-Emilia, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy
| |
Collapse
|
2
|
Biscarini F, Barateau L, Pizza F, Plazzi G, Dauvilliers Y. Narcolepsy and rapid eye movement sleep. J Sleep Res 2025; 34:e14277. [PMID: 38955433 PMCID: PMC11911061 DOI: 10.1111/jsr.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024]
Abstract
Since the first description of narcolepsy at the end of the 19th Century, great progress has been made. The disease is nowadays distinguished as narcolepsy type 1 and type 2. In the 1960s, the discovery of rapid eye movement sleep at sleep onset led to improved understanding of core sleep-related disease symptoms of the disease (excessive daytime sleepiness with early occurrence of rapid eye movement sleep, sleep-related hallucinations, sleep paralysis, rapid eye movement parasomnia), as possible dysregulation of rapid eye movement sleep, and cataplexy resembling an intrusion of rapid eye movement atonia during wake. The relevance of non-sleep-related symptoms, such as obesity, precocious puberty, psychiatric and cardiovascular morbidities, has subsequently been recognized. The diagnostic tools have been improved, but sleep-onset rapid eye movement periods on polysomnography and Multiple Sleep Latency Test remain key criteria. The pathogenic mechanisms of narcolepsy type 1 have been partly elucidated after the discovery of strong HLA class II association and orexin/hypocretin deficiency, a neurotransmitter that is involved in altered rapid eye movement sleep regulation. Conversely, the causes of narcolepsy type 2, where cataplexy and orexin deficiency are absent, remain unknown. Symptomatic medications to treat patients with narcolepsy have been developed, and management has been codified with guidelines, until the recent promising orexin-receptor agonists. The present review retraces the steps of the research on narcolepsy that linked the features of the disease with rapid eye movement sleep abnormality, and those that do not appear associated with rapid eye movement sleep.
Collapse
Affiliation(s)
- Francesco Biscarini
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Lucie Barateau
- Sleep‐Wake Disorders Unit, Department of NeurologyGui‐de‐Chauliac Hospital, CHU MontpellierMontpellierFrance
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine‐Levin SyndromeMontpellierFrance
- Institute for Neurosciences of MontpellierUniversity of Montpellier, INSERMMontpellierFrance
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM)University of BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
- Department of Biomedical, Metabolic and Neural SciencesUniversity of Modena and Reggio‐EmiliaModenaItaly
| | - Yves Dauvilliers
- Sleep‐Wake Disorders Unit, Department of NeurologyGui‐de‐Chauliac Hospital, CHU MontpellierMontpellierFrance
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine‐Levin SyndromeMontpellierFrance
- Institute for Neurosciences of MontpellierUniversity of Montpellier, INSERMMontpellierFrance
| |
Collapse
|
3
|
Abstract
OBJECTIVE The goals of this article are to describe the clinical approach to and management of patients with central disorders of hypersomnolence, and to understand and differentiate available diagnostic tools. LATEST DEVELOPMENTS Updated clinical practice guidelines for the treatment of central disorders of hypersomnolence and narcolepsy specifically highlight new treatment options. Approval for a lower-sodium oxybate formulation that contains 92% less sodium than the standard sodium oxybate for the treatment of narcolepsy and idiopathic hypersomnia adds to the number of medications available for these disorders, allowing for a more tailored management of symptoms. ESSENTIAL POINTS Central disorders of hypersomnolence are characterized by excessive daytime sleepiness that impacts daily functions. These disorders can be differentiated by obtaining a detailed clinical sleep history and by a thoughtful interpretation of sleep diagnostic testing. Tailoring treatment approaches to meet the needs of individuals and accounting for medical and psychiatric comorbidities may improve quality of life.
Collapse
|
4
|
Maski K, Pizza F, Liu S, Steinhart E, Little E, Colclasure A, Diniz Behn C, Vandi S, Antelmi E, Weller E, Scammell TE, Plazzi G. Defining disrupted nighttime sleep and assessing its diagnostic utility for pediatric narcolepsy type 1. Sleep 2021; 43:5816762. [PMID: 32253429 DOI: 10.1093/sleep/zsaa066] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
STUDY OBJECTIVES Disrupted nighttime sleep (DNS) is a core narcolepsy symptom of unconsolidated sleep resulting from hypocretin neuron loss. In this study, we define a DNS objective measure and evaluate its diagnostic utility for pediatric narcolepsy type 1 (NT1). METHODS This was a retrospective, multisite, cross-sectional study of polysomnograms (PSGs) in 316 patients, ages 6-18 years (n = 150 NT1, n = 22 narcolepsy type 2, n = 27 idiopathic hypersomnia, and n = 117 subjectively sleepy subjects). We assessed sleep continuity PSG measures for (1) their associations with subjective and objective daytime sleepiness, daytime sleep onset REM periods (SOREMPs), self-reported disrupted nocturnal sleep and CSF hypocretin levels and (2) their predictive value for NT1 diagnosis. We then combined the best performing DNS measure with nocturnal SOREMP (nSOREMP) to assess the added value to the logistic regression model and the predictive accuracy for NT1 compared with nSOREMP alone. RESULTS The Wake/N1 Index (the number of transitions from any sleep stage to wake or NREM stage 1 normalized by total sleep time) was associated with objective daytime sleepiness, daytime SOREMPs, self-reported disrupted sleep, and CSF hypocretin levels (p's < 0.003) and held highest area under the receiver operator characteristic curves (AUC) for NT1 diagnosis. When combined with nSOREMP, the DNS index had greater accuracy for diagnosing NT1 (AUC = 0.91 [0.02]) than nSOREMP alone (AUC = 0.84 [0.02], likelihood ratio [LR] test p < 0.0001). CONCLUSIONS The Wake/N1 Index is an objective DNS measure that can quantify DNS severity in pediatric NT1. The Wake/N1 Index in combination with or without nSOREMP is a useful sleep biomarker that improves recognition of pediatric NT1 using only the nocturnal PSG.
Collapse
Affiliation(s)
- Kiran Maski
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Shanshan Liu
- ICCTR Biostatistics and Research Design Center, Boston Children's Hospital, Boston, MA
| | - Erin Steinhart
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Elaina Little
- Department of Neurology, Boston Children's Hospital, Boston, MA
| | - Alicia Colclasure
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO
| | - Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO.,Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Edie Weller
- ICCTR Biostatistics and Research Design Center, Boston Children's Hospital, Boston, MA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Song J, Kim TW, Kim SM, Um YH, Jeong JH, Seo HJ, Oh JH, Hong SC. Nocturnal Sleep Onset Rapid Eye Movement Sleep Periods as a Predictor of the Severity of Narcolepsy in Korea. SLEEP MEDICINE RESEARCH 2020. [DOI: 10.17241/smr.2019.00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Cairns A, Bogan R. Comparison of the macro and microstructure of sleep in a sample of sleep clinic hypersomnia cases. Neurobiol Sleep Circadian Rhythms 2019; 6:62-69. [PMID: 31236521 PMCID: PMC6586604 DOI: 10.1016/j.nbscr.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
The purpose of this study was to elucidate the differentiating or grouping EEG characteristics in various hypersomnias (type 1 and type 2 narcolepsy (N-1 and N-2) and idiopathic hypersomnia (IH) compared to an age-matched snoring reference group (SR). Polysomnogram sleep EEG was decomposed into a 4-frequency state model. The IH group had higher sleep efficiency (SE; 92.3% vs. 85.8%; sp < 0.05), lower WASO (IH = 35.4 vs. N-1 = 65.5 min; p < 0.01), but similar (i.e. high) arousal indices as N-1 (~33/h). N-1 and N-2 had earlier REM latency than IH and SR (N-1 = 64.8, N-2 = 76.3 vs. IH/SR = 118 min, p < 0.05). N-1 and N-2 showed an increase in MF1 segments (characteristic of stage 1 and REM) across the night as well as distinct oscillations every 2 h, but MF1 segment timing was advanced by 30 min compared to the SR group (p < 0.05). This suggests the presence of circadian organization to sleep that is timed earlier or of increased pressure and/or lability. MF1 demonstrated a mixed phenotype in IH, with an early 1st oscillation (like N-1 and N-2), 2nd oscillation that overlapped with the SR group, and a surge prior to wake (higher than all groups). This phenotype may reflect a heterogeneous group of individuals, with some having more narcolepsy-like characteristics (i.e. REM) than others. LF domain (delta surrogate) was enhanced in IH and N-1 and more rapidly dissipated compared to N-2 and SR (p < 0.05). This suggests an intact homeostatic sleep pattern that is of higher need/reduced efficiency whereas rapid dissipation may be an underlying mechanism for sleep disruption. Low frequency sleep (delta surrogate) was enhanced in Idiopathic Hypersomnia and Type 1 Narcolepsy and rapidly dissipated across the sleep period. Type 1 and 2 Narcoleptics demonstrated a mixed frequency 1 phenotype (REM surrogate) consistent with intact circadian control and advanced timing. Idiopathic hypersomnia was characterized by a variable mixed frequency 1 phenotype (REM surrogate), suggesting some with more “narcolepsy-like” REM characteristics than others.
Collapse
Affiliation(s)
| | - Richard Bogan
- SleepMed, Inc., Columbia, SC, United States.,The University of South Carolina Medical School, Columbia, SC, United States.,The Medical University of South Carolina, Charleston, SC, United States.,Bogan Sleep Consultants, LLC, Columbia, SC, United States
| |
Collapse
|
7
|
Abstract
Narcolepsy is the most common neurological cause of chronic sleepiness. The discovery about 20 years ago that narcolepsy is caused by selective loss of the neurons producing orexins (also known as hypocretins) sparked great advances in the field. Here, we review the current understanding of how orexin neurons regulate sleep-wake behaviour and the consequences of the loss of orexin neurons. We also summarize the developing evidence that narcolepsy is an autoimmune disorder that may be caused by a T cell-mediated attack on the orexin neurons and explain how these new perspectives can inform better therapeutic approaches.
Collapse
Affiliation(s)
- Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Andrew Cogswell
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Igor J Koralnik
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Stephansen JB, Olesen AN, Olsen M, Ambati A, Leary EB, Moore HE, Carrillo O, Lin L, Han F, Yan H, Sun YL, Dauvilliers Y, Scholz S, Barateau L, Hogl B, Stefani A, Hong SC, Kim TW, Pizza F, Plazzi G, Vandi S, Antelmi E, Perrin D, Kuna ST, Schweitzer PK, Kushida C, Peppard PE, Sorensen HBD, Jennum P, Mignot E. Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat Commun 2018; 9:5229. [PMID: 30523329 PMCID: PMC6283836 DOI: 10.1038/s41467-018-07229-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 10/15/2018] [Indexed: 01/01/2023] Open
Abstract
Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph-a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies.
Collapse
Affiliation(s)
- Jens B Stephansen
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Alexander N Olesen
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, 2600, Denmark
| | - Mads Olsen
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, 2600, Denmark
| | - Aditya Ambati
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Eileen B Leary
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Hyatt E Moore
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Oscar Carrillo
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Ling Lin
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Fang Han
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Han Yan
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yun L Sun
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, 100044, China
| | - Yves Dauvilliers
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, 34295, France
- INSERM, U1061, Université Montpellier 1, Montpellier, 34090, France
| | - Sabine Scholz
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, 34295, France
- INSERM, U1061, Université Montpellier 1, Montpellier, 34090, France
| | - Lucie Barateau
- Sleep-Wake Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, 34295, France
- INSERM, U1061, Université Montpellier 1, Montpellier, 34090, France
| | - Birgit Hogl
- Department of Neurology, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Ambra Stefani
- Department of Neurology, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Seung Chul Hong
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Seoul, 16247, Korea
| | - Tae Won Kim
- Department of Psychiatry, St. Vincent's Hospital, The Catholic University of Korea, Seoul, 16247, Korea
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Stefano Vandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Elena Antelmi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy
| | - Dimitri Perrin
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, 4001, Australia
| | - Samuel T Kuna
- Department of Medicine and Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Paula K Schweitzer
- Sleep Medicine and Research Center, St. Luke's Hospital, Chesterfield, 63017, MO, USA
| | - Clete Kushida
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA
| | - Paul E Peppard
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, 53726, WI, USA
| | - Helge B D Sorensen
- Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Rigshospitalet, Glostrup, 2600, Denmark
| | - Emmanuel Mignot
- Center for Sleep Science and Medicine, Stanford University, Stanford, 94304, CA, USA.
| |
Collapse
|
9
|
Naganuma F, Bandaru SS, Absi G, Mahoney CE, Scammell TE, Vetrivelan R. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiol Dis 2018; 120:12-20. [PMID: 30149182 PMCID: PMC6195361 DOI: 10.1016/j.nbd.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/02/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
The lateral hypothalamus contains neurons producing orexins that promote wakefulness and suppress REM sleep as well as neurons producing melanin-concentrating hormone (MCH) that likely promote REM sleep. Narcolepsy with cataplexy is caused by selective loss of the orexin neurons, and the MCH neurons appear unaffected. As the orexin and MCH systems exert opposing effects on REM sleep, we hypothesized that imbalance in this REM sleep-regulating system due to activity in the MCH neurons may contribute to the striking REM sleep dysfunction characteristic of narcolepsy. To test this hypothesis, we chemogenetically activated the MCH neurons and pharmacologically blocked MCH signaling in a murine model of narcolepsy and studied the effects on sleep-wake behavior and cataplexy. To chemoactivate MCH neurons, we injected an adeno-associated viral vector containing the hM3Dq stimulatory DREADD into the lateral hypothalamus of orexin null mice that also express Cre recombinase in the MCH neurons (MCH-Cre::OX-KO mice) and into control MCH-Cre mice with normal orexin expression. In both lines of mice, activation of MCH neurons by clozapine-N-oxide (CNO) increased rapid eye movement (REM) sleep without altering other states. In mice lacking orexins, activation of the MCH neurons also increased abnormal intrusions of REM sleep manifest as cataplexy and short latency transitions into REM sleep (SLREM). Conversely, a MCH receptor 1 antagonist, SNAP 94847, almost completely eliminated SLREM and cataplexy in OX-KO mice. These findings affirm that MCH neurons promote REM sleep under normal circumstances, and their activity in mice lacking orexins likely triggers abnormal intrusions of REM sleep into non-REM sleep and wake, resulting in the SLREM and cataplexy characteristic of narcolepsy.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA; Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA.
| |
Collapse
|
10
|
Bin-Hasan S, Videnovic A, Maski K. Nocturnal REM Sleep Without Atonia Is a Diagnostic Biomarker of Pediatric Narcolepsy. J Clin Sleep Med 2018; 14:245-252. [PMID: 29351827 DOI: 10.5664/jcsm.6944] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Compare nocturnal REM sleep without atonia (nRWA) and REM sleep behavior disorder (RBD) between pediatric patients with and without narcolepsy and determine if the nRWA index is a valid diagnostic biomarker for narcolepsy. METHODS Retrospective cohort study of children ages 6 to 18 years who completed a nocturnal polysomnogram (PSG) and Multiple Sleep Latency Test (MSLT). Our study sample included 11 patients with narcolepsy type 1 (NT1), 6 with narcolepsy type 2 (NT2), 12 with idiopathic hypersomnia (IH), and 11 with subjective hypersomnia (sHS). We compared group nRWA indices (epochs of RWA/total stage R sleep epochs) from the nocturnal PSGs and analyzed nRWA index receiver operating curve (ROC) statistics for narcolepsy diagnosis. RESULTS The median nRWA index of patients with NT1 was 15 to 30 times higher compared to sHS and IH (Ps < .005) but similar to that of the NT2 group (P = .46). RBD was present in 25% of patients with narcolepsy (NT1 and NT2). In comparing those with and without narcolepsy, the nRWA index area under the curve was 0.87 (0.6), 95% confidence interval (CI) = 0.75 to 0.99, P < .001. The threshold of having ≥ 1% of stage R sleep epochs with nRWA yielded a sensitivity of 88.2%, 95% CI = 63.6-98.5 and specificity of 60.9%, 95% CI = 38.5 to 80.3 for diagnosis of narcolepsy. In contrast, a threshold of ≥ 8% yielded a specificity of 95.7%, 95% CI = 78.1 to 99.9 and sensitivity of 52.9%, 95% CI = 27.8 to 77. CONCLUSIONS The nRWA index is a very good diagnostic biomarker of pediatric narcolepsy. Depending on the clinical cutoffs utilized, this biomarker can identify more children/adolescents with narcolepsy using just the PSG or reduce false-positive diagnostic results.
Collapse
Affiliation(s)
- Saadoun Bin-Hasan
- University of Toronto, Toronto, Ontario, Canada.,Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aleksandar Videnovic
- Harvard Medical School, Boston, Massachusetts.,Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kiran Maski
- Harvard Medical School, Boston, Massachusetts.,Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
11
|
Ruoff C, Pizza F, Trotti LM, Sonka K, Vandi S, Cheung J, Pinto S, Einen M, Simakajornboon N, Han F, Peppard P, Nevsimalova S, Plazzi G, Rye D, Mignot E. The MSLT is Repeatable in Narcolepsy Type 1 But Not Narcolepsy Type 2: A Retrospective Patient Study. J Clin Sleep Med 2018; 14:65-74. [PMID: 29198301 DOI: 10.5664/jcsm.6882] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/03/2017] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To examine repeatability of Multiple Sleep Latency Test (MSLT) results in narcolepsy type 1 (NT1) and narcolepsy type 2 (NT2) according to the criteria of the International Classification of Sleep Disorders, Third Edition (ICSD-3). METHODS Repeatability of the MSLT was retrospectively evaluated in NT1 (n = 60) and NT2 (n = 54) cases, and controls (n = 15). All subjects had documented HLA-DQB1*06:02 status and/or hypocretin-1 levels from cerebrospinal fluid. All subjects had undergone 2 MSLTs (≥ 1 meeting ICSD-3 criteria for narcolepsy). Repeatability was explored in children versus adults and in those on versus not on medication(s). Subsample and multivariate analysis were performed. RESULTS Both MSLTs in unmedicated patients were positive for narcolepsy in 78%, 18%, and 7% of NT1, NT2, and controls, respectively. NT2 cases changed to idiopathic hypersomnia or to a negative MSLT 26% and 57% of the time, respectively. Although NT1 cases were 10 to 14 times more likely to demonstrate a second positive MSLT compared to NT2 cases (P < 10-5) and controls (P < 10-4), respectively, NT2 cases were not significantly different from controls (P = .64). Medication use (P = .009) but not adult versus children status (P = .85) significantly decreased the likelihood of a repeat positive MSLT. CONCLUSIONS In a clinical setting, a positive MSLT for narcolepsy is a more reproducible and stable feature in NT1 than NT2. The retrospective design of this study hinders interpretation of these data, as there are many different, and possibly opposing, reasons to repeat a MSLT in NT1 versus NT2 (ie, ascertainment bias). Additional systematic MSLT repeatability studies independent of confounds are ideally needed to confirm these findings.
Collapse
Affiliation(s)
- Chad Ruoff
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, School of Medicine, Palo Alto, California
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche, ASL di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lynn Marie Trotti
- Department of Neurology, Emory Sleep Center, Emory University School of Medicine, Atlanta, Georgia
| | - Karel Sonka
- Department of Neurology, 1st Medical Faculty, Charles University, Prague, Czeck Republic
| | - Stefano Vandi
- IRCCS Istituto delle Scienze Neurologiche, ASL di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Joseph Cheung
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, School of Medicine, Palo Alto, California
| | - Swaroop Pinto
- Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Pulmonology and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mali Einen
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, School of Medicine, Palo Alto, California
| | - Narong Simakajornboon
- Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Pulmonology and Sleep Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Fang Han
- Department of Pulmonary Medicine, Peking University People's Hospital, Beijing, China
| | - Paul Peppard
- Department of Preventive Medicine, University of Madison Wisconsin, Madison, Wisconsin
| | - Sona Nevsimalova
- Department of Neurology, 1st Medical Faculty, Charles University, Prague, Czeck Republic
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche, ASL di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - David Rye
- Department of Neurology, Emory Sleep Center, Emory University School of Medicine, Atlanta, Georgia
| | - Emmanuel Mignot
- Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, School of Medicine, Palo Alto, California
| |
Collapse
|
12
|
Christensen JAE, Carrillo O, Leary EB, Peppard PE, Young T, Sorensen HBD, Jennum P, Mignot E. Sleep-stage transitions during polysomnographic recordings as diagnostic features of type 1 narcolepsy. Sleep Med 2015; 16:1558-66. [PMID: 26299470 PMCID: PMC8066516 DOI: 10.1016/j.sleep.2015.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/30/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Type 1 narcolepsy/hypocretin deficiency is characterized by excessive daytime sleepiness, sleep fragmentation, and cataplexy. Short rapid eye movement (REM) latency (≤15 min) during nocturnal polysomnography (PSG) or during naps of the multiple sleep latency test (MSLT) defines a sleep-onset REM sleep period (SOREMP), a diagnostic hallmark. We hypothesized that abnormal sleep transitions other than SOREMPs can be identified in type 1 narcolepsy. METHODS Sleep-stage transitions (one to 10 epochs to one to five epochs of any other stage) and bout length features (one to 10 epochs) were extracted from PSGs. The first 15 min of sleep were excluded when a nocturnal SOREMP was recorded. F(0.1) measures and receiver operating characteristic curves were used to identify specific (≥98%) features. A data set of 136 patients and 510 sex- and age-matched controls was used for the training. A data set of 19 cases and 708 sleep-clinic patients was used for the validation. RESULTS (1) ≥5 transitions from ≥5 epochs of stage N1 or W to ≥2 epochs of REM sleep, (2) ≥22 transitions from ≥3 epochs of stage N2 or N3 to ≥2 epochs of N1 or W, and (3) ≥16 bouts of ≥6 epochs of N1 or W were found to be highly specific (≥98%). Sensitivity ranged from 16% to 30%, and it did not vary substantially with and without medication or a nocturnal SOREMP. In patients taking antidepressants, nocturnal SOREMPs occurred much less frequently (16% vs. 36%, p < 0.001). CONCLUSIONS Increased sleep-stage transitions notably from ≥2.5 min of W/N1 into REM are specifically diagnostic for narcolepsy independent of a nocturnal SOREMP.
Collapse
Affiliation(s)
- Julie Anja Engelhard Christensen
- Department of Electrical Engineering, Technical University of Denmark, Orsteds Plads 349, DK-2800 Kongens Lyngby, Denmark; Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup Hospital, Nordre Ringvej 57, DK-2600 Glostrup, Denmark; Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA 94304, USA
| | - Oscar Carrillo
- Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA 94304, USA
| | - Eileen B Leary
- Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA 94304, USA
| | - Paul E Peppard
- School of Medicine and Public Health, Health Sciences Learning Center, University of Wisconsin, 750 Highland Ave., Madison, WI 53705, USA
| | - Terry Young
- School of Medicine and Public Health, Health Sciences Learning Center, University of Wisconsin, 750 Highland Ave., Madison, WI 53705, USA
| | - Helge Bjarrup Dissing Sorensen
- Department of Electrical Engineering, Technical University of Denmark, Orsteds Plads 349, DK-2800 Kongens Lyngby, Denmark
| | - Poul Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Glostrup Hospital, Nordre Ringvej 57, DK-2600 Glostrup, Denmark; Center for Healthy Aging, University of Copenhagen, Norregade 10, DK-1017 Copenhagen, Denmark
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Stanford University, 3165 Porter Drive, Palo Alto, CA 94304, USA.
| |
Collapse
|
13
|
Kotagal S. How Can We Better Leverage the Nocturnal Polysomnogram in the Diagnosis of Childhood-Onset Narcolepsy? Sleep 2015; 38:847-8. [PMID: 26039961 PMCID: PMC4434548 DOI: 10.5665/sleep.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 11/03/2022] Open
|