1
|
Voysey ZJ, Goodman AOG, Rogers L, Holbrook JA, Lazar AS, Barker RA. Sleep abnormalities are associated with greater cognitive deficits and disease activity in Huntington's disease: a 12-year polysomnographic study. Brain Commun 2025; 7:fcaf126. [PMID: 40226381 PMCID: PMC11992570 DOI: 10.1093/braincomms/fcaf126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 02/10/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
Increasing evidence suggests that the sleep pathology associated with neurodegenerative diseases can in turn exacerbate both the cognitive deficits and underlying pathobiology of these conditions. Treating sleep may therefore bear significant, even disease-modifying, potential for these conditions, but how best and when to do so remains undetermined. Huntington's disease, by virtue of being an autosomal dominant neurodegenerative disease presenting in mid-life, presents a key 'model' condition through which to advance this field. To date, however, there has been no clinical longitudinal study of sleep abnormalities in Huntington's disease and no robust interrogation of their association with disease onset, cognitive deficits and markers of disease activity. Here, we present the first such study. Huntington's disease gene carriers (n = 28) and age- and sex-matched controls (n = 21) were studied at baseline and 10- and 12-year follow-up. All Huntington's disease gene carriers were premanifest at baseline and were stratified at follow-up into 'prodromal/manifest' versus 'premanifest' groups. Objective sleep abnormalities were assessed through two-night inpatient polysomnography and 2-week domiciliary actigraphy, and their association was explored against Montreal Cognitive Assessment, Trail A/B task, Symbol Digit Modalities Task (SDMT), Hopkins Verbal Learning Task (HVLT) and Montgomery-Asberg Depression Rating Scale (MADRS) scores, plus serum neurofilament light levels. Statistical analysis incorporated cross-sectional ANOVA, longitudinal repeated measures linear models and regressions adjusted for multiple confounders including disease stage. Fifteen Huntington's disease gene carriers phenoconverted to prodromal/early manifest Huntington's disease by study completion. At follow-up, these gene carriers showed more frequent sleep stage changes (P ≤ 0.001, ηp 2 = 0.62) and higher levels of sleep maintenance insomnia (defined by wake after sleep onset, P = 0.002, ηp 2 = 0.52). The latter finding was corroborated by nocturnal motor activity patterns on follow-up actigraphy (P = 0.004, ηp 2 = 0.32). Greater sleep maintenance insomnia was associated with greater cognitive deficits (Trail A P ≤ 0.001, R 2 = 0.78; SDMT P = 0.008, R 2 = 0.63; Trail B P = 0.013, R 2 = 0.60) and higher levels of neurofilament light (P = 0.015, R 2 = 0.39). Longitudinal modelling suggested that sleep stage instability accrues from the early premanifest phase, whereas sleep maintenance insomnia emerges closer to phenoconversion. Baseline sleep stage instability was able to discriminate those who phenoconverted within the study period from those who remained premanifest (area under curve = 0.81, P = 0.024). These results demonstrate that the key sleep abnormalities of premanifest/early Huntington's disease are sleep stage instability and sleep maintenance insomnia and suggest that the former bears value in predicting disease onset, while the latter is associated with greater disease activity and cognitive deficits. Intervention studies to interrogate causation within this association could not only benefit patients with Huntington's disease but also help provide fundamental proof-of-concept findings for the wider sleep-neurodegeneration field.
Collapse
Affiliation(s)
- Zanna J Voysey
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Anna O G Goodman
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Lorraine Rogers
- Royal Papworth Hospital Foundation Trust, Sleep Centre, Cambridge CB2 0AY, UK
| | - Jonathan A Holbrook
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Alpar S Lazar
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TQ, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| |
Collapse
|
2
|
Fitzgerald ES, Manousakis JE, Glikmann-Johnston Y, Rankin M, Anderson C, Stout JC, Jackson ML. Sleep fragmentation despite intact rest-activity patterns in premanifest Huntington's disease: An actigraphy study. Sleep Med 2024; 124:16-29. [PMID: 39250876 DOI: 10.1016/j.sleep.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVE Sleep research in Huntington's disease (HD) has primarily focused on manifest HD, with significantly less attention given to premanifest HD (Pre-HD). Therefore, we investigated sleep and rest-activity patterns in people with Pre-HD versus healthy controls (HC). METHODS We conducted a cross-sectional study including 36 Pre-HD and 48 HC participants. Pre-HD participants were stratified into three groups according to their proximity to estimated diagnosis, using a cytosine-adenine-guanine (CAG) and current age-based predictive model: NEAR (<9 years to diagnosis), MID (9-15 years to diagnosis) and FAR (>15 years to diagnosis). Sleep and rest-activity patterns were assessed using wrist-worn actigraphy, a sleep diary, and sleep questionnaires. RESULTS NEAR and MID groups experienced higher fragmentation index than HC and FAR groups. NEAR and MID groups also exhibited greater WASO than the FAR group. NEAR and MID groups showed lower intra-daily variability (IV) than HC and FAR groups, with the NEAR group also being more active in the most active 10 h (M10). Groups did not differ on subjective sleep measures, inter-daily stability (IS), sleep regularity index, relative amplitude, or amount of activity in the least active 5 h (L5). Considering all Pre-HD participants, fewer years to diagnosis, higher CAG-age-product (CAP) scores (a measure of cumulative exposure to the HD-causing gene mutation) and larger CAG repeat lengths correlated with higher WASO, fragmentation index, L5, IS, and lower sleep efficiency and IV. Higher CAP score correlated with higher M10. CONCLUSIONS Despite intact rest-activity patterns and similar subjective sleep quality to HC, greater sleep fragmentation is a prominent and early feature in Pre-HD. Therefore, reducing sleep fragmentation may be a potential target for sleep intervention in HD. Longitudinal studies using larger samples are needed to assess sleep across the disease spectrum and its impact on clinical outcomes, like cognition.
Collapse
Affiliation(s)
- Emily S Fitzgerald
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Jessica E Manousakis
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Yifat Glikmann-Johnston
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Meg Rankin
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Clare Anderson
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia; Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, UK
| | - Julie C Stout
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia.
| | - Melinda L Jackson
- School of Psychological Sciences, and Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Sringean J. Sleep and circadian rhythm dysfunctions in movement disorders beyond Parkinson's disease and atypical parkinsonisms. Curr Opin Neurol 2024; 37:414-420. [PMID: 38809245 DOI: 10.1097/wco.0000000000001286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW This review aimed to comprehensively outline sleep and circadian rhythm abnormalities in hyperkinetic movement disorders beyond Parkinson's disease and atypical parkinsonisms, including tremor, dystonia, choreiform movements, tics, and ataxia disorders. RECENT FINDINGS Insomnia, poor sleep quality, and excessive daytime sleepiness (EDS) are commonly reported in essential tremor, Wilson's disease, tics or Tourette's syndrome, and spinocerebellar ataxia (SCA). REM sleep behavior disorder (RBD) have been observed in Wilson's disease and SCA. A combination of REM and non-REM parasomnias, along with nocturnal stridor with the initiation of sleep and re-entering after awakening, are characterized by undifferentiated Non-REM and poorly structured N2 in anti-IgLON5 disease. Restless legs syndrome (RLS) has been reported commonly in SCAs. Sleep-related dyskinesia has been reported in ADCY5-related disease and GNAO1-related movement disorder. SUMMARY Sleep problems can manifest as a result of movement disorders, either through direct motor disturbances or secondary nonmotor symptoms. Medication effects must be considered, as certain medications for movement disorders can exacerbate or alleviate sleep disturbances. Distinguishing sleep problems in some diseases might involve pathognomonic symptoms and signs, aiding in the diagnosis of movement disorders.
Collapse
Affiliation(s)
- Jirada Sringean
- Chulalongkorn Center of Excellence for Parkinson's Disease & Related Disorders, King Chulalongkorn Memorial Hospital, The Thai Red Cross, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Doheny EP, Renerts K, Braun A, Werth E, Baumann C, Baumgartner P, Morgan-Jones P, Busse M, Lowery MM, Jung HH. Assessment of Fitbit Charge 4 for sleep stage and heart rate monitoring against polysomnography and during home monitoring in Huntington's disease. J Clin Sleep Med 2024; 20:1163-1171. [PMID: 38450553 PMCID: PMC11217637 DOI: 10.5664/jcsm.11098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
STUDY OBJECTIVES Wearable devices that monitor sleep stages and heart rate offer the potential for longitudinal sleep monitoring in patients with neurodegenerative diseases. Sleep quality reduces with disease progression in Huntington's disease (HD). However, the involuntary movements characteristic of HD may affect the accuracy of wrist-worn devices. This study compares sleep stage and heart rate data from the Fitbit Charge 4 (FB) against polysomnography (PSG) in participants with HD. METHODS Ten participants with manifest HD wore an FB during overnight hospital-based PSG, and 9 of these participants continued to wear the FB for 7 nights at home. Sleep stages (30-second epochs) and minute-by-minute heart rate were extracted and compared against PSG data. RESULTS FB-estimated total sleep and wake times and sleep stage times were in good agreement with PSG, with intraclass correlations of 0.79-0.96. However, poor agreement was observed for wake after sleep onset and the number of awakenings. FB detected waking with 68.6 ± 15.5% sensitivity and 93.7 ± 2.5% specificity, rapid eye movement sleep with high sensitivity and specificity (78.7 ± 31.9%, 95.6 ± 2.3%), and deep sleep with lower sensitivity but high specificity (56.4 ± 28.8%, 95.0 ± 4.8%). FB heart rate was strongly correlated with PSG, and the mean absolute error between FB and PSG heart rate data was 1.16 ± 0.42 beats/min. At home, longer sleep and shorter wake times were observed compared with hospital data, whereas percentage sleep stage times were consistent with hospital data. CONCLUSIONS Results suggest the potential for long-term monitoring of sleep patterns using wrist-worn wearable devices as part of symptom management in HD. CITATION Doheny EP, Renerts K, Braun A, et al. Assessment of Fitbit Charge 4 for sleep stage and heart rate monitoring against polysomnography and during home monitoring in Huntington's disease. J Clin Sleep Med. 2024;20(7):1163-1171.
Collapse
Affiliation(s)
- Emer P. Doheny
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Klavs Renerts
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Braun
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Esther Werth
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | | | - Philippa Morgan-Jones
- Centre for Trials Research, Cardiff University, Cardiff, Wales, United Kingdom
- School of Engineering, Cardiff University, Cardiff, United Kingdom
| | - Monica Busse
- Centre for Trials Research, Cardiff University, Cardiff, Wales, United Kingdom
| | - Madeleine M. Lowery
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Hans H. Jung
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Dieter M, Kevin P, Tobias V, Andreas H, Lorenz N, Kathrin K, Nikolaus K, Juergen B, Jan R, Adrian D. Polysomnographic findings in the ultra-rare McLeod syndrome: further documentation of sleep apnea as a possible feature. J Clin Sleep Med 2024; 20:339-344. [PMID: 37811906 PMCID: PMC11019222 DOI: 10.5664/jcsm.10854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
STUDY OBJECTIVES McLeod syndrome is a very rare multisystemic neurodegenerative disease linked to mutations in the XK gene. It has cardiac, neurologic, and neuromuscular manifestations and shares similarities with Huntington's disease. The aim of this study was to evaluate sleep patterns of patients affected by McLeod syndrome. METHODS This retrospective case series of four males who underwent diagnostic polysomnography (mean age 53.8 ± 2.5 years) includes self-reported and objective evaluation of sleep using the Epworth Sleepiness Scale, genetic tests, documentation of clinical course and features, and laboratory-based full-night attended video-polysomnography. RESULTS In three out of four patients, an Epworth Sleepiness Scale score ≥ 7 was evident. The average apnea-hypopnea index was 45.0 ± 19.0, with predominantly obstructive phenotype in three patients and predominant central events (central sleep apnea syndrome) in one patient. A significantly increased periodic limb movement index during sleep was observed in all patients. All patients tolerated continuous positive airway pressure or pressure controlled therapy. CONCLUSIONS Polysomnography of all patients confirmed sleep apnea syndrome as a feature of McLeod syndrome. Three patients were diagnosed with obstructive sleep apnea and one with central sleep apnea syndrome. In addition, periodic limb movement index was increased in all patients. CITATION Dieter M, Kevin P, Tobias V, et al. Polysomnographic findings in the ultra-rare McLeod syndrome: further documentation of sleep apnea as a possible feature. J Clin Sleep Med. 2024;20(3):339-344.
Collapse
Affiliation(s)
- Munker Dieter
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Peikert Kevin
- Translational Neurodegeneration Section “Albrecht-Kossel,” Department of Neurology, University Medical Center, University of Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen Rostock/Greifswald, Rostock, Germany
- United Neuroscience Campus Lund-Rostock, Rostock Site, Rostock, Germany
| | - Veit Tobias
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Hermann Andreas
- Translational Neurodegeneration Section “Albrecht-Kossel,” Department of Neurology, University Medical Center, University of Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen Rostock/Greifswald, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center, Rostock, Germany
| | - Nowak Lorenz
- Department of Sleep Medicine, Asklepios Lung Clinic, Gauting, Germany
| | - Kahnert Kathrin
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Kneidinger Nikolaus
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Behr Juergen
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Remi Jan
- Department of Neurology, University Hospital of LMU Munich, Munich, Germany
| | - Danek Adrian
- Department of Neurology, University Hospital of LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Salaun L, Bonduelle T, Ghorayeb I, Spampinato U, Debruxelles S, Guehl D, Goizet C. Intensification of Diurnal Abnormal Movements During Sleep in Huntington's Disease. J Huntingtons Dis 2024; 13:259-262. [PMID: 38788081 DOI: 10.3233/jhd-231518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder with a distinct phenotype, including involuntary movements, cognitive decline, and behavioral disturbances. Sleep disorder include insomnia, increased sleep onset latency, decrease in total sleep time with frequent nocturnal awakenings and excessive daytime sleepiness. Increased sleep motor activities and abnormal nocturnal agitation have been increasingly recognized as an important component affecting negatively the sleep quality. Here, we report a case of an intensification of diurnal choreic movement during the night, notably during REM-sleep in a patient with manifest HD. This case highlights the diversity of nocturnal sleep motor disorders encountered in HD.
Collapse
Affiliation(s)
- Louis Salaun
- Service de Neurologie, Pôle Neurosciences Cliniques, CHU Bordeaux, Bordeaux, France
| | - Thomas Bonduelle
- Service de Neurologie, Pôle Neurosciences Cliniques, CHU Bordeaux, Bordeaux, France
| | - Imad Ghorayeb
- Service de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, France
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, France
- Institut des Maladies Neurodégénératives (IMN), Service de Neurologie, CHU Bordeaux, Bordeaux, France
| | - Umberto Spampinato
- Institut des Maladies Neurodégénératives (IMN), Service de Neurologie, CHU Bordeaux, Bordeaux, France
- Department of Medical Genetics, 'Centre de Référence Maladies Rares Neurogénétique', CHU Bordeaux, Bordeaux, France
| | - Sabrina Debruxelles
- Service de Neurologie, Pôle Neurosciences Cliniques, CHU Bordeaux, Bordeaux, France
- Department of Medical Genetics, 'Centre de Référence Maladies Rares Neurogénétique', CHU Bordeaux, Bordeaux, France
| | - Dominique Guehl
- Service de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU Bordeaux, France
- Institut des Maladies Neurodégénératives (IMN), Service de Neurologie, CHU Bordeaux, Bordeaux, France
| | - Cyril Goizet
- Department of Medical Genetics, 'Centre de Référence Maladies Rares Neurogénétique', CHU Bordeaux, Bordeaux, France
- Equipe Neurogénétique translationnelle - NRGEN, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Anghel L, Ciubară A, Nechita A, Nechita L, Manole C, Baroiu L, Ciubară AB, Mușat CL. Sleep Disorders Associated with Neurodegenerative Diseases. Diagnostics (Basel) 2023; 13:2898. [PMID: 37761265 PMCID: PMC10527657 DOI: 10.3390/diagnostics13182898] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Sleep disturbances are common in various neurological pathologies, including amyotrophic lateral sclerosis (ALS), multiple system atrophy (MSA), hereditary ataxias, Huntington's disease (HD), progressive supranuclear palsy (PSP), and dementia with Lewy bodies (DLB). This article reviews the prevalence and characteristics of sleep disorders in these conditions, highlighting their impact on patients' quality of life and disease progression. Sleep-related breathing disorders, insomnia, restless legs syndrome (RLS), periodic limb movement syndrome (PLMS), and rapid eye movement sleep behavior disorder (RBD) are among the common sleep disturbances reported. Both pharmacological and non-pharmacological interventions play crucial roles in managing sleep disturbances and enhancing overall patient care.
Collapse
Affiliation(s)
- Lucreția Anghel
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
| | - Anamaria Ciubară
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
| | - Aurel Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania
| | - Luiza Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
| | - Corina Manole
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
| | - Liliana Baroiu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (L.A.); (A.C.); (A.N.); (L.N.); (L.B.)
- ‘Sf. Cuv. Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| | - Alexandru Bogdan Ciubară
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos’ University, 800008 Galati, Romania;
| | - Carmina Liana Mușat
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania;
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos’ University, 800008 Galati, Romania;
| |
Collapse
|
8
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Sleep Disorders in Patients with Choreic Syndromes. Curr Neurol Neurosci Rep 2023; 23:361-379. [PMID: 37269451 DOI: 10.1007/s11910-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW Patients with different types of choreic syndromes, specially those with Huntington's (HD) and Wilson's (WD) diseases, report frequent sleep complaints. This review focuses on the main findings of studies addressing the sleep features in these diseases, and other less frequent causes of chorea associated with sleep disorders, including a new syndrome described in the last decade associated with IgLON5 antibodies. RECENT FINDINGS Patients with HD and WD showed a bad quality of sleep and high frequency of insomnia and excessive daytime somnolence. WD patients also showed high scores on a specific scale for rapid eye movement sleep behavior disorders. HD and WD share decreased sleep efficiency and increased REM sleep latencies, percentage of sleep stage N1, and wake after sleep onset (WASO) among their polysomnographic features. Patients with HD and WD showed a high prevalence of different sleep disorders. Patients with other causes of chorea, including neuroacanthocytosis, parasomnia with sleep breathing disorder associated with antibodies to IgLON5, Sydenham's chorea, and choreic syndromes associated to certain genetic mutations show sleep disorders as well.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Ronda del Sur 10 E-28500, Arganda del Rey, Madrid, Spain.
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Ronda del Sur 10 E-28500, Arganda del Rey, Madrid, Spain
| | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| | - José A G Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, Cáceres, Spain
| |
Collapse
|
9
|
Morrone CD, Raghuraman R, Hussaini SA, Yu WH. Proteostasis failure exacerbates neuronal circuit dysfunction and sleep impairments in Alzheimer's disease. Mol Neurodegener 2023; 18:27. [PMID: 37085942 PMCID: PMC10119020 DOI: 10.1186/s13024-023-00617-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
Failed proteostasis is a well-documented feature of Alzheimer's disease, particularly, reduced protein degradation and clearance. However, the contribution of failed proteostasis to neuronal circuit dysfunction is an emerging concept in neurodegenerative research and will prove critical in understanding cognitive decline. Our objective is to convey Alzheimer's disease progression with the growing evidence for a bidirectional relationship of sleep disruption and proteostasis failure. Proteostasis dysfunction and tauopathy in Alzheimer's disease disrupts neurons that regulate the sleep-wake cycle, which presents behavior as impaired slow wave and rapid eye movement sleep patterns. Subsequent sleep loss further impairs protein clearance. Sleep loss is a defined feature seen early in many neurodegenerative disorders and contributes to memory impairments in Alzheimer's disease. Canonical pathological hallmarks, β-amyloid, and tau, directly disrupt sleep, and neurodegeneration of locus coeruleus, hippocampal and hypothalamic neurons from tau proteinopathy causes disruption of the neuronal circuitry of sleep. Acting in a positive-feedback-loop, sleep loss and circadian rhythm disruption then increase spread of β-amyloid and tau, through impairments of proteasome, autophagy, unfolded protein response and glymphatic clearance. This phenomenon extends beyond β-amyloid and tau, with interactions of sleep impairment with the homeostasis of TDP-43, α-synuclein, FUS, and huntingtin proteins, implicating sleep loss as an important consideration in an array of neurodegenerative diseases and in cases of mixed neuropathology. Critically, the dynamics of this interaction in the neurodegenerative environment are not fully elucidated and are deserving of further discussion and research. Finally, we propose sleep-enhancing therapeutics as potential interventions for promoting healthy proteostasis, including β-amyloid and tau clearance, mechanistically linking these processes. With further clinical and preclinical research, we propose this dynamic interaction as a diagnostic and therapeutic framework, informing precise single- and combinatorial-treatments for Alzheimer's disease and other brain disorders.
Collapse
Affiliation(s)
- Christopher Daniel Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
| | - Radha Raghuraman
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA
| | - S Abid Hussaini
- Taub Institute, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630W 168th Street, New York, NY, 10032, USA.
| | - Wai Haung Yu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Geriatric Mental Health Research Services, Centre for Addiction and Mental Health, 250 College St., Toronto, ON, M5T 1R8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
10
|
Circadian disruption and sleep disorders in neurodegeneration. Transl Neurodegener 2023; 12:8. [PMID: 36782262 PMCID: PMC9926748 DOI: 10.1186/s40035-023-00340-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at multiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neurodegenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclinical and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize circadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep disorders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidirectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
Collapse
|
11
|
Saade-Lemus S, Videnovic A. Sleep Disorders and Circadian Disruption in Huntington's Disease. J Huntingtons Dis 2023; 12:121-131. [PMID: 37424473 PMCID: PMC10473087 DOI: 10.3233/jhd-230576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Sleep and circadian alterations are common in patients with Huntington's disease (HD). Understanding the pathophysiology of these alterations and their association with disease progression and morbidity can guide HD management. We provide a narrative review of the clinical and basic-science studies centered on sleep and circadian function on HD. Sleep/wake disturbances among HD patients share many similarities with other neurodegenerative diseases. Overall, HD patients and animal models of the disease present with sleep changes early in the clinical course of the disease, including difficulties with sleep initiation and maintenance leading to decreased sleep efficiency, and progressive deterioration of normal sleep architecture. Despite this, sleep alterations remain frequently under-reported by patients and under-recognized by health professionals. The degree of sleep and circadian alterations has not consistently shown to be CAG dose-dependent. Evidence based treatment recommendations are insufficient due to lack of well-designed intervention trials. Approaches aimed at improving circadian entrainment, such as including light therapy, and time-restricted feeding have demonstrated a potential to delay symptom progression in some basic HD investigations. Larger study cohorts, comprehensive assessment of sleep and circadian function, and reproducibility of findings are needed in future in order to better understand sleep and circadian function in HD and to develop effective treatments.
Collapse
Affiliation(s)
- Sandra Saade-Lemus
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Owen NE, Barker RA, Voysey ZJ. Sleep Dysfunction in Huntington's Disease: Impacts of Current Medications and Prospects for Treatment. J Huntingtons Dis 2023; 12:149-161. [PMID: 37248911 PMCID: PMC10473096 DOI: 10.3233/jhd-230567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
Sleep dysfunction is highly prevalent in Huntington's disease (HD). Increasing evidence suggests that such dysfunction not only impairs quality of life and exacerbates symptoms but may even accelerate the underlying disease process. Despite this, current HD treatment approaches neither consider the impact of commonly used medications on sleep, nor directly tackle sleep dysfunction. In this review, we discuss approaches to these two areas, evaluating not only literature from clinical studies in HD, but also that from parallel neurodegenerative conditions and preclinical models of HD. We conclude by summarizing a hierarchical framework of current medications with regard to their impact on sleep, and by outlining key emerging sleep therapies.
Collapse
Affiliation(s)
- Natalia E. Owen
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Roger A. Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
- Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Zanna J. Voysey
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Ravichandran S, Suhasini R, Madheswaran Deepa S, Selvaraj DB, Vergil Andrews JF, Thiagarajan V, Kandasamy M. Intertwining Neuropathogenic Impacts of Aberrant Circadian Rhythm and Impaired Neuroregenerative Plasticity in Huntington’s Disease: Neurotherapeutic Significance of Chemogenetics. JOURNAL OF MOLECULAR PATHOLOGY 2022; 3:355-371. [DOI: 10.3390/jmp3040030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Huntington’s disease (HD) is a progressive neurodegenerative disorder characterized by abnormal progressive involuntary movements, cognitive deficits, sleep disturbances, and psychiatric symptoms. The onset and progression of the clinical symptoms have been linked to impaired adult neurogenesis in the brains of subjects with HD, due to the reduced neurogenic potential of neural stem cells (NSCs). Among various pathogenic determinants, an altered clock pathway appears to induce the dysregulation of neurogenesis in neurodegenerative disorders. Notably, gamma-aminobutyric acid (GABA)-ergic neurons that express the vasoactive intestinal peptide (VIP) in the brain play a key role in the regulation of circadian rhythm and neuroplasticity. While an abnormal clock gene pathway has been associated with the inactivation of GABAergic VIP neurons, recent studies suggest the activation of this neuronal population in the brain positively contributes to neuroplasticity. Thus, the activation of GABAergic VIP neurons in the brain might help rectify the irregular circadian rhythm in HD. Chemogenetics refers to the incorporation of genetically engineered receptors or ion channels into a specific cell population followed by its activation using desired chemical ligands. The recent advancement of chemogenetic-based approaches represents a potential scientific tool to rectify the aberrant circadian clock pathways. Considering the facts, the defects in the circadian rhythm can be rectified by the activation of VIP-expressing GABAergic neurons using chemogenetics approaches. Thus, the chemogenetic-based rectification of an abnormal circadian rhythm may facilitate the neurogenic potentials of NSCs to restore the neuroregenerative plasticity in HD. Eventually, the increased neurogenesis in the brain can be expected to mitigate neuronal loss and functional deficits.
Collapse
Affiliation(s)
- Sowbarnika Ravichandran
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ramalingam Suhasini
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Sudhiksha Madheswaran Deepa
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Divya Bharathi Selvaraj
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Jemi Feiona Vergil Andrews
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Viruthachalam Thiagarajan
- Photonics and Biophotonics Lab, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi 110002, India
| |
Collapse
|
14
|
Tsimpanouli ME, Ghimire A, Barget AJ, Weston R, Paulson HL, Costa MDC, Watson BO. Sleep Alterations in a Mouse Model of Spinocerebellar Ataxia Type 3. Cells 2022; 11:cells11193132. [PMID: 36231095 PMCID: PMC9563426 DOI: 10.3390/cells11193132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder showing progressive neuronal loss in several brain areas and a broad spectrum of motor and non-motor symptoms, including ataxia and altered sleep. While sleep disturbances are known to play pathophysiologic roles in other neurodegenerative disorders, their impact on SCA3 is unknown. Using spectrographic measurements, we sought to quantitatively characterize sleep electroencephalography (EEG) in SCA3 transgenic mice with confirmed disease phenotype. We first measured motor phenotypes in 18-31-week-old homozygous SCA3 YACMJD84.2 mice and non-transgenic wild-type littermate mice during lights-on and lights-off periods. We next implanted electrodes to obtain 12-h (zeitgeber time 0-12) EEG recordings for three consecutive days when the mice were 26-36 weeks old. EEG-based spectroscopy showed that compared to wild-type littermates, SCA3 homozygous mice display: (i) increased duration of rapid-eye movement sleep (REM) and fragmentation in all sleep and wake states; (ii) higher beta power oscillations during REM and non-REM (NREM); and (iii) additional spectral power band alterations during REM and wake. Our data show that sleep architecture and EEG spectral power are dysregulated in homozygous SCA3 mice, indicating that common sleep-related etiologic factors may underlie mouse and human SCA3 phenotypes.
Collapse
Affiliation(s)
- Maria-Efstratia Tsimpanouli
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (M.-E.T.); (M.d.C.C.); (B.O.W.)
| | - Anjesh Ghimire
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna J. Barget
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ridge Weston
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henry L. Paulson
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (M.-E.T.); (M.d.C.C.); (B.O.W.)
| | - Brendon O. Watson
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (M.-E.T.); (M.d.C.C.); (B.O.W.)
| |
Collapse
|
15
|
Lim MM, Sarva H, Hiller A, Feitell S, Oates P, Barone D, Walker RH. Sleep disorders in McLeod syndrome: A case series. Parkinsonism Relat Disord 2022; 102:86-88. [PMID: 35977449 DOI: 10.1016/j.parkreldis.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Miranda M Lim
- VA Portland Health Care System, Portland, OR, USA; Oregon Health & Science University, Department of Neurology, Portland, OR, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA; Oregon Health & Science University, Oregon Institute of Occupational Health Sciences, Portland, OR, USA; VA Portland Health Care System, National Center for Rehabilitative Auditory Research, Portland, OR, USA
| | - Harini Sarva
- Parkinson's Disease and Movement Disorders Institute, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Amie Hiller
- Oregon Health & Science University, Department of Neurology, Portland, OR, USA; Parkinson's Disease Research, Education, and Clinical Center, VA Portland Health Care System, Portland, OR, USA
| | - Scott Feitell
- Sands-Constellation Heart Institute, Rochester Regional Health, Rochester, NY, USA
| | - Patricia Oates
- Sands-Constellation Heart Institute, Rochester Regional Health, Rochester, NY, USA
| | - Daniel Barone
- Division of Sleep Medicine, Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Ruth H Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Ishidori H, Okihara H, Ogawa T, Abe Y, Kato C, Aung PT, Fujita A, Kokai S, Ono T. Nasal obstruction during the growth period modulates the Wnt/β-catenin pathway and brain-derived neurotrophic factor production in association with tyrosine kinase receptor B mRNA reduction in mouse hippocampus. Eur J Neurosci 2021; 55:5-17. [PMID: 34842314 PMCID: PMC9300175 DOI: 10.1111/ejn.15547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 11/29/2022]
Abstract
There is accumulating evidence that nasal obstruction induces high‐level brain dysfunction, including memory and learning deficits. We previously demonstrated that unilateral nasal obstruction (UNO) during the growth period increases the expression of brain‐derived neurotrophic factor (BDNF). The expression of BDNF is regulated by the Wnt/β‐Catenin pathway, which is linked to neuronal differentiation, proliferation, and maintenance. However, little is known about whether Wnt3a protein expression could be an index for modulations analyses in the Wnt/β‐Catenin pathway caused by UNO during the growth period. This study aimed to investigate the effects of UNO during the growth period on the Wnt/β‐Catenin pathway in the hippocampus using combined behavioural, biochemical, and histological approaches. Male BALB/C mice were randomly divided into the control (CONT; n = 6) and experimental (UNO; n = 6) groups. Blood oxygen saturation (SpO2) levels were measured, and a passive avoidance test was performed in mice aged 15 weeks. Brain tissues were subjected to immunohistochemistry, real‐time reverse transcription‐polymerase chain reaction, and western blot analysis. Compared with control mice, UNO mice had lower SpO2 levels and exhibited memory/learning impairments during behavioural testing. Moreover, Wnt3a protein, BDNF mRNA, and tyrosine kinase receptor B (TrkB) mRNA expression levels were significantly lower in the hippocampus in the UNO group than in the CONT group. Our findings suggested that UNO during the growth period appeared to modulate the hippocampal Wnt/β‐catenin pathway and BDNF production in association with TrkB mRNA reduction, thereby resulting in memory and learning impairments.
Collapse
Affiliation(s)
- Hideyuki Ishidori
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hidemasa Okihara
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takuya Ogawa
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasunori Abe
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Phyo Thura Aung
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akiyo Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Kokai
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
17
|
Annapureddy J, Ray S, Kamble N, Kutty B, Pal PK, Dv S, Jain S, Kumar G, Yadav R. The association of saccadic abnormalities with rem sleep in patients with Huntington's disease. Sleep Med 2021; 93:84-89. [PMID: 34852959 DOI: 10.1016/j.sleep.2021.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disorder characterised by chorea, cognitive impairment, psychiatric and behavioral disturbances. Sleep disturbances including reduced REM sleep have been observed in HD. OBJECTIVES The aim of the study was to study the polysomnography findings in HD and to assess whether oculomotor abnormalities are associated with poor REM sleep. METHODS Twenty-nine genetically confirmed HD patients underwent clinical evaluation including extraocular movement and OKN examination. Twenty-six patients and 15 controls underwent overnight video polysomnography (VPSG). RESULTS VPSG of 23 HD patients and 13 controls were considered for analysis. Compared to controls, HD patients had higher median wake period and higher WASO percentage (p = 0.005). REM sleep percentage was reduced significantly in HD in comparison to controls (p < 0.001). Out of 23 patients, only two patients had REM sleep above 20% while 14 patients had REM sleep percentage less than 15%. Poor horizontal OKN (grades 2 and 3) was associated with the presence of low REM sleep percentage (REM sleep less than 15%) (p = 0.02). Low REM sleep was also associated with severe illness (UHDRS) (p = 0.038). CONCLUSION An association between decreased REM sleep and OKN abnormalities indicate that EOM abnormalities seen in HD could lead to errors in scoring REM sleep. To understand the actual degree of decreased REM sleep percentage will require additional parameters in AASM guidelines to score REM sleep in patients with EOM abnormalities like that seen in HD.
Collapse
Affiliation(s)
- Jagadish Annapureddy
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Somdattaa Ray
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Bindu Kutty
- Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Seshagiri Dv
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Gulshan Kumar
- Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, 560029, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
18
|
Stoker TB, Mason SL, Greenland JC, Holden ST, Santini H, Barker RA. Huntington's disease: diagnosis and management. Pract Neurol 2021; 22:32-41. [PMID: 34413240 DOI: 10.1136/practneurol-2021-003074] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 11/03/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disease characterised by neuropsychiatric symptoms, a movement disorder (most commonly choreiform) and progressive cognitive impairment. The diagnosis is usually confirmed through identification of an increased CAG repeat length in the huntingtin gene in a patient with clinical features of the condition. Though diagnosis is usually straightforward, unusual presentations can occur, and it can be difficult to know when someone has transitioned from being an asymptomatic carrier into the disease state. This has become increasingly important recently, with several putative disease-modifying therapies entering trials. A growing number of conditions can mimic HD, including rare genetic causes, which must be considered in the event of a negative HD genetic test. Patients are best managed in specialist multidisciplinary clinics, including when considering genetic testing. Current treatments are symptomatic, and largely directed at the chorea and neurobehavioural problems, although supporting trial evidence for these is often limited.
Collapse
Affiliation(s)
- Thomas B Stoker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah L Mason
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Julia C Greenland
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Simon T Holden
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge, UK
| | | | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome Trust Medical Research Council - Cambridge Stem Cell Institute, Cambridge, UK
| |
Collapse
|
19
|
Bailey GA, Hubbard EK, Fasano A, Tijssen MA, Lynch T, Anderson KN, Peall KJ. Sleep disturbance in movement disorders: insights, treatments and challenges. J Neurol Neurosurg Psychiatry 2021; 92:723-736. [PMID: 33741740 DOI: 10.1136/jnnp-2020-325546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/07/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022]
Abstract
Sleep and circadian rhythm disturbances are central features of many movement disorders, exacerbating motor and non-motor symptoms and impairing quality of life. Understanding these disturbances to sleep is clinically important and may further our understanding of the underlying movement disorder. This review evaluates the current anatomical and neurochemical understanding of normal sleep and the recognised primary sleep disorders. In addition, we undertook a systematic review of the evidence for disruption to sleep across multiple movement disorders. Rapid eye movement sleep behaviour disorder has emerged as the most reliable prodromal biomarker for the alpha synucleinopathies, including Parkinson's disease and multiple system atrophy, often preceding motor symptom onset by several years. Abnormal sleep has also been described for many other movement disorders, but further evidence is needed to determine whether this is a primary or secondary phenotypic component of the underlying condition. Medication used in the treatment of motor symptoms also affects sleep and can aggravate or cause certain sleep disorders. Within the context of movement disorders, there is also some suggestion of a shared underlying mechanism for motor and sleep pathophysiology, with evidence implicating thalamic and brainstem structures and monoaminergic neurotransmission. This review highlights the need for an understanding of normal and abnormal sleep within the movement disorder clinic, an ability to screen for specific causes of poor sleep and to treat sleep disturbance to improve quality of life. Key sleep disorders also act as important biomarkers and have implications in diagnosis, prognosis and the development of future therapies.
Collapse
Affiliation(s)
- Grace A Bailey
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Emily K Hubbard
- School of Medicine, Cardiff University, Cardiff, South Glamorgan, UK
| | - Alfonso Fasano
- Edmond J Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Marina Aj Tijssen
- Department of Neurology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Timothy Lynch
- Dublin Neurological Institute, The Mater Misericordiae University Hospital, Dublin, Dublin, Ireland
| | - Kirstie N Anderson
- Department of Neurology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, Newcastle upon Tyne, UK
| | - Kathryn J Peall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
20
|
Voysey Z, Fazal SV, Lazar AS, Barker RA. The sleep and circadian problems of Huntington's disease: when, why and their importance. J Neurol 2020; 268:2275-2283. [PMID: 33355880 PMCID: PMC8179890 DOI: 10.1007/s00415-020-10334-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
Introduction Mounting evidence supports the existence of an important feedforward cycle between sleep and neurodegeneration, wherein neurodegenerative diseases cause sleep and circadian abnormalities, which in turn exacerbate and accelerate neurodegeneration. If so, sleep therapies bear important potential to slow progression in these diseases. Findings This cycle is challenging to study, as its bidirectional nature renders cause difficult to disentangle from effect. Likewise, well-controlled intervention studies are often impractical in the setting of established neurodegenerative disease. It is this that makes understanding sleep and circadian abnormalities in Huntington’s disease (HD) important: as a monogenic fully penetrant neurodegenerative condition presenting in midlife, it provides a rare opportunity to study sleep and circadian abnormalities longitudinally, prior to and throughout disease manifestation, and in the absence of confounds rendered by age and comorbidities. It also provides potential to trial sleep therapies at a preclinical or early disease stage. Moreover, its monogenic nature facilitates the development of transgenic animal models through which to run parallel pre-clinical studies. HD, therefore, provides a key model condition through which to gain new insights into the sleep-neurodegeneration interface. Conclusions Here, we begin by summarising contemporary knowledge of sleep abnormalities in HD, and consider how well these parallel those of Alzheimer’s and Parkinson’s as more common neurodegenerative conditions. We then discuss what is currently known of the sleep-neurodegeneration cyclical relationship in HD. We conclude by outlining key directions of current and future investigation by which to advance the sleep-neurodegeneration field via studies in HD.
Collapse
Affiliation(s)
- Z Voysey
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
| | - S V Fazal
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - A S Lazar
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| | - R A Barker
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Baltzan M, Yao C, Rizzo D, Postuma R. Dream enactment behavior: review for the clinician. J Clin Sleep Med 2020; 16:1949-1969. [PMID: 32741444 PMCID: PMC8034224 DOI: 10.5664/jcsm.8734] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
NONE Dream enactment behavior commonly occurs on occasion in normal children and adults. Disruptive and frequent dream enactment behavior may come to the attention of the clinician either as the primary reason for consultation or as a prominent characteristic of a patient with other sleep disorders. Questioning patients with chronic neurologic and psychiatric disorders may also reveal previously unrecognized behavior. In the absence of sleep pathology, process of dream enactment likely begins with active, often emotionally charged dream content that may occasionally break through the normal REM sleep motor suppressive activity. Disrupted sleep resulting from many possible causes, such as circadian disruption, sleep apnea, or medications, may also disrupt at least temporarily the motor-suppressive activity in REM sleep, allowing dream enactment to occur. Finally, pathological neurological damage in the context of degenerative, autoimmune, and infectious neurological disorders may lead to chronic recurrent and severe dream enactment behavior. Evaluating the context, frequency, and severity of dream enactment behavior is guided first and foremost by a structured approach to the sleep history. Physical exam and selected testing support the clinical diagnosis. Understanding the context and the likely cause is essential to effective therapy.
Collapse
Affiliation(s)
- Marc Baltzan
- Faculty of Medicine, Department of Epidemiology Biostatistics and Occupational Health, McGill University, Montréal, Canada
- Centre Intégré Universitaire des Soins et Services Sociaux du Nord de L’île de Montréal, Montréal, Canada
- Mount Sinai Hospital, Centre Intégré Universitaire des Soins et Services Sociaux du Centre-ouest de L’île de Montréal, Montréal, Canada
- Institut de Médecine du Sommeil, Montréal, Canada
| | - Chun Yao
- Integrated Program in Neuroscience, McGill University, Montréal, Canada
- Research Institute of McGill University Health Centre, Montréal, Canada
| | - Dorrie Rizzo
- Faculty of Medicine, Department of Family Medicine, McGill University, Montréal, Canada
- Lady Davis Institute for Medical Research, Centre Intégré Universitaire des Soins et Services Sociaux de l’ouest de l’île, Montréal, Canada
| | - Ron Postuma
- Research Institute of McGill University Health Centre, Montréal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| |
Collapse
|
22
|
Cheong RY, Gabery S, Petersén Å. The Role of Hypothalamic Pathology for Non-Motor Features of Huntington's Disease. J Huntingtons Dis 2020; 8:375-391. [PMID: 31594240 PMCID: PMC6839491 DOI: 10.3233/jhd-190372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huntington’s disease (HD) is a fatal genetic neurodegenerative disorder. It has mainly been considered a movement disorder with cognitive symptoms and these features have been associated with pathology of the striatum and cerebral cortex. Importantly, individuals with the mutant huntingtin gene suffer from a spectrum of non-motor features often decades before the motor disorder manifests. These symptoms and signs include a range of psychiatric symptoms, sleep problems and metabolic changes with weight loss particularly in later stages. A higher body mass index at diagnosis is associated with slower disease progression. The common psychiatric symptom of apathy progresses with the disease. The fact that non-motor features are present early in the disease and that they show an association to disease progression suggest that unravelling the underlying neurobiological mechanisms may uncover novel targets for early disease intervention and better symptomatic treatment. The hypothalamus and the limbic system are important brain regions that regulate emotion, social cognition, sleep and metabolism. A number of studies using neuroimaging, postmortem human tissue and genetic manipulation in animal models of the disease has collectively shown that the hypothalamus and the limbic system are affected in HD. These findings include the loss of neuropeptide-expressing neurons such as orexin (hypocretin), oxytocin, vasopressin, somatostatin and VIP, and increased levels of SIRT1 in distinct nuclei of the hypothalamus. This review provides a summary of the results obtained so far and highlights the potential importance of these changes for the understanding of non-motor features in HD.
Collapse
Affiliation(s)
- Rachel Y Cheong
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sanaz Gabery
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Åsa Petersén
- Translational Neuroendocrine Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Vas S, Casey JM, Schneider WT, Kalmar L, Morton AJ. Wake-Promoting and EEG Spectral Effects of Modafinil After Acute or Chronic Administration in the R6/2 Mouse Model of Huntington's Disease. Neurotherapeutics 2020; 17:1075-1086. [PMID: 32297185 PMCID: PMC7609772 DOI: 10.1007/s13311-020-00849-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Huntington's disease (HD) is characterised by progressive symptoms including cognitive deficits and sleep/wake disturbances reflected in an abnormal electroencephalography (EEG). Modafinil, a wake-promoting and cognitive-enhancing drug, has been considered as a treatment for HD. We used HD (R6/2) mice to investigate the potential for using modafinil to treat sleep-wake disturbance in HD. R6/2 mice show sleep-wake and EEG changes similar to those seen in HD patients, with increased rapid eye movement sleep (REMS), decreased wakefulness/increased non-REMS (NREMS), and pathological changes in EEG spectra, particularly an increase in gamma power. We recorded EEG from R6/2 and wild-type mice treated with modafinil acutely (with single doses between 25 and 100 mg/kg; at 12 and 16 weeks of age), or chronically (64 mg/kg modafinil/day from 6 to 15 weeks). Acutely, modafinil increased wakefulness in R6/2 mice and restored NREMS to wild-type levels at 12 weeks. It also suppressed the pathologically increased REMS. This was accompanied by decreased delta power, increased peak frequency of theta, and increased gamma power. At 16 weeks, acute modafinil also restored wakefulness and NREMS to wild-type levels. However, whilst REMS decreased, it did not return to normal levels. By contrast, in the chronic treatment group, modafinil-induced wakefulness was maintained at 15 weeks (after 9 weeks of treatment). Interestingly, chronic modafinil also caused widespread suppression of power across the EEG spectra, including a reduction in gamma that increases pathologically in R6/2 mice. The complex EEG effects of modafinil in R6/2 mice should provide a baseline for further studies to investigate the translatability of these result to clinical practice.
Collapse
Affiliation(s)
- Szilvia Vas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Jackie M Casey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Will T Schneider
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Lajos Kalmar
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
24
|
Zhang F, Niu L, Liu X, Liu Y, Li S, Yu H, Le W. Rapid Eye Movement Sleep Behavior Disorder and Neurodegenerative Diseases: An Update. Aging Dis 2020; 11:315-326. [PMID: 32257544 PMCID: PMC7069464 DOI: 10.14336/ad.2019.0324] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Rapid eye movement sleep behavior disorder (RBD) is a sleep behavior disorder characterized by abnormal behaviors and loss of muscle atonia during rapid eye movement (REM) sleep. RBD is generally considered to be associated with synucleinopathies, such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), and usually precedes years before the first symptom of these diseases. It is believed that RBD predicts the neurodegeneration in synucleinopathy. However, increasing evidences have shown that RBD is also found in non-synucleinopathy neurodegenerative diseases, including Alzheimer’s disease (AD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), etc. Sleep disturbance such as RBD may be an early sign of neurodegeneration in these diseases, and also serve as an assessment of cognitive impairments. In this review, we updated the clinical characteristics, diagnosis, and possible mechanisms of RBD in neurogenerative diseases. A better understanding of RBD in these neurogenerative diseases will provide biomarkers and novel therapeutics for the early diagnosis and treatment of the diseases.
Collapse
Affiliation(s)
- Feng Zhang
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Long Niu
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xinyao Liu
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufei Liu
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huan Yu
- 3Sleep and Wake Disorders Center and Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weidong Le
- 1Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,2Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
25
|
Zhang Y, Ren R, Yang L, Zhou J, Li Y, Shi J, Lu L, Sanford LD, Tang X. Sleep in Huntington's disease: a systematic review and meta-analysis of polysomongraphic findings. Sleep 2019; 42:zsz154. [PMID: 31328779 PMCID: PMC6783889 DOI: 10.1093/sleep/zsz154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/21/2019] [Indexed: 02/05/2023] Open
Abstract
STUDY OBJECTIVES Disturbed overnight sleep is a prominent feature of advanced stage Huntington's disease (HD). Several polysomnography (PSG) studies have reported significant changes of sleep in HD patients, but the findings are not unequivocal. To date, no meta-analysis has investigated the PSG changes in HD patients. The present study meta-analyzed results from studies examining the PSG changes in HD patients compared with controls. METHODS A literature search performed in MEDLINE, EMBASE, All EBM databases, PsycINFO, and CINAHL databases identified seven studies involving 152 HD patients and 144 controls which were included in our meta-analysis. RESULTS Pooled results indicated decreased sleep efficiency, percentage of slow wave sleep and rapid eye movement sleep, and increased percentage of N1 sleep, wake time after sleep onset, and rapid eye movement sleep latency in HD patients compared with controls. We found high heterogeneity in the effect sizes and no indication of systematic publication biases across studies. Meta-regression analyses showed that some of the heterogeneity was explained by age, body mass index (BMI), CAG repeat length, and disease severity of HD patients. CONCLUSIONS Our study showed that polysomnographic abnormalities are present in HD. Our findings also underscore the need for a comprehensive PSG assessment of sleep changes in patients with HD. Furthermore, the effects of age, BMI and CAG repeat length on sleep changes should be carefully considered and closely monitored in the management of HD.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junying Zhou
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Li
- Sleep Medicine Center, Shantou University Medical College, Shantou, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University Sixth Hospital, Peking University, Beijing, China
| | - Larry D Sanford
- Sleep Research Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Toledo C, Lucero C, Andrade DC, Díaz HS, Schwarz KG, Pereyra KV, Arce-Álvarez A, López NA, Martinez M, Inestrosa NC, Del Rio R. Cognitive impairment in heart failure is associated with altered Wnt signaling in the hippocampus. Aging (Albany NY) 2019; 11:5924-5942. [PMID: 31447429 PMCID: PMC6738419 DOI: 10.18632/aging.102150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Age represents the highest risk factor for death due to cardiovascular disease. Heart failure (HF) is the most common cardiovascular disease in elder population and it is associated with cognitive impairment (CI), diminishing learning and memory process affecting life quality and mortality in these patients. In HF, CI has been associated with inadequate O2 supply to the brain; however, an important subset of HF patients displays CI with almost no alteration in cerebral blood flow. Importantly, nothing is known about the pathophysiological mechanisms underpinning CI in HF with no change in brain tissue perfusion. Here, we aimed to study memory performance and learning function in a rodent model of HF that shows no change in blood flow going to the brain. We found that HF rats presented learning impairments and memory loss. In addition, HF rats displayed a decreased level of Wnt/β-catenin signaling downstream elements in the hippocampus, one pathway implicated largely in aging diseases. Taken together, our results suggest that in HF rats CI is associated with dysfunction of the Wnt/β-catenin signaling pathway. The mechanisms involved in the alterations of Wnt/β-catenin signaling in HF and its contribution to the development/maintenance of CI deserves future investigations.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás A López
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
27
|
Herzog–Krzywoszanska R, Krzywoszanski L. Sleep Disorders in Huntington's Disease. Front Psychiatry 2019; 10:221. [PMID: 31031659 PMCID: PMC6474183 DOI: 10.3389/fpsyt.2019.00221] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Huntington's chorea (Huntington's disease, HD) is a genetic disorder caused by autosomal dominant mutation, leading to progressive neurodegenerative changes in the central nervous system. Involuntary movements such as chorea occur typically in HD patients, accompanied by progressive cognitive and psychiatric disturbances. Other common symptoms of HD are circadian and sleep abnormalities, which are observed from the earliest stages of the disease or even before the occurrence of clinical symptoms. The most common sleep problems reported by HD patients include insomnia, difficulties in falling asleep, frequent nocturnal awakenings, and excessive daytime sleepiness. Also, specific changes in sleep architecture have been identified in HD. In this paper, we review studies on sleep and circadian rhythm disorders in HD. We outline findings concerning sleep patterns and disturbances of circadian rhythms in HD patients, as well as the role of psychiatric disorders and motor disorders in HD patients' sleep problems. We also discuss problems related to the different methods of diagnosing sleep disorders in HD. Furthermore, the adverse effects of medication used for the treatment of core HD symptoms as one of the sources of sleep disturbances in HD are emphasized. In conclusion, the diversity and complexity of the determinants of sleep and circadian rhythm disorders in HD are highlighted. Finally, the relevance of effective treatment to improve patients' functioning and quality of life as well as the potential relief of their cognitive and emotional symptoms is addressed.
Collapse
Affiliation(s)
| | - Lukasz Krzywoszanski
- Neurocognitive Psychology Unit, Chair of Psychology, Faculty of Pedagogy, Pedagogical University of Krakow, Krakow, Poland
| |
Collapse
|
28
|
Baschieri F, Cortelli P. Circadian rhythms of cardiovascular autonomic function: Physiology and clinical implications in neurodegenerative diseases. Auton Neurosci 2019; 217:91-101. [DOI: 10.1016/j.autneu.2019.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
|
29
|
Rodríguez-Blázquez C, Forjaz MJ, Kurtis MM, Balestrino R, Martinez-Martin P. Rating Scales for Movement Disorders With Sleep Disturbances: A Narrative Review. Front Neurol 2018; 9:435. [PMID: 29951032 PMCID: PMC6008651 DOI: 10.3389/fneur.2018.00435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Introduction: In recent years, a wide variety of rating scales and questionnaires for movement disorders have been developed and published, making reviews on their contents, and attributes convenient for the potential users. Sleep disorders are frequently present in movement disorders, and some movement disorders are accompanied by specific sleep difficulties. Aim: The aim of this study is to perform a narrative review of the most frequently used rating scales for movement disorders with sleep problems, with special attention to those recommended by the International Parkinson and Movement Disorders Society. Methods: Online databases (PubMed, SCOPUS, Web of Science, Google Scholar), related references from papers and websites and personal files were searched for information on comprehensive or global rating scales which assessed sleep disturbances in the following movement disorders: akathisia, chorea, dystonia, essential tremor, myoclonus, multiple system atrophy, Parkinson's disease, progressive supranuclear palsy, and tics and Tourette syndrome. For each rating scale, its objective and characteristics, as well as a summary of its psychometric properties and recommendations of use are described. Results: From 22 rating scales identified for the selected movement disorders, only 5 included specific questions on sleep problems. Movement Disorders Society-Unified Parkinson's Disease Rating scale (MDS-UPDRS), Non-Motor Symptoms Scale and Questionnaire (NMSS and NMSQuest), Scales for Outcomes in Parkinson's Disease (SCOPA)-Autonomic and Progressive Supranuclear Palsy Rating Scale (PSPRS) were the only rating scales that included items for assessing sleep disturbances. Conclusions: Despite sleep problems are frequent in movement disorders, very few of the rating scales addresses these specific symptoms. This may contribute to an infra diagnosis and mistreatment of the sleep problems in patients with movement disorders.
Collapse
Affiliation(s)
| | - Maria João Forjaz
- National School of Public Health and REDISSEC, Institute of Health Carlos III, Madrid, Spain
| | - Monica M. Kurtis
- Movement Disorders Unit, Neurology Department, Hospital Ruber International, Madrid, Spain
| | - Roberta Balestrino
- Department of Neuroscience “Rita Levi Montalcini, ” University of Turin, Turin, Italy
| | - Pablo Martinez-Martin
- National Center of Epidemiology and CIBERNED, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Kurtis MM, Balestrino R, Rodriguez-Blazquez C, Forjaz MJ, Martinez-Martin P. A Review of Scales to Evaluate Sleep Disturbances in Movement Disorders. Front Neurol 2018; 9:369. [PMID: 29896152 PMCID: PMC5986889 DOI: 10.3389/fneur.2018.00369] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023] Open
Abstract
Patients with movement disorders have a high prevalence of sleep disturbances that can be classified as (1) nocturnal sleep symptoms, such as insomnia, nocturia, restless legs syndrome (RLS), periodic limb movements (PLM), obstructive sleep apnea (OSA), and REM sleep behavior disorder; and (2) diurnal problems that include excessive daytime sleepiness (EDS) and sleep attacks. The objective of this review is to provide a practical overview of the most relevant scales that assess these disturbances to guide the choice of the most useful instrument/s depending on the line of research or clinical focus. For each scale, the reader will find a brief description of practicalities and psychometric properties, use in movement disorder cohorts and analyzed strengths and limitations. To assess insomnia, the Pittsburgh Sleep Quality Index, a generic scale, and three disease-specific scales: the Parkinson Disease Sleep Scale (PDSS), the PDSS-2, and Scales for outcomes in Parkinson's disease (PD)-Sleep-Nocturnal Sleep subscale are discussed. To evaluate nocturia, there are no specific tools, but some extensively validated generic urinary symptom scales (the Overall Bladder Questionnaire and the Overactive Bladder Symptom Score) and some PD-specific scales that include a nocturia item are available. To measure RLS severity, there are currently four domain-specific generic scales: The International Restless Legs Scale, the Johns Hopkins Restless Legs Severity Scale, the Restless Legs Syndrome-6 measure, a Pediatric RLS Severity Scale, and the Augmentation Severity Rating Scale (a scale to evaluate augmentation under treatment) and several instruments that assess impact on quality of sleep and health-related quality of life. To evaluate the presence of PLM, no clinical scales have been developed to date. As far as OSA, commonly used instruments such as the Sleep Apnea Scale of the Sleep Disorders Questionnaire, the STOP-Bang questionnaire, and the Berlin Questionnaire are reviewed. Three scales have been extensively used to assess EDS: the generic Epworth Sleepiness Scale, the Stanford Sleepiness Scale, and the PD-specific Scales for outcomes in PD-Sleep-Daytime sleepiness subscale. To date, only the Inappropriate Sleep Composite Score specifically evaluates propensity to sleep attacks.
Collapse
Affiliation(s)
- Mónica M. Kurtis
- Movement Disorders Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Roberta Balestrino
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Carmen Rodriguez-Blazquez
- National Center of Epidemiology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| | - Maria João Forjaz
- National School of Public Health and Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Institute of Health Carlos III, Madrid, Spain
| | - Pablo Martinez-Martin
- National Center of Epidemiology and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
31
|
|
32
|
Seshagiri DV, Botta R, Sasidharan A, Kumar Pal P, Jain S, Yadav R, Kutty BM. Assessment of Sleep Spindle Density among Genetically Positive Spinocerebellar Ataxias Types 1, 2, and 3 Patients. Ann Neurosci 2018; 25:106-111. [PMID: 30140122 DOI: 10.1159/000484516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Indexed: 01/18/2023] Open
Abstract
Objective The effect of thalamic degeneration in patients with spinocerebellar ataxias (SCA) and sleep spindle (SS) abnormalities has not been studied so far, although there is a strong association between these disorders. This study was done to evaluate and compare the SS densities (SSDs) of genetically proven autosomal dominant SCA1, SCA2 and SCA3 patients with controls. Methods Prospectively and genetically confirmed cases of SCA and controls were recruited. Patients were assessed clinically, were evaluated with sleep questionnaires and an overnight polysomnography was performed. SSDs were analyzed using neuroloop gain plugin of Polyman version 1.15 software. Results Eighteen patients of SCA1 (n = 6), SCA2 (n = 5), SCA3 (n = 7) and 6 controls were recruited in our study. The mean age of SCA1 patients was 39.2 ± 5.4, of SCA2 patients was 30.8 ± 9.5 and of SCA3 patients was 35.4 ± 6.4 years. The mean duration of illness in SCA1 was 4.7 ± 1.7 years, in SCA2 it was 4.3 ± 4.4 years and in SCA3 it was 5 ± 2.3 years. The median SSD values (percentage loop gain) during stage 2 of non-rapid eye movement sleep were 16.9% in SCA1, 0% in SCA2, 1.2% in SCA3 and 59.5% in controls. There was a significant difference in SSD values in SCA2 (p = 0.04), SCA3 (p = 0.02) patients and controls. Conclusion SSDs were significantly decreased in patients with SCA, which is a novel finding. This is likely due to the "thalamic switch" disruption, observed as reduced SSDs in SCA2 and SCA3. Sleep spindle deficits could act as one of the biomarkers of ongoing neurodegeneration in the thalamic circuitry of SCA patients.
Collapse
Affiliation(s)
| | - Ragasudha Botta
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Arun Sasidharan
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Pramod Kumar Pal
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Ravi Yadav
- Department of Clinical Neurosciences, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru, India
| |
Collapse
|
33
|
Ouk K, Aungier J, Cuesta M, Morton AJ. Chronic paroxetine treatment prevents disruption of methamphetamine-sensitive circadian oscillator in a transgenic mouse model of Huntington's disease. Neuropharmacology 2017; 131:337-350. [PMID: 29274752 DOI: 10.1016/j.neuropharm.2017.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/31/2017] [Accepted: 12/19/2017] [Indexed: 02/04/2023]
Abstract
Circadian abnormalities seen in Huntington's disease (HD) patients are recapitulated in several HD transgenic mouse models. In mice, alongside the master clock located in the suprachiasmatic nucleus (SCN), two other oscillators may influence circadian behaviour. These are the food-entrainable oscillator (FEO) and the methamphetamine-sensitive circadian oscillator (MASCO). SCN- and MASCO- (but not FEO-) driven rhythms are progressively disrupted in the R6/2 mouse model of HD. MASCO-driven rhythms are induced by chronic treatment with low dose of methamphetamine and characterised by an increase in period length to greater than 24 h. Interestingly, the rhythms mediated by MASCO deteriorate earlier than those mediated by the SCN in R6/2 mice. Here, we used a pharmacological strategy to investigate the mechanisms underlying MASCO-driven rhythms in WT mice. In contrast to methamphetamine, chronic cocaine was ineffective in generating a MASCO-like component of activity although it markedly increased locomotion. Furthermore, neither blocking dopamine (DA) receptors (with the DA antagonist haloperidol) nor blocking neurotransmission by inhibiting the activity of vesicular monoamine transporter (with reserpine) prevented the expression of the MASCO-driven rhythms, although both treatments downregulated locomotor activity. Interestingly, chronic treatment with paroxetine, a serotonin-specific reuptake inhibitor commonly used as antidepressant in HD, was able to restore the expression of MASCO-driven rhythms in R6/2 mice. Thus, MASCO-driven rhythms appear to be mediated by both serotoninergic and dopaminergic systems. This supports the idea that abnormalities in MASCO output may contribute to both the HD circadian and psychiatric phenotype.
Collapse
Affiliation(s)
- Koliane Ouk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Juliet Aungier
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Marc Cuesta
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom.
| |
Collapse
|
34
|
Piano C, Della Marca G, Losurdo A, Imperatori C, Solito M, Calandra-Buonaura G, Provini F, Cortelli P, Bentivoglio AR. Subjective Assessment of Sleep in Huntington Disease: Reliability of Sleep Questionnaires Compared to Polysomnography. NEURODEGENER DIS 2017; 17:330-337. [PMID: 29169178 DOI: 10.1159/000480701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 08/08/2017] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The aim of the study was to evaluate the clinical reliability of subjective sleep evaluation, based on sleep and psychometric questionnaires, by comparing the results with those obtained with laboratory-based video-polysomnography (V-PSG). PATIENTS AND METHODS Thirty consecutive Huntington disease (HD) patients were enrolled. Subjective evaluation of sleep included the Pittsburgh Sleep Quality Index (PSQI), the sleep questionnaire for HD (HDQ), the Epworth Sleepiness Scale, the Bologna questionnaire for sleepiness (BQ), the Berlin questionnaire, and the RBD questionnaire; the International Restless Legs Syndrome Study Group scale was administered to patients with positive screening. The psychometric evaluation included the Zung Anxiety Scale, the short form of the Beck Depression Inventory, and the Maudsley Obsessive-Compulsive Inventory. All patients underwent V-PSG. RESULTS In sleepiness evaluation, the Epworth score was above the cutoff in 6 subjects, and the BQ detected a "high risk" of sleepiness in 7 cases. The results were concordant in 24 and discordant in 5 cases. In the evaluation of sleep quality, the PSQI score was above the cutoff in 18 subjects. According to the HDQ, 10 subjects were poor sleepers. The results were concordant with the PSQI in 20 subjects. DISCUSSION All comparisons between scale scores and PSG results showed poor or totally absent concordance between subjective and objective measures. SIGNIFICANCE The subjective evaluation of sleep in HD patients shows a poor correlation with PSG results.
Collapse
Affiliation(s)
- Carla Piano
- Center for Parkinson Disease and Extrapyramidal Disorders, Movement Disorders Unit, Institute of Neurology, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kantor S, Varga J, Kulkarni S, Morton AJ. Chronic Paroxetine Treatment Prevents the Emergence of Abnormal Electroencephalogram Oscillations in Huntington's Disease Mice. Neurotherapeutics 2017; 14:1120-1133. [PMID: 28653279 PMCID: PMC5722757 DOI: 10.1007/s13311-017-0546-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Disturbance of rapid eye movement (REM) sleep appears early in both patients with Huntington's disease (HD) and mouse models of HD. Selective serotonin reuptake inhibitors are widely prescribed for patients with HD, and are also known to suppress REM sleep in healthy subjects. To test whether selective serotonin reuptake inhibitors can correct abnormal REM sleep and sleep-dependent brain oscillations in HD mice, we treated wild-type and symptomatic R6/2 mice acutely with vehicle and paroxetine (5, 10, and 20 mg/kg). In addition, we treated a group of R6/2 mice chronically with vehicle or paroxetine (20 mg/kg/day) for 8 weeks, with treatment starting before the onset of overt motor symptoms. During and after treatment, we recorded electroencephalogram/electromyogram from the mice. We found that both acute and chronic paroxetine treatment normalized REM sleep in R6/2 mice. However, only chronic paroxetine treatment prevented the emergence of abnormal low-gamma (25-45 Hz) electroencephalogram oscillations in R6/2 mice, an effect that persisted for at least 2 weeks after treatment stopped. Chronic paroxetine treatment also normalized REM sleep theta rhythm in R6/2 mice, but, interestingly, this effect was restricted to the treatment period. By contrast, acute paroxetine treatment slowed REM sleep theta rhythm in WT mice but had no effect on abnormal theta or low-gamma oscillations in R6/2 mice. Our data show that paroxetine treatment, when initiated before the onset of symptoms, corrects both REM sleep disturbances and abnormal brain oscillations, suggesting a possible mechanistic link between early disruption of REM sleep and the subsequent abnormal brain activity in HD mice.
Collapse
Affiliation(s)
- Sandor Kantor
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Janos Varga
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Shreya Kulkarni
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Chiaro G, Calandra-Buonaura G, Cecere A, Mignani F, Sambati L, Loddo G, Cortelli P, Provini F. REM sleep behavior disorder, autonomic dysfunction and synuclein-related neurodegeneration: where do we stand? Clin Auton Res 2017; 28:519-533. [PMID: 28871332 DOI: 10.1007/s10286-017-0460-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/20/2017] [Indexed: 12/30/2022]
Abstract
INTRODUCTION From newfound parasomnia to a marker of future synucleinopathy, since its first description in 1986, REM sleep behavior disorder (RBD) has been systematically tackled from virtually many viewpoints in basic, translational, and clinical studies. The time delay between RBD and synucleinopathy onset offers an exceptional window for observation and design of neuroprotective trials. In the last few years, research has focused on characterizing possible differences within RBD patients in order to draw potential profiles more or less susceptible to further neurodegeneration. Attention has been drawn towards autonomic dysfunction in RBD as one of such variables. OVERVIEW In this review, REM sleep physiology and relevant brain anatomy is briefly mentioned and integrated with neuroanatomical and physiological concepts regarding the central autonomic network. A detailed summary of works showing the presence of autonomic dysfunction in RBD is provided, and clinical and electrophysiological features of RBD in synucleinopathies are discussed. A short overview of RBD in other neurodegenerative diseases is also provided.
Collapse
Affiliation(s)
- Giacomo Chiaro
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy.,Neurocenter of Southern Switzerland, Lugano, Switzerland
| | - Giovanna Calandra-Buonaura
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Annagrazia Cecere
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Francesco Mignani
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Luisa Sambati
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Giuseppe Loddo
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy.,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Federica Provini
- Department of Biomedical and Neuromotor Sciences, Bellaria Hospital, University of Bologna, Via Altura, 3, 40139, Bologna, Italy. .,IRCCS, Institute of Neurological Sciences of Bologna, Bologna, Italy.
| |
Collapse
|
37
|
An EEG Investigation of Sleep Homeostasis in Healthy and CLN5 Batten Disease Affected Sheep. J Neurosci 2017; 36:8238-49. [PMID: 27488642 DOI: 10.1523/jneurosci.4295-15.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sheep have large brains with human-like anatomy, making them a useful species for studying brain function. Sleep homeostasis has not been studied in sheep. Here, we establish correlates of sleep homeostasis in sheep through a sleep deprivation experiment. We then use these correlates to elucidate the nature of sleep deficits in a naturally occurring ovine model of neuronal ceroid lipofuscinosis (NCL, Batten disease) caused by a mutation in CLN5 In humans, mutations in this gene lead to cortical atrophy and blindness, as well as sleep abnormalities. We recorded electroencephalograms (EEGs) from unaffected and early stage CLN5(-/-) (homozygous, affected) sheep over 3 consecutive days, the second day being the sleep deprivation day. In unaffected sheep, sleep deprivation led to increased EEG delta (0.5-4 Hz) power during non-rapid eye movement (NREM) sleep, increased time spent in the NREM sleep state, and increased NREM sleep bout length. CLN5(-/-) sheep showed comparable increases in time spent in NREM sleep and NREM sleep bout duration, verifying the presence of increased sleep pressure in both groups. Importantly, CLN5(-/-) sheep did not show the increase in NREM sleep delta power seen in unaffected sheep. This divergent delta power response is consistent with the known cortical degeneration in CLN5(-/-) sheep. We conclude that, whereas sleep homeostasis is present in CLN5(-/-) sheep, underlying CLN5(-/-) disease processes prevent its full expression, even at early stages. Such deficits may contribute to early abnormalities seen in sheep and patients and warrant further study. SIGNIFICANCE STATEMENT Sleep abnormalities pervade most neurological diseases, including the neuronal ceroid lipofuscinoses (NCLs). Here, we show that, in an ovine model of a variant late-infantile NCL, there is abnormal expression of sleep homeostasis. Whereas some sleep pressure correlates respond to sleep deprivation, the strongest electroencephalogram (EEG) correlate of sleep pressure, non-REM delta power, failed to increase. This highlights the relevance of sleep deficits in this disease, in which the drive for sleep exists but the underlying disease prevents its full expression. Sleep abnormalities could contribute to early disease symptoms such as behavioral disorder and cognitive decline. Our study also shows sleep homeostatic EEG correlates in sheep, opening up new opportunities for studying sleep in a large social mammal with complex human-like brain neuroanatomy.
Collapse
|
38
|
Piano C, Imperatori C, Losurdo A, Bentivoglio AR, Cortelli P, Della Marca G. Sleep-related modifications of EEG connectivity in the sensory-motor networks in Huntington Disease: An eLORETA study and review of the literature. Clin Neurophysiol 2017; 128:1354-1363. [DOI: 10.1016/j.clinph.2016.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 11/29/2022]
|
39
|
Abstract
Hypersomnia is a common complaint in many patients with neurodegenerative diseases and a major cause of decreased quality of life. This article discusses the prevalence and factors associated with hypersomnia in patients with a variety of neurodegenerative diseases affecting the central nervous system, including tauopathies, synucleinopathies, and other conditions. Common nocturnal sleep problems that may result in daytime hypersomnia are delineated. A clinical approach to hypersomnia in patients with neurodegenerative diseases, recommended diagnostic testing, and available treatment options are also discussed.
Collapse
Affiliation(s)
- Sushanth Bhat
- Division of Sleep Medicine, Department of Neuroscience, JFK Neuroscience Institute, Seton Hall University, 65 James Street, Edison, NJ 08818, USA.
| | - Sudhansu Chokroverty
- Division of Sleep Medicine, Department of Neuroscience, JFK Neuroscience Institute, Seton Hall University, 65 James Street, Edison, NJ 08818, USA
| |
Collapse
|
40
|
Högl B, Stefani A. Restless legs syndrome and periodic leg movements in patients with movement disorders: Specific considerations. Mov Disord 2017; 32:669-681. [DOI: 10.1002/mds.26929] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Birgit Högl
- Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| | - Ambra Stefani
- Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
41
|
Pan YY, Deng Y, Xie S, Wang ZH, Wang Y, Ren J, Liu HG. Altered Wnt Signaling Pathway in Cognitive Impairment Caused by Chronic Intermittent Hypoxia: Focus on Glycogen Synthase Kinase-3β and β-catenin. Chin Med J (Engl) 2017; 129:838-45. [PMID: 26996481 PMCID: PMC4819306 DOI: 10.4103/0366-6999.178969] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cognitive impairment is a severe complication caused by obstructive sleep apnea (OSA). The mechanisms of causation are still unclear. The Wnt/β-catenin signaling pathway is involved in cognition, and abnormalities in it are implicated in neurological disorders. Here, we explored the Wnt/β-catenin signaling pathway abnormalities caused by chronic intermittent hypoxia (CIH), the most characteristic pathophysiological component of OSA. METHODS We divided 32 4-week-old male C57/BL mice into four groups of eight each: a CIH + normal saline (NS) group, CIH + LiCl group, sham CIH + NS group, and a sham CIH + LiCl group. The spatial learning performance of each group was assessed by using the Morris water maze (MWM). Protein expressions of glycogen synthase kinase-3β (GSK-3β) and β-catenin in the hippocampus were examined using the Western blotting test. EdU labeling and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining methods were used, respectively, to determine the proliferation and apoptosis of neurons in the hippocampal dentate gyrus region. RESULTS Mice exposed to CIH showed impaired spatial learning performance in the MWM, including increased mean escape latencies to reach the target platform, decreased mean times passing through the target platform and mean duration in the target quadrant. The GSK-3β activity increased, and expression of β-catenin decreased significantly in the hippocampus of the CIH-exposed mice. Besides, CIH significantly increased hippocampal neuronal apoptosis, with an elevated apoptosis index. Meanwhile, LiCl decreased the activity of GSK-3β and increased the expression of β-catenin and partially reversed the spatial memory deficits in MWM and the apoptosis caused by CIH. CONCLUSIONS Wnt/β-catenin signaling pathway abnormalities possibly play an important role in the development of cognitive deficits among mice exposed to CIH and that LiCl might attenuate CIH-induced cognitive impairment via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Respiratory Disease of the Ministry of Health, Wuhan, Hubei 430030, China
| |
Collapse
|
42
|
Piano C, Mazzucchi E, Bentivoglio AR, Losurdo A, Calandra Buonaura G, Imperatori C, Cortelli P, Della Marca G. Wake and Sleep EEG in Patients With Huntington Disease: An eLORETA Study and Review of the Literature. Clin EEG Neurosci 2017; 48:60-71. [PMID: 27094758 DOI: 10.1177/1550059416632413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 02/02/2023]
Abstract
The aim of the study was to evaluate the EEG modifications in patients with Huntington disease (HD) compared with controls, by means of the exact LOw REsolution Tomography (eLORETA) software. We evaluated EEG changes during wake, non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Moreover, we reviewed the literature concerning EEG modifications in HD. Twenty-three consecutive adult patients affected by HD were enrolled, 14 women and 9 men, mean age was 57.0 ± 12.4 years. Control subjects were healthy volunteers (mean age 58.2 ± 14.6 years). EEG and polygraphic recordings were performed during wake (before sleep) and during sleep. Sources of EEG activities were determined using the eLORETA software. In wake EEG, significant differences between patients and controls were detected in the delta frequency band (threshold T = ±4.606; P < .01) in the Brodmann areas (BAs) 3, 4, and 6 bilaterally. In NREM sleep, HD patients showed increased alpha power (T = ±4.516; P < .01) in BAs 4 and 6 bilaterally; decreased theta power (T = ±4.516; P < .01) in the BAs 23, 29, and 30; and decreased beta power (T = ±4.516; P < .01) in the left BA 30. During REM, HD patients presented decreased theta and alpha power (threshold T = ±4.640; P < .01) in the BAs 23, 29, 30, and 31 bilaterally. In conclusion, EEG data suggest a motor cortex dysfunction during wake and sleep in HD patients, which correlates with the clinical and polysomnographic evidence of increased motor activity during wake and NREM, and nearly absent motor abnormalities in REM.
Collapse
Affiliation(s)
- Carla Piano
- Center for Parkinson Disease and Extrapyramidal Disorders, Movement Disorders Unit, Institute of Neurology, Catholic University, Rome, Italy.,Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Edoardo Mazzucchi
- Sleep Disorders Unit; Institute of Neurology, Catholic University, Rome, Italy
| | - Anna Rita Bentivoglio
- Center for Parkinson Disease and Extrapyramidal Disorders, Movement Disorders Unit, Institute of Neurology, Catholic University, Rome, Italy.,Don Carlo Gnocchi Foundation, Milan, Italy
| | - Anna Losurdo
- Sleep Disorders Unit; Institute of Neurology, Catholic University, Rome, Italy
| | - Giovanna Calandra Buonaura
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giacomo Della Marca
- Sleep Disorders Unit; Institute of Neurology, Catholic University, Rome, Italy
| |
Collapse
|
43
|
Bartlett DM, Cruickshank TM, Hannan AJ, Eastwood PR, Lazar AS, Ziman MR. Neuroendocrine and neurotrophic signaling in Huntington’s disease: Implications for pathogenic mechanisms and treatment strategies. Neurosci Biobehav Rev 2016; 71:444-454. [DOI: 10.1016/j.neubiorev.2016.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 11/25/2022]
|
44
|
Ouk K, Hughes S, Pothecary CA, Peirson SN, Morton AJ. Attenuated pupillary light responses and downregulation of opsin expression parallel decline in circadian disruption in two different mouse models of Huntington's disease. Hum Mol Genet 2016; 25:ddw359. [PMID: 28031289 PMCID: PMC5418835 DOI: 10.1093/hmg/ddw359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022] Open
Abstract
Circadian deficits in Huntington's disease (HD) are recapitulated in both fragment (R6/2) and full-length (Q175) mouse models of HD. Circadian rhythms are regulated by the suprachiasmatic nuclei (SCN) in the hypothalamus, which are primarily entrained by light detected by the retina. The SCN receives input from intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin, but also receive input from rods and cones. In turn, ipRGCs mediate a range of non-image forming responses to light including circadian entrainment and the pupillary light response (PLR). Retinal degeneration/dysfunction has been described previously in R6/2 mice. We investigated, therefore, whether or not circadian disruption in HD mice is due to abnormalities in retinal photoreception. We measured the expression of melanopsin, rhodopsin and cone opsin, as well as other retinal markers (tyrosine hydroxylase, calbindin, PKCα and Brna3), in R6/2 and Q175 mice at different stages of disease. We also measured the PLR as a 'readout' for ipRGC function and a marker of light reception by the retina. We found that the PLR was attenuated in both lines of HD mice. This was accompanied by a progressive downregulation of cone opsin and melanopsin expression. We suggest that disease-related changes in photoreception by the retina contribute to the progressive dysregulation of circadian rhythmicity and entrainment seen in HD mice. Colour vision is abnormal in HD patients. Therefore, if retinal deficits similar to those seen in HD mice are confirmed in patients, specifically designed light therapy may be an effective strategy to improve circadian dysfunction.
Collapse
Affiliation(s)
- Koliane Ouk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Steven Hughes
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | - Carina A Pothecary
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
45
|
Ouk K, Aungier J, Morton AJ. Progressive gene dose-dependent disruption of the methamphetamine-sensitive circadian oscillator-driven rhythms in a knock-in mouse model of Huntington's disease. Exp Neurol 2016; 286:69-82. [PMID: 27646506 DOI: 10.1016/j.expneurol.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023]
Abstract
Huntington's disease (HD) is a progressive genetic neurodegenerative disorder characterised by motor and cognitive deficits, as well as sleep and circadian abnormalities. In the R6/2 mouse, a fragment model of HD, rest-activity rhythms controlled by the suprachiasmatic nucleus disintegrate completely by 4months of age. Rhythms driven by a second circadian oscillator, the methamphetamine-sensitive circadian oscillator (MASCO), are disrupted even earlier, and cannot be induced after 2months of age. Here, we studied the effect of the HD mutation on the expression of MASCO-driven rhythms in a more slowly developing, genetically relevant mouse model of HD, the Q175 'knock-in' mouse. We induced expression of MASCO output by administering low dose methamphetamine (0.005%) chronically via the drinking water. We measured locomotor activity in constant darkness in wild-type and Q175 mice at 2 (presymptomatic), 6 (early symptomatic), and 12 (symptomatic) months of age. At 2months, all mice expressed MASCO-driven rhythms, regardless of genotype. At older ages, however, there was a progressive gene dose-dependent deficit in MASCO output in Q175 mice. At 6months of age, these rhythms could be observed in only 45% of heterozygous and 15% of homozygous mice. By 1year of age, 90% of homozygous mice had an impaired MASCO output. There was also an age-dependent disruption of MASCO output seen in wild-type mice. The fact that the progressive deficit in MASCO-driven rhythms in Q175 mice is HD gene dose-dependent suggests that, whatever its role in humans, abnormalities in MASCO output may contribute to the HD circadian phenotype.
Collapse
Affiliation(s)
- Koliane Ouk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Downing Street, CB2 3DY, United Kingdom.
| | - Juliet Aungier
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Downing Street, CB2 3DY, United Kingdom.
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Downing Street, CB2 3DY, United Kingdom.
| |
Collapse
|
46
|
Jiang H, Huang J, Shen Y, Guo S, Wang L, Han C, Liu L, Ma K, Xia Y, Li J, Xu X, Xiong N, Wang T. RBD and Neurodegenerative Diseases. Mol Neurobiol 2016; 54:2997-3006. [PMID: 27032389 DOI: 10.1007/s12035-016-9831-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/04/2016] [Indexed: 01/08/2023]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a sleep disorder characterized by enacting one's dreams during the REM sleep, with most of the dreams being violent or aggressive, so that patients often come to see the doctor complaining hurting themselves or bed partners during sleep. Prevalence of RBD, based on population, is 0.38-2.01 %, but much higher in patients with neurodegenerative diseases, especially synucleinopathies. RBD may herald the emergence of synucleinopathies by decades, such that it may be used as an effective early marker of neurodegenerative diseases. Pharmaceutical treatment of RBD includes clonazepam, melatonin, pramipexole, and some newly reported medications. In this review, we summarized the clinical and PSG features of RBD, the pathophysiology and the therapy of it, focusing on the correlation between neurodegenerative diseases and RBD, in order to emphasize the significance of RBD as an early marker of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Luxi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Jie Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Xiaoyun Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China.
| |
Collapse
|
47
|
van Wamelen DJ, Roos RA, Aziz NA. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease. Neurodegener Dis Manag 2015; 5:549-59. [PMID: 26621387 DOI: 10.2217/nmt.15.45] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aside from the well-known motor, cognitive and psychiatric signs and symptoms, Huntington disease (HD) is also frequently complicated by circadian rhythm and sleep disturbances. Despite the observation that these disturbances often precede motor onset and have a high prevalence, no studies are available in HD patients which assess potential treatments. In this review, we will briefly outline the nature of circadian rhythm and sleep disturbances in HD and subsequently focus on potential treatments based on findings in other neurodegenerative diseases with similarities to HD, such as Parkinson and Alzheimer disease. The most promising treatment options to date for circadian rhythm and sleep disruption in HD include melatonin (agonists) and bright light therapy, although further corroboration in clinical trials is warranted.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Department of Neurology, Leiden University Medical Center, K5-Q 110, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Raymund Ac Roos
- Department of Neurology, Leiden University Medical Center, K5-Q 110, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Nasir A Aziz
- Department of Neurology, Leiden University Medical Center, K5-Q 110, PO Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
48
|
Neutel D, Leu-Semenescu S, Roze E, Arnulf I. Reply to Piano et al. Sleep Med 2015; 20:174-5. [PMID: 26459679 DOI: 10.1016/j.sleep.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Dulce Neutel
- APHP, Sleep Disorder Unit, Pitié-Salpêtrière University Hospital, Paris, France
| | - Smaranda Leu-Semenescu
- APHP, Sleep Disorder Unit, Pitié-Salpêtrière University Hospital, Paris, France; Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière - Université Pierre et Marie Curie-Paris 6, Inserm UMR_S 975, CNRS UMR 7225, France
| | - Emmanuel Roze
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière - Université Pierre et Marie Curie-Paris 6, Inserm UMR_S 975, CNRS UMR 7225, France
| | - Isabelle Arnulf
- APHP, Sleep Disorder Unit, Pitié-Salpêtrière University Hospital, Paris, France; Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière - Université Pierre et Marie Curie-Paris 6, Inserm UMR_S 975, CNRS UMR 7225, France.
| |
Collapse
|
49
|
Lazar AS, Panin F, Goodman AOG, Lazic SE, Lazar ZI, Mason SL, Rogers L, Murgatroyd PR, Watson LPE, Singh P, Borowsky B, Shneerson JM, Barker RA. Sleep deficits but no metabolic deficits in premanifest Huntington's disease. Ann Neurol 2015. [PMID: 26224419 PMCID: PMC4832311 DOI: 10.1002/ana.24495] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Objective Huntington disease (HD) is a fatal autosomal dominant, neurodegenerative condition characterized by progressively worsening motor and nonmotor problems including cognitive and neuropsychiatric disturbances, along with sleep abnormalities and weight loss. However, it is not known whether sleep disturbances and metabolic abnormalities underlying the weight loss are present at a premanifest stage. Methods We performed a comprehensive sleep and metabolic study in 38 premanifest gene carrier individuals and 36 age‐ and sex‐matched controls. The study consisted of 2 weeks of actigraphy at home, 2 nights of polysomnography and multiple sleep latency tests in the laboratory, and body composition assessment using dual energy x‐ray absorptiometry scanning with energy expenditure measured over 10 days at home by doubly labeled water and for 36 hours in the laboratory by indirect calorimetry along with detailed cognitive and clinical assessments. We performed a principal component analyses across all measures within each studied domain. Results Compared to controls, premanifest gene carriers had more disrupted sleep, which was best characterized by a fragmented sleep profile. These abnormalities, as well as a theta power (4–7Hz) decrease in rapid eye movement sleep, were associated with disease burden score. Objectively measured sleep problems coincided with the development of cognitive, affective, and subtle motor deficits and were not associated with any metabolic alterations. Interpretation The results show that among the earliest abnormalities in premanifest HD is sleep disturbances. This raises questions as to where the pathology in HD begins and also whether it could drive some of the early features and even possibly the pathology. Ann Neurol 2015;78:630–648
Collapse
Affiliation(s)
- Alpar S Lazar
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Panin
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Faculty of Medical Science, Anglia Ruskin University, Cambridge, United Kingdom
| | - Anna O G Goodman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Stanley E Lazic
- In Silico Lead Discovery, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Zsolt I Lazar
- Department of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Sarah L Mason
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lorraine Rogers
- Respiratory Support and Sleep Centre, Papworth Hospital, Cambridge, United Kingdom
| | - Peter R Murgatroyd
- National Institute for Health Research/Wellcome Trust Clinical Research Facility, Addenbrooke's Hospital, Cambridge, United Kingdom.,University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Laura P E Watson
- National Institute for Health Research/Wellcome Trust Clinical Research Facility, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Priya Singh
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, United Kingdom
| | - Beth Borowsky
- CHDI Management/CHDI Foundation, Princeton, NJ, United States of America
| | - John M Shneerson
- Respiratory Support and Sleep Centre, Papworth Hospital, Cambridge, United Kingdom
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|