1
|
Wang KL, Gao WS, Nasir A, Wang YF, Yuan M, Zhang ZZ, Bai Q, Li ZS. Sleep deprivation modulates pain sensitivity through alterations in lncRNA and mRNA expression in the nucleus accumbens and ventral midbrain. Neuropharmacology 2025; 275:110485. [PMID: 40311779 DOI: 10.1016/j.neuropharm.2025.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/01/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Sleep deprivation (SD) is a growing public health concern with implications for pain sensitivity and well-being. Although the relationship between sleep and pain is well understood, the underlying mechanisms remain largely unknown. This study investigates how SD influences pain sensitivity by modulating gene expression in the nucleus accumbens (NAc) and ventral tegmental area (VTA) of mice. Using the CPW sleep deprivation model, mice were deprived of sleep for three days, simulating preoperative conditions. Behavioral tests revealed heightened mechanical and thermal hypersensitivity post-SD. Brain MRI, immunofluorescence, and RNA sequencing analyses showed significant changes in the expression of non-coding RNAs (ncRNAs) and mRNAs in NAc and VTA, implicating several pain-related genes. Functional enrichment analysis highlighted pathways associated with neurotransmission, inflammation, and stress response. The study identified Hcrt and Apoe as critical modulators of SD-induced hyperalgesia, with potential therapeutic implications for managing pain associated with SD. Findings suggest that overlapping pathways exist between sleep and pain sensitivity, offering insights into the molecular mechanisms that connect sleep disorders with heightened pain responses.
Collapse
Affiliation(s)
- Kai-Li Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei-Sen Gao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuan-Fang Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Yuan
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen-Zhen Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Bai
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhi-Song Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Wang L, Lan X, Lan Z, Xu S, He R, Jiang Z. The relationship between pain duration characteristics and pain intensity in herpes zoster-related pain: a single-center retrospective study. Front Med (Lausanne) 2024; 11:1466214. [PMID: 39574918 PMCID: PMC11578741 DOI: 10.3389/fmed.2024.1466214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Background The varicella-zoster virus (VZV) can cause herpes zoster (HZ), which may progress to postherpetic neuralgia (PHN), leading to severe inflammatory responses and pain. Objective This study investigates the relationship between pain duration characteristics and pain intensity in patients with herpes zoster-related pain, hypothesizing that persistent pain correlates with higher pain intensity compared to intermittent pain. Methods A retrospective study was conducted at the Second Affiliated Hospital of Guangxi Medical University, China. Data from patients treated for herpes zoster-related pain between January 2019 and February 2024 were analyzed. Pain intensity was measured using the Numerical Rating Scale (NRS-11), and pain duration was categorized as intermittent or persistent. Multivariate regression models were used to assess the association between pain duration and intensity, adjusting for potential confounders. Results A total of 840 patients were included. Persistent pain was significantly associated with higher NRS-11 scores compared to intermittent pain (β = 0.71, 95% CI 0.50-0.91, p < 0.001). Subgroup analyses showed that persistent pain was associated with higher pain intensity in both acute HZ and PHN patients (HZ: β = 0.71, 95% CI 0.45-0.96, p < 0.001; PHN: β = 0.76, 95% CI 0.40-1.13, p < 0.001). Inflammatory markers, such as C-reactive protein (CRP) and white blood cell count, were positively correlated with pain intensity. Conclusion Pain duration significantly impacts pain intensity in HZ patients. Considering pain duration is crucial for effective pain management. Further research should explore the mechanisms underlying persistent pain to develop better treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Ruilin He
- Department of Pain Medicine, The Second Affliated Hospital of Guangxi Medical University, Nanning, China
| | - Zongbin Jiang
- Department of Pain Medicine, The Second Affliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
He H, Li M, Qiu Y, Wu Z, Wu L. Washed microbiota transplantation improves sleep quality in patients with sleep disorder by the gut-brain axis. Front Neurosci 2024; 18:1415167. [PMID: 38979127 PMCID: PMC11228149 DOI: 10.3389/fnins.2024.1415167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background The clinical impact of washed microbiota transplantation (WMT) from healthy donors in sleep disorder (SD) patients is unclear. This study aimed to investigate the effect of WMT in SD patients. Methods The clinical data were collected from patients with different indications receiving 1-3 courses of WMT, divided into two groups by 7 points of PSQI scale. The score of PQSI and SF-36 scale was used to assess the improvement in sleep quality and life quality among patients with sleep disorders following WMT. Finally, 16S rRNA gene amplicon sequencing was performed on fecal samples of patients with sleep disorders before and after WMT. Results WMT significantly improved sleep quality in patients with sleep disorder in the short and medium term. WMT significantly improved sleep latency, sleep time and total score in the short term. WMT significantly improved sleep quality and total score in the medium term. In terms of sleep quality and sleep latency, the improvement value also increased with the increase of treatment course, and the improvement effect of multiple treatment course was better than that of single and double treatment course. In the total score, the improvement effect of double and multiple treatment was better than that of single treatment. WMT also improved quality of life in the sleep disorder group. WMT significantly improved general health, vitality, social function and mental health in the short term. WMT significantly improved role-physical, general health, vitality, and mental health in the medium term. WMT regulated the disturbed gut microbiota in patients with sleep disorders. In the normal sleep group, WMT had no effect on the decline of sleep quality in the short, medium and long term, and had an improving effect on the quality of life. Conclusion WMT could significantly improve sleep quality and life quality in patients with sleep disorders with no adverse events. The improvement in sleep quality resulting from WMT could lead to an overall enhancement in life quality. WMT could be a potentially effective treatment for patients with sleep disorders by regulating the gut microbiota.
Collapse
Affiliation(s)
- Hongxin He
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Manqing Li
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Xinhai Hospital, Guangzhou, China
| | - Yifan Qiu
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Zhiqing Wu
- Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Biological Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Alexandre C, Miracca G, Holanda VD, Sharma A, Kourbanova K, Ferreira A, Bicca MA, Zeng X, Nassar VA, Lee S, Kaur S, Sarma SV, Sacré P, Scammell TE, Woolf CJ, Latremoliere A. Nociceptor spontaneous activity is responsible for fragmenting non-rapid eye movement sleep in mouse models of neuropathic pain. Sci Transl Med 2024; 16:eadg3036. [PMID: 38630850 PMCID: PMC11106840 DOI: 10.1126/scitranslmed.adg3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Spontaneous pain, a major complaint of patients with neuropathic pain, has eluded study because there is no reliable marker in either preclinical models or clinical studies. Here, we performed a comprehensive electroencephalogram/electromyogram analysis of sleep in several mouse models of chronic pain: neuropathic (spared nerve injury and chronic constriction injury), inflammatory (Freund's complete adjuvant and carrageenan, plantar incision) and chemical pain (capsaicin). We find that peripheral axonal injury drives fragmentation of sleep by increasing brief arousals from non-rapid eye movement sleep (NREMS) without changing total sleep amount. In contrast to neuropathic pain, inflammatory or chemical pain did not increase brief arousals. NREMS fragmentation was reduced by the analgesics gabapentin and carbamazepine, and it resolved when pain sensitivity returned to normal in a transient neuropathic pain model (sciatic nerve crush). Genetic silencing of peripheral sensory neurons or ablation of CGRP+ neurons in the parabrachial nucleus prevented sleep fragmentation, whereas pharmacological blockade of skin sensory fibers was ineffective, indicating that the neural activity driving the arousals originates ectopically in primary nociceptor neurons and is relayed through the lateral parabrachial nucleus. These findings identify NREMS fragmentation by brief arousals as an effective proxy to measure spontaneous neuropathic pain in mice.
Collapse
Affiliation(s)
- Chloe Alexandre
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Giulia Miracca
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Duarte Holanda
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Sharma
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kamila Kourbanova
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Ferreira
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maíra A. Bicca
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Xiangsunze Zeng
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria A. Nassar
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Lee
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Satvinder Kaur
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sridevi V. Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, School of Engineering, University of Liège, Liège, Belgium
| | - Thomas E. Scammell
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Sant'Anna MB, Kimura LF, Vieira WF, Zambelli VO, Novaes LS, Hösch NG, Picolo G. Environmental factors and their impact on chronic pain development and maintenance. Phys Life Rev 2024; 48:176-197. [PMID: 38320380 DOI: 10.1016/j.plrev.2024.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.
Collapse
Affiliation(s)
| | - Louise Faggionato Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Willians Fernando Vieira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
6
|
Kolbman N, Liu T, Guzzo P, Gilligan J, Mashour GA, Vanini G, Pal D. Intravenous psilocybin attenuates mechanical hypersensitivity in a rat model of chronic pain. Curr Biol 2023; 33:R1282-R1283. [PMID: 38113836 DOI: 10.1016/j.cub.2023.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 12/21/2023]
Abstract
There is a renewed interest in psychedelic drugs as potential therapeutic agents for the treatment of psychiatric disorders. In particular, psilocybin has shown promise for the treatment of refractory depression1 and major depressive disorder2, and has also been explored as a treatment for tobacco and alcohol abuse3,4. However, despite suggestive evidence5,6, there has been no systematic study to investigate the effectiveness of psilocybin in attenuating indices of chronic pain. To address this gap, we investigated the effect of psilocybin on mechanical hypersensitivity and thermal hyperalgesia in a well-established rat model of formalin-induced, centralized chronic pain7,8 and demonstrate that a single intravenous bolus administration of psilocybin can attenuate mechanical hypersensitivity for 28 days.
Collapse
Affiliation(s)
- Nicholas Kolbman
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tiecheng Liu
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Guzzo
- Tryp Therapeutics, Kelowna, BC V1Y 7T2, Canada
| | | | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Psychedelic Center, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Wei SN, Zhang H, Lu Y, Yu HJ, Ma T, Wang SN, Yang K, Tian ML, Huang AH, Wang W, Li FS, Li YW. Microglial voltage-dependent anion channel 1 signaling modulates sleep deprivation-induced transition to chronic postsurgical pain. Sleep 2023; 46:zsad039. [PMID: 36827092 DOI: 10.1093/sleep/zsad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
STUDY OBJECTIVES This study verified that sleep deprivation before and after skin/muscle incision and retraction (SMIR) surgery increased the risk of chronic pain and investigated the underlying roles of microglial voltage-dependent anion channel 1 (VDAC1) signaling. METHODS Adult mice received 6 hours of total sleep deprivation from 1 day prior to SMIR until the third day after surgery. Mechanical and heat-evoked pain was assessed before and within 21 days after surgery. Microglial activation and changes in VDAC1 expression and oligomerization were measured. Minocycline was injected to observe the effects of inhibiting microglial activation on pain maintenance. The VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and oligomerization inhibitor VBIT-4 were used to determine the roles of VDAC1 signaling on microglial adenosine 5' triphosphate (ATP) release, inflammation (IL-1β and CCL2), and chronicity of pain. RESULTS Sleep deprivation significantly increased the pain duration after SMIR surgery, activated microglia, and enhanced VDAC1 signaling in the spinal cord. Minocycline inhibited microglial activation and alleviated sleep deprivation-induced pain maintenance. Lipopolysaccharide (LPS)-induced microglial activation was accompanied by increased VDAC1 expression and oligomerization, and more VDAC1 was observed on the cell membrane surface compared with control. DIDS and VBIT-4 rescued LPS-induced microglial ATP release and IL-1β and CCL2 expression. DIDS and VBIT-4 reversed sleep loss-induced microglial activation and pain chronicity in mice, similar to the effects of minocycline. No synergistic effects were found for minocycline plus VBIT-4 or DIDS. CONCLUSIONS Perioperative sleep deprivation activated spinal microglia and increases the risk of chronic postsurgical pain in mice. VDAC1 signaling regulates microglial activation-related ATP release, inflammation, and chronicity of pain.
Collapse
Affiliation(s)
- Shi-Nan Wei
- The Postgraduate Training Base of Jinzhou Medical University, Beijing, China
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hao Zhang
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yan Lu
- Department of Neurology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hui-Jie Yu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Tao Ma
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Si-Nian Wang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Kun Yang
- The Postgraduate Training Base of Jinzhou Medical University, Beijing, China
| | - Mou-Li Tian
- Department of Anesthesiology, Changzheng Hospital Affiliate to the Naval Medical University, Shanghai, China
| | - Ai-Hua Huang
- Department of Neurology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Wei Wang
- Department of Anesthesiology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Feng-Sheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yong-Wang Li
- Department of Anesthesiology, The Third people's Hospital of Longgang District, Shenzhen, China
| |
Collapse
|
8
|
Mercante FG, Fernandes G, Braido GVDV, Proença JDS, Andersen ML, Hachul H, Gonçalves DADG. Insomnia is associated with symptoms of central sensitization in patients with painful temporomandibular disorders. J Am Dent Assoc 2023; 154:1024-1031. [PMID: 37086253 DOI: 10.1016/j.adaj.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Central sensitization (CS) and temporomandibular disorder (TMD) are both associated with insomnia. Therefore, the authors aimed to investigate whether insomnia was associated with more symptoms of CS in patients with TMD. METHODS In 82 volunteers with TMD, insomnia was clinically assessed, allowing sample stratification according to its presence. The Central Sensitization Inventory questionnaire was self-applied to assess the clinical symptoms of CS. RESULTS Participants with insomnia had significantly higher mean (SD) scores of CS according to the Central Sensitization Inventory than participants without insomnia (43.10 [12.57] vs 26.59 [13.66]; P = < .001). CONCLUSIONS Insomnia was associated with higher scores of CS symptoms in patients with TMD. PRACTICAL IMPLICATIONS Insomnia influences TMD as well as its relationship with CS, and, therefore, it is critical to the clinical management of TMD.
Collapse
|
9
|
Kourbanova K, Alexandre C, Latremoliere A. Effect of sleep loss on pain-New conceptual and mechanistic avenues. Front Neurosci 2022; 16:1009902. [PMID: 36605555 PMCID: PMC9807925 DOI: 10.3389/fnins.2022.1009902] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Sleep disturbances increase pain sensitivity in clinical and preclinical settings, but the precise mechanisms are unknown. This represents a major public health issue because of the growing sleep deficiency epidemic fueled by modern lifestyle. To understand the neural pathways at the intersection between sleep and pain processes, it is critical to determine the precise nature of the sleep disruptions that increase pain and the specific component of the pain response that is targeted. Methods We performed a review of the literature about sleep disturbances and pain sensitivity in humans and rodents by taking into consideration the targeted sleep stage (REMS, non-NREMS, or both), the amount of sleep lost, and the different types of sleep disruptions (partial or total sleep loss, duration, sleep fragmentation or interruptions), and how these differences might affect distinct components of the pain response. Results We find that the effects of sleep disturbances on pain are highly conserved among species. The major driver for pain hypersensitivity appears to be the total amount of sleep lost, while REMS loss by itself does not seem to have a direct effect on pain sensitivity. Sleep loss caused by extended wakefulness preferentially increases pain perception, whereas interrupted and limited sleep strongly dysregulates descending controls such as DNIC, especially in women. Discussion We discuss the possible mechanisms involved, including an increase in inflammatory processes, a loss of nociceptive inhibitory pathways, and a defect in the cognitive processing of noxious input.
Collapse
Affiliation(s)
- Kamila Kourbanova
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Chloe Alexandre
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Guo M, Wu Y, Zheng D, Chen L, Xiong B, Wu J, Li K, Wang L, Lin K, Zhang Z, Manyande A, Xu F, Wang J, Peng M. Preoperative Acute Sleep Deprivation Causes Postoperative Pain Hypersensitivity and Abnormal Cerebral Function. Neurosci Bull 2022; 38:1491-1507. [PMID: 36282466 PMCID: PMC9723009 DOI: 10.1007/s12264-022-00955-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
Preoperative sleep loss can amplify post-operative mechanical hyperalgesia. However, the underlying mechanisms are still largely unknown. In the current study, rats were randomly allocated to a control group and an acute sleep deprivation (ASD) group which experienced 6 h ASD before surgery. Then the variations in cerebral function and activity were investigated with multi-modal techniques, such as nuclear magnetic resonance, functional magnetic resonance imaging, c-Fos immunofluorescence, and electrophysiology. The results indicated that ASD induced hyperalgesia, and the metabolic kinetics were remarkably decreased in the striatum and midbrain. The functional connectivity (FC) between the nucleus accumbens (NAc, a subregion of the ventral striatum) and the ventrolateral periaqueductal gray (vLPAG) was significantly reduced, and the c-Fos expression in the NAc and the vLPAG was suppressed. Furthermore, the electrophysiological recordings demonstrated that both the neuronal activity in the NAc and the vLPAG, and the coherence of the NAc-vLPAG were suppressed in both resting and task states. This study showed that neuronal activity in the NAc and the vLPAG were weakened and the FC between the NAc and the vLPAG was also suppressed in rats with ASD-induced hyperalgesia. This study highlights the importance of preoperative sleep management for surgical patients.
Collapse
Affiliation(s)
- Meimei Guo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, 430056, China
| | - Danhao Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Bingrui Xiong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinfeng Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Ke Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, W1S 3PR, UK
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China.
- Institute of Neuroscience and Brain Disease; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
11
|
Giordano NA, Kane A, Rodriguez R, Papay D, Canales B, Kirk KF, Buckenmaier CC, Highland KB. Changes in actigraphy metrics associated with PROMIS measures after orthopaedic surgery. Int J Nurs Pract 2022; 28:e13089. [PMID: 35983591 DOI: 10.1111/ijn.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/22/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
AIM This study examined the feasibility of integrating actigraphy devices into orthopaedic surgical settings to assess the concurrent validity between objective actigraphy data and PROMIS measures. Additionally, the association between changes in actigraphy data and longitudinal changes in PROMIS measures was examined. METHODS Data were collected from 17 participants using actigraphy devices the week prior to and after orthopaedic surgery from 02/2019 to 03/2020. Participants completed PROMIS measures (Physical Function, Sleep Disturbance, Pain Interference) preoperatively and up to 6 months postoperatively. Nonparametric correlations (rs ) assessed for concurrent validity. Linear mixed-effects models examined the association between changes in actigraphy data and PROMIS measures. RESULTS Prolonged wake after sleep onset was associated with increased sleep disturbances (rs = 0.49; p = 0.045) and pain interference (rs = 0.51; p = 0.04). Changes in pain interference were correlated with increased awakenings (rs = 0.54; p = 0.03). Increased wake after sleep onset was associated with worsening sleep disturbance (β = 0.12; p = 0.01) and pain interference scores over the postoperative period (β = 0.12; p = 0.02). CONCLUSIONS This study is among the first to examine changes in objective actigraphy data and longitudinal PROMIS measures following orthopaedic surgery and illustrates the feasibility of incorporating actigraphy into surgical settings to evaluate postoperative recovery.
Collapse
Affiliation(s)
- Nicholas A Giordano
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Alexandra Kane
- Defense and Veterans Center for Integrative Pain Management, Department of Anesthesiology, Uniformed Services University, Rockville, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Rockville, Maryland, USA
| | - Ramiro Rodriguez
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Diane Papay
- Defense and Veterans Center for Integrative Pain Management, Department of Anesthesiology, Uniformed Services University, Rockville, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Rockville, Maryland, USA
| | - Bryanna Canales
- Defense and Veterans Center for Integrative Pain Management, Department of Anesthesiology, Uniformed Services University, Rockville, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Rockville, Maryland, USA
| | - Keri F Kirk
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Chester C Buckenmaier
- Defense and Veterans Center for Integrative Pain Management, Department of Anesthesiology, Uniformed Services University, Rockville, Maryland, USA
| | - Krista B Highland
- Defense and Veterans Center for Integrative Pain Management, Department of Anesthesiology, Uniformed Services University, Rockville, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Rockville, Maryland, USA
| |
Collapse
|
12
|
Cheng X, Yu Z, Hu W, Chen J, Chen W, Wang L, Li X, Zhang W, Chen J, Zou X, Chen W, Wan Y. Voluntary exercise ameliorates neuropathic pain by suppressing calcitonin gene-related peptide and ionized calcium-binding adapter molecule 1 overexpression in the lumbar dorsal horns in response to injury to the cervical spinal cord. Exp Neurol 2022; 354:114105. [PMID: 35525308 DOI: 10.1016/j.expneurol.2022.114105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neuropathic pain (NP) is a frequent finding in patients diagnosed with spinal cord injuries (SCIs). To improve our understanding of the maladaptive changes taking place in the lumbar spinal cord that can lead to the development of NP and to find alternative options to treat this condition, we aimed to investigate the effects of voluntary exercise on NP after SCI and to elucidate its potential mechanisms. METHODS A rat model of post-SCI NP induced by compression of the posterior or lateral cervical spinal cord was used to evaluate the effects of voluntary exercise by measuring the bilateral withdrawal of the hind paws using the Von Frey filament and Hargreaves tests. The place escape/avoid paradigm was used to evaluate supraspinal pain processing and somatosensory evoked potentials (SEPs) were used to examine disturbances in proprioception. Locomotor function was evaluated using Basso, Beattie, and Bresnahan (BBB) scoring. Pathologic findings in hematoxylin and eosin-stained tissue and magnetic resonance imaging were used to evaluate the morphological changes after SCI. The lesion size within the cervical spinal cord was evaluated by staining with Eriochrome cyanine R. Quantitative polymerase chain reaction and immunohistochemistry were used to assess the expression of calcitonin gene-related peptide (CGRP) and ionized calcium-binding adapter molecule 1 (Iba-1) in the lumbar dorsal horns. RESULTS All injured rats developed mechanical hypersensitivity, hyposensitivity, and thermal hyperalgesia in the contralateral hind paws at 1 week post-injury. Rats that underwent lateral compression injury developed NP in the ipsilateral hind paws 1 week later than rats with a posterior compression injury. Our findings revealed that voluntary exercise ameliorated mechanical allodynia and thermal hyperalgesia, and significantly improved proprioception as measured by SEP, but had no impact on mechanical hypoalgesia or motor recovery and provided no significant neuroprotection after recovery from an acute SCI. SCI-induced NP was accompanied by increased expression of CGRP and Iba-1 in the lumbar dorsal horn. These responses were reduced in rats that underwent voluntary exercise. CONCLUSIONS Voluntary exercise ameliorates NP that develops in rats after compression injury. Increased expression of CGRP and Iba-1 in the lumbar dorsal horns of rats exhibiting symptoms of NP suggests that microglial activation might play a crucial role in its development. Collectively, voluntary exercise may be a promising therapeutic modality to treat NP that develops clinically in response to SCI.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Zhengran Yu
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Wenjie Hu
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jiacheng Chen
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China; Graduate School of Biomedical Engineering, Institute of Engineering, University of New South Wales, Sydney 1001, Australia
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Le Wang
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Xiang Li
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Wenwu Zhang
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Jiewen Chen
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Xuenong Zou
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China
| | - Wenli Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| | - Yong Wan
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, China.
| |
Collapse
|
13
|
The Effect of Improving Preoperative Sleep Quality on Perioperative Pain by Zolpidem in Patients Undergoing Laparoscopic Colorectal Surgery: A Prospective, Randomized Study. Pain Res Manag 2022; 2022:3154780. [PMID: 35069955 PMCID: PMC8767387 DOI: 10.1155/2022/3154780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
Methods A prospective, randomized study was conducted with 88 patients undergoing laparoscopic colorectal surgery. The experimental group (S group, n = 44) was given 10 mg of zolpidem tartrate one night before the surgical procedure, while no medication was given to the control group (C group, n = 44). The primary outcome was the intraoperative remifentanil consumption. Sufentanil consumption, average patient-controlled analgesia (PCA) effective press times, the visual analog scale (VAS) scores, and incidences of postoperative nausea and vomiting (PONV) were recorded at 6 h (T1), 12 h (T2), and 24 h (T3) postoperatively. Results The intraoperative remifentanil consumption was significantly lower in the S group than that in the C group (p < 0.01). Sufentanil consumption at 6 h and 12 h postoperatively was significantly lower in the S group than that in the C group (p < 0.05); average PCA effective press times and VAS scores, at 6 h and 12 h postoperatively, were significantly lower in the S group than those in the C group (p < 0.01); differences between groups 24 h postoperatively were not significant. No significant between-group difference was noted in the incidence of nausea and vomiting. Conclusion Improving patients' sleep quality the night before surgical procedure by zolpidem can decrease the usage of intraoperative analgesics and reduce postoperative pain.
Collapse
|
14
|
Sugimoto M, Takahashi Y, Sugimura YK, Tokunaga R, Yajima M, Kato F. Active role of the central amygdala in widespread mechanical sensitization in rats with facial inflammatory pain. Pain 2021; 162:2273-2286. [PMID: 33900711 PMCID: PMC8280967 DOI: 10.1097/j.pain.0000000000002224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/01/2021] [Accepted: 01/26/2021] [Indexed: 01/19/2023]
Abstract
ABSTRACT Widespread or ectopic sensitization is a hallmark symptom of chronic pain, characterized by aberrantly enhanced pain sensitivity in multiple body regions remote from the site of original injury or inflammation. The central mechanism underlying widespread sensitization remains unidentified. The central nucleus of the amygdala (also called the central amygdala, CeA) is well situated for this role because it receives nociceptive information from diverse body sites and modulates pain sensitivity in various body regions. In this study, we examined the role of the CeA in a novel model of ectopic sensitization of rats. Injection of formalin into the left upper lip resulted in latent bilateral sensitization in the hind paw lasting >13 days in male Wistar rats. Chemogenetic inhibition of gamma-aminobutyric acid-ergic neurons or blockade of calcitonin gene-related peptide receptors in the right CeA, but not in the left, significantly attenuated this sensitization. Furthermore, chemogenetic excitation of gamma-aminobutyric acid-ergic neurons in the right CeA induced de novo bilateral hind paw sensitization in the rats without inflammation. These results indicate that the CeA neuronal activity determines hind paw tactile sensitivity in rats with remote inflammatory pain. They also suggest that the hind paw sensitization used in a large number of preclinical studies might not be simply a sign of the pain at the site of injury but rather a representation of the augmented CeA activity resulting from inflammation/pain in any part of the body or from activities of other brain regions, which has an active role of promoting defensive/protective behaviors to avoid further bodily damage.
Collapse
Affiliation(s)
- Mariko Sugimoto
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Anesthesiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Yae K. Sugimura
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryota Tokunaga
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Manami Yajima
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Fusao Kato
- Center for Neuroscience of Pain and Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Shift work, low-grade inflammation, and chronic pain: a 7-year prospective study. Int Arch Occup Environ Health 2021; 94:1013-1022. [PMID: 33550437 PMCID: PMC8238752 DOI: 10.1007/s00420-020-01626-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023]
Abstract
Objectives We investigated prospective associations of shift work with chronic pain and C‐reactive protein (CRP), an indicator of inflammation. Furthermore, we elucidated CRP as a possible mediator and/or moderator of effects of shift work on pain. Methods Data from a 7 years follow‐up study were analyzed (N = 2323). Shift work and chronic pain of “neck/shoulder”, “arm/hand”, “upper back”, “low back”, “hip/leg/feet”, and “other regions” were measured by questionnaires. “Chronic widespread pain”, “number of chronic pain sites”, and “any chronic pain” were computed. CRP was measured in serum samples. Logistic and Poisson regressions were conducted. Mediation was assessed by casual mediation analyses and moderation by the Relative Excess Risk due to Interaction (RERI). Results Shift work was not associated with any chronic pain variable and no mediation was detected. CRP was associated with low back pain, hip/leg pain, and “number of pain sites”, and also with the combination of shift work and CRP of 1–2.99 mg/L (compared to: no shiftwork and CRP < 1). Additionally, shiftwork and CRP 1–2.99 mg/L was associated with risk of “any chronic pain” (OR: 1.76, 95% CI: 1.12, 2.85), which was not associated with CRP alone. Moderation analyses suggested the risks for “any chronic pain” and “number of pain regions” increased when individuals with elevated CRP worked shifts—beyond what the separate effects of CRP and shift would suggest. Conclusions We found no evidence of shift work in general affecting CRP or chronic pain. However, shift work and elevated CRP combined may influence chronic pain. Supplementary Information The online version contains supplementary material available at 10.1007/s00420-020-01626-2.
Collapse
|
16
|
Sleep Disorders in dogs: A Pathophysiological and Clinical Review. Top Companion Anim Med 2021; 43:100516. [PMID: 33556640 DOI: 10.1016/j.tcam.2021.100516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Sleep is a fundamental process in mammals, including domestic dogs. Disturbances in sleep affect physiological functions like cognitive and physical performance, immune response, pain sensation and increase the risk of diseases. In dogs, sleep can be affected by several conditions, with narcolepsy, REM sleep behavior disorder and sleep breathing disorders being the most frequent causes. Furthermore, sleep disturbances can be a symptom of other primary diseases where they can contribute to the worsening of clinical signs. This review describes reciprocally interacting sleep and wakefulness promoting systems and how their dysfunction can explain the pathophysiological mechanisms of sleep disorders. Additionally, this work discusses the clinical characteristics, diagnostic tools and available treatments for these disorders while highlighting areas in where further studies are needed so as to improve their treatment and prevention.
Collapse
|
17
|
Smith MT, Mun CJ, Remeniuk B, Finan PH, Campbell CM, Buenaver LF, Robinson M, Fulton B, Tompkins DA, Tremblay JM, Strain EC, Irwin MR. Experimental sleep disruption attenuates morphine analgesia: findings from a randomized trial and implications for the opioid abuse epidemic. Sci Rep 2020; 10:20121. [PMID: 33208831 PMCID: PMC7674501 DOI: 10.1038/s41598-020-76934-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 11/08/2022] Open
Abstract
Preclinical studies demonstrate that sleep disruption diminishes morphine analgesia and modulates reward processing. We sought to translate these preclinical findings to humans by examining whether sleep disruption alters morphine's analgesic and hedonic properties. We randomized 100 healthy adults to receive morphine versus placebo after two nights of undisturbed sleep (US) and two nights of forced awakening (FA) sleep disruption. Sleep conditions were counterbalanced, separated by a two-week washout. The morning after both sleep conditions, we tested cold pressor pain tolerance before and 40-min after double-blind injection of .08 mg/kg morphine or placebo. The primary outcome was the analgesia index, calculated as the change in cold pressor hand withdrawal latency (HWL) before and after drug injection. Secondary outcomes were ratings of feeling "high," drug "liking," and negative drug effects. We found a significant sleep condition by drug interaction on the analgesia index (95% CI - 0.57, - 0.001). After US, subjects receiving morphine demonstrated significantly longer HWL compared to placebo (95% CI 0.23, 0.65), but not after FA (95% CI - 0.05, 0.38). Morphine analgesia was diminished threefold under FA, relative to US. After FA, females (95% CI - 0.88, - 0.05), but not males (95% CI - 0.23, 0.72), reported decreased subjective "high" effects compared to US. After FA, females (95% CI 0.05, 0.27), but not males (95% CI - 0.10, 0.11), administered morphine reported increased negative drug effects compared to US. These data demonstrate that sleep disruption attenuates morphine analgesia in humans and suggest that sleep disturbed males may be at greatest risk for problematic opioid use.
Collapse
Affiliation(s)
- Michael T Smith
- Division of Behavioral Medicine, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 5510 Nathan Shock Drive, Suite 100, Baltimore, MD, 21225, USA.
| | - Chung Jung Mun
- Division of Behavioral Medicine, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 5510 Nathan Shock Drive, Suite 100, Baltimore, MD, 21225, USA
| | - Bethany Remeniuk
- Division of Behavioral Medicine, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 5510 Nathan Shock Drive, Suite 100, Baltimore, MD, 21225, USA
| | - Patrick H Finan
- Division of Behavioral Medicine, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 5510 Nathan Shock Drive, Suite 100, Baltimore, MD, 21225, USA
| | - Claudia M Campbell
- Division of Behavioral Medicine, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 5510 Nathan Shock Drive, Suite 100, Baltimore, MD, 21225, USA
| | - Luis F Buenaver
- Division of Behavioral Medicine, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 5510 Nathan Shock Drive, Suite 100, Baltimore, MD, 21225, USA
| | | | - Brook Fulton
- Division of Behavioral Medicine, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 5510 Nathan Shock Drive, Suite 100, Baltimore, MD, 21225, USA
| | | | | | - Eric C Strain
- Division of Behavioral Medicine, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, 5510 Nathan Shock Drive, Suite 100, Baltimore, MD, 21225, USA
| | - Michael R Irwin
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, 90024, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine At UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
18
|
Stroemel-Scheder C, Kundermann B, Lautenbacher S. The effects of recovery sleep on pain perception: A systematic review. Neurosci Biobehav Rev 2020; 113:408-425. [PMID: 32275917 DOI: 10.1016/j.neubiorev.2020.03.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/13/2020] [Accepted: 03/29/2020] [Indexed: 01/04/2023]
Abstract
Experimental studies highlight profound effects of sleep disruptions on pain, showing that sleep deprivation (SD) leads to hyperalgesic pain changes. On the other hand, given that sleep helps normalizing bodily functions, a crucial role of restorative sleep in the overnight restoration of the pain system seems likely. Thus, a systematic review of experimental studies on effects of recovery sleep (RS; subsequently to SD) on pain was performed with the aim to check whether RS resets hyperalgesic pain changes occurring due to SD. Empirical animal and human studies including SD-paradigms, RS and pain assessments were searched in three databases (PubMed, Web of Science, PsycINFO) using a predefined algorithm. 29 studies were included in this review. Most results indicated a reset of enhanced pain sensitivity and vulnerability following RS, especially when total SD was implemented and pressure pain or painful symptoms (human studies) were assessed. Further research should focus on whether and how recovery is altered in chronic pain patients, as this yields implications for pain treatment by enhancing or stabilizing RS.
Collapse
Affiliation(s)
| | - Bernd Kundermann
- Vitos Clinic for Psychiatry and Psychotherapy Giessen, Giessen, Germany; Department of Psychiatry and Psychotherapy, Philipps-University of Marburg, Marburg, Germany.
| | | |
Collapse
|
19
|
Kim SH, Park JY, Shin HE, Lee SB, Ryu DW, Kim TW, Park JW. The influence of rapid eye movement sleep deprivation on nociceptive transmission and the duration of facial allodynia in rats: a behavioral and Fos immunohistochemical study. J Headache Pain 2019; 20:21. [PMID: 30823867 PMCID: PMC6734525 DOI: 10.1186/s10194-019-0977-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
Background Disrupted sleep is associated with a reciprocal influence on headaches and is one of the contributing factors in the process of chronicity. The goal of the present study was to investigate the influence of sleep on headaches using animal rapid eye movement (REM) sleep deprivation and supradural capsaicin infusion models. Method Sprague-Dawley rats underwent REM sleep deprivation (REMSD) for 96 h. The sensory threshold to mechanical stimuli, assessed by the von Frey monofilament test, was measured during the REMSD period. Additionally, the Fos protein expression level was measured in the trigeminocervical complex, periaqueductal gray, and hypothalamus. Following supradural infusion of capsaicin, we evaluated the duration of facial allodynia for 28 days after REMSD. Results After REMSD, the sensory threshold to mechanical stimuli was significantly decreased (p < 0.01) and Fos-positivity in the posterior (p = 0.010) and dorsomedial hypothalamus (p = 0.024), ventrolateral periaqueductal gray (p = 0.016), and superficial layer of the trigeminocervical complex (p = 0.019) were significantly increased. The duration of facial allodynia induced by supradural capsaicin infusion was significantly longer in the REM sleep deprivation and capsaicin infusion group (Day 10 PSD vs. Day 25 PSD). Conclusion The present study demonstrates that REM sleep deprivation increased nociceptive transmission from trigeminal nerve endings. Furthermore, it suggests that sleep deprivation may contribute to the chronicity of facial allodynia.
Collapse
Affiliation(s)
- Seong Hoon Kim
- Department of Neurology, The Catholic University of Korea, College of Medicine, Uijeongbu St Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Gyeonggi Do, South Korea
| | - Ju Yeon Park
- Department of Neurology, The Catholic University of Korea, College of Medicine, Uijeongbu St Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Gyeonggi Do, South Korea
| | - Hae Eun Shin
- Department of Neurology, The Catholic University of Korea, College of Medicine, Uijeongbu St Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Gyeonggi Do, South Korea
| | - Si Baek Lee
- Department of Neurology, The Catholic University of Korea, College of Medicine, Uijeongbu St Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Gyeonggi Do, South Korea
| | - Dong Woo Ryu
- Department of Neurology, The Catholic University of Korea, College of Medicine, Uijeongbu St Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Gyeonggi Do, South Korea
| | - Tae Won Kim
- Department of Neurology, The Catholic University of Korea, College of Medicine, Incheon St Mary's Hospital, Incheon, South Korea
| | - Jeong Wook Park
- Department of Neurology, The Catholic University of Korea, College of Medicine, Uijeongbu St Mary's Hospital, 65-1 Geumo-dong, Uijeongbu, Gyeonggi Do, South Korea.
| |
Collapse
|
20
|
DiMarco LA, Ramger BC, Howell GP, Serrani AM, Givens DL, Rhon DI, Cook CE. Differences in Characteristics and Downstream Drug Use Among Opioid-Naïve and Prior Opioid Users with Low Back Pain. Pain Pract 2018; 19:149-157. [PMID: 30269416 DOI: 10.1111/papr.12728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/30/2018] [Accepted: 09/15/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Recent clinical practice guidelines have suggested conservative treatment approaches, including physical therapy, are indicated as first-line treatment for patients with low back pain (LBP); however, LBP continues to be managed with opioids, despite decreases in function, morbidity, and insignificant improvements in pain. OBJECTIVE The primary purpose was to compare characteristics and downstream medication use between patients with LBP with prior opioid exposure vs. those who were opioid-naïve. The secondary purpose was to explore the role of prior opioid use by LBP disability. METHODS Seven hundred and nine participants in a LBP self-management class were evaluated utilizing self-report data at baseline and longitudinal claims data from the Military Health System Data Repository. Participants were dichotomized into opioid-naïve and prior opioid use groups and then further divided into low and high disability groups based on Oswestry Disability Index (ODI) scores. Patient characteristics, comorbidities, and medication use were compared between groups. RESULTS Prior opioid users had significantly higher baseline ODI and Fear Avoidance Beliefs Questionnaire physical activity subscale and work subscale scores as well as pre-index instances of mental health disorders, chronic pain, and insomnia than opioid-naïve individuals. Prior opioid users filled significantly more pain medication prescriptions in the year after the index date than did opioid-naïve individuals. Prior opioid users were significantly more likely to be taking opioids at 1 year after the index date, regardless of disability level. CONCLUSION In patients presenting with LBP, prior opioid exposure appears to be related to increased analgesic use (opioid and non-opioid) and longitudinal analgesic utilization at 1 year after the index date.
Collapse
Affiliation(s)
- Lindsay A DiMarco
- Doctor of Physical Therapy Division, Duke University, Durham, North Carolina, U.S.A
| | - Benjamin C Ramger
- Doctor of Physical Therapy Division, Duke University, Durham, North Carolina, U.S.A
| | - Gregory P Howell
- Doctor of Physical Therapy Division, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Ali M Serrani
- Doctor of Physical Therapy Division, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Deborah L Givens
- Doctor of Physical Therapy Division, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Daniel I Rhon
- Doctoral Programs in Physical Therapy, Baylor University, San Antonio, Texas, U.S.A
| | - Chad E Cook
- Doctor of Physical Therapy Division, Duke University, Durham, North Carolina, U.S.A
| |
Collapse
|
21
|
Katsifaraki M, Nilsen KB, Christensen JO, Wærsted M, Knardahl S, Bjorvatn B, Härmä M, Matre D. Sleep duration mediates abdominal and lower-extremity pain after night work in nurses. Int Arch Occup Environ Health 2018; 92:415-422. [PMID: 30417278 DOI: 10.1007/s00420-018-1373-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/28/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The aim of this study was to investigate the association between different working shifts (i.e. morning, evening, night shifts) and headache, musculoskeletal and abdominal pain, and the extent to which reduced sleep duration could account for these associations. METHODS Nurses (N = 679, 649 female, aged 22-53 years) were followed up for a period of 28 consecutive days, responding to a diary about sleep, shift type and pain complaints (measured on a Likert-type scale ranging from 0 to 3). Generalised structural equation modelling mediation analysis (GSEM) was performed to test whether shift type was associated with higher incidence or higher intensity of pain (headache, pain in neck/shoulders/upper back, upper extremity, low back, lower extremity and abdominal pain), and if this effect was mediated by sleep duration (continuous variable), after controlling for age, work and lifestyle factors. RESULTS Pain scores in lower extremities were decreased following night shifts in general. However, when night shifts were followed by short sleep duration, the risk of pain in the lower extremities and abdominal pain were increased. Headache and pain in the upper extremity were increased after night shifts, but were not associated with sleep duration. Pain in the neck/shoulder/upper back and lower back was not related to shift work. CONCLUSIONS Among nurses in a three-shift rotating schedule, night shifts increased the risk of pain in several regions, but only pain in the lower extremities and abdomen was related to reduced sleep duration.
Collapse
Affiliation(s)
- Maria Katsifaraki
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Pb 8149 Dep, 0033, Oslo, Norway
| | - Kristian Bernhard Nilsen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Pb 8149 Dep, 0033, Oslo, Norway.,Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.,Section for Clinical Neurophysiology, Department of Neurology, Oslo University Hospital-Ullevål, Oslo, Norway
| | - Jan Olav Christensen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Pb 8149 Dep, 0033, Oslo, Norway
| | - Morten Wærsted
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Pb 8149 Dep, 0033, Oslo, Norway
| | - Stein Knardahl
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Pb 8149 Dep, 0033, Oslo, Norway
| | - Bjørn Bjorvatn
- Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital, Bergen, Norway.,Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Mikko Härmä
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Dagfinn Matre
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Pb 8149 Dep, 0033, Oslo, Norway.
| |
Collapse
|
22
|
Greenwald MK. Anti-stress neuropharmacological mechanisms and targets for addiction treatment: A translational framework. Neurobiol Stress 2018; 9:84-104. [PMID: 30238023 PMCID: PMC6138948 DOI: 10.1016/j.ynstr.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Stress-related substance use is a major challenge for treating substance use disorders. This selective review focuses on emerging pharmacotherapies with potential for reducing stress-potentiated seeking and consumption of nicotine, alcohol, marijuana, cocaine, and opioids (i.e., key phenotypes for the most commonly abused substances). I evaluate neuropharmacological mechanisms in experimental models of drug-maintenance and relapse, which translate more readily to individuals presenting for treatment (who have initiated and progressed). An affective/motivational systems model (three dimensions: valence, arousal, control) is mapped onto a systems biology of addiction approach for addressing this problem. Based on quality of evidence to date, promising first-tier neurochemical receptor targets include: noradrenergic (α1 and β antagonist, α2 agonist), kappa-opioid antagonist, nociceptin antagonist, orexin-1 antagonist, and endocannabinoid modulation (e.g., cannabidiol, FAAH inhibition); second-tier candidates may include corticotropin releasing factor-1 antagonists, serotonergic agents (e.g., 5-HT reuptake inhibitors, 5-HT3 antagonists), glutamatergic agents (e.g., mGluR2/3 agonist/positive allosteric modulator, mGluR5 antagonist/negative allosteric modulator), GABA-promoters (e.g., pregabalin, tiagabine), vasopressin 1b antagonist, NK-1 antagonist, and PPAR-γ agonist (e.g., pioglitazone). To address affective/motivational mechanisms of stress-related substance use, it may be advisable to combine agents with actions at complementary targets for greater efficacy but systematic studies are lacking except for interactions with the noradrenergic system. I note clinically-relevant factors that could mediate/moderate the efficacy of anti-stress therapeutics and identify research gaps that should be pursued. Finally, progress in developing anti-stress medications will depend on use of reliable CNS biomarkers to validate exposure-response relationships.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
23
|
Miyazawa Y, Takahashi Y, Watabe AM, Kato F. Predominant synaptic potentiation and activation in the right central amygdala are independent of bilateral parabrachial activation in the hemilateral trigeminal inflammatory pain model of rats. Mol Pain 2018; 14:1744806918807102. [PMID: 30270724 PMCID: PMC6243415 DOI: 10.1177/1744806918807102] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nociceptive signals originating in the periphery are conveyed to the brain through specific afferent and ascending pathways. The spino-(trigemino-)parabrachio-amygdaloid pathway is one of the principal pathways mediating signals from nociception-specific ascending neurons to the central amygdala, a limbic structure involved in aversive signal-associated emotional responses, including the emotional aspects of pain. Recent studies suggest that the right and left central amygdala play distinct roles in the regulation of nociceptive responses. Using a latent formalin inflammatory pain model of the rat, we analyzed the right-left differences in synaptic potentiation at the synapses formed between the fibers from the lateral parabrachial nucleus and central amygdala neurons as well as those in the c-Fos expression in the lateral parabrachial nucleus, central amygdala, and the basolateral/lateral amygdala after formalin injection to either the right or left side of the rat upper lip. Although the single-sided formalin injection caused a significant bilateral increase in c-Fos-expressing neurons in the lateral parabrachial nucleus with slight projection-side dependence, the increase in the amplitude of postsynaptic excitatory currents and the number of c-Fos-expressing neurons in the central amygdala occurred predominantly on the right side regardless of the side of the inflammation. Although there was no significant correlation in the number of c-Fos-expressing neurons between the lateral parabrachial nucleus and central amygdala in the formalin-injected animals, these numbers were significantly correlated between the basolateral amygdala and central amygdala. It is thus concluded that the lateral parabrachial nucleus-central amygdala synaptic potentiation reported in various pain models is not a simple Hebbian plasticity in which raised inputs from the lateral parabrachial nucleus cause lateral parabrachial nucleus-central amygdala potentiation but rather an integrative and adaptive response involving specific mechanisms in the right central amygdala.
Collapse
Affiliation(s)
- Yuta Miyazawa
- 1 Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,2 Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Yukari Takahashi
- 1 Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,2 Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| | - Ayako M Watabe
- 2 Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan.,3 Institute of Clinical Medicine and Research, Jikei University School of Medicine, Tokyo, Japan
| | - Fusao Kato
- 1 Department of Neuroscience, Jikei University School of Medicine, Tokyo, Japan.,2 Center for Neuroscience of Pain, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Hambrecht-Wiedbusch VS, Gabel M, Liu LJ, Imperial JP, Colmenero AV, Vanini G. Preemptive Caffeine Administration Blocks the Increase in Postoperative Pain Caused by Previous Sleep Loss in the Rat: A Potential Role for Preoptic Adenosine A2A Receptors in Sleep-Pain Interactions. Sleep 2018; 40:4037126. [PMID: 28934532 DOI: 10.1093/sleep/zsx116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sleep and pain are reciprocally related, but the precise mechanisms underlying this relationship are poorly understood. This study used a rat model of surgical pain to examine the effect of previous sleep loss on postoperative pain and tested the hypothesis that preoptic adenosinergic mechanisms regulate sleep-pain interactions. Relative to ad libitum sleep, 6 hours of total sleep deprivation prior to a surgical incision significantly enhanced postoperative mechanical hypersensitivity in the affected paw and prolonged the time to recovery from surgery. There were no sex-specific differences in these measures. There were also no changes in adrenocorticotropic hormone and corticosterone levels after sleep deprivation, suggesting that this effect was not mediated by the stress associated with the sleep perturbation. Systemic administration of the nonselective adenosine receptor antagonist caffeine at the onset of sleep deprivation prevented the sleep deprivation-induced increase in postoperative hypersensitivity. Microinjection of the adenosine A2A receptor antagonist ZM 241385 into the median preoptic nucleus (MnPO) blocked the increase in surgical pain levels and duration caused by prior sleep deprivation and eliminated the thermal hyperalgesia induced by sleep deprivation in a group of nonoperated (i.e., without surgical incision) rats. These data show that even a brief sleep disturbance prior to surgery worsens postoperative pain and are consistent with our hypothesis that adenosine A2A receptors in the MnPO contribute to regulate these sleep-pain interactions.
Collapse
Affiliation(s)
| | - Maya Gabel
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - Linda J Liu
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | - John P Imperial
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| | | | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
25
|
Nucleus accumbens: a novel forebrain mechanism underlying the increase in pain sensitivity caused by rapid eye movement sleep deprivation. Pain 2017; 159:5-6. [DOI: 10.1097/j.pain.0000000000001073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|