1
|
Peña-Escudero C, Priego-Fernández S, Caba M, Rodríguez-Alba JC, Corona-Morales AA, García-García F. Effect of a Hedonic Stimulus on the Sleep Architecture of Male Wistar Rats. Sleep Sci 2023; 16:e329-e334. [PMID: 38196767 PMCID: PMC10773505 DOI: 10.1055/s-0043-1773788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/14/2022] [Indexed: 01/11/2024] Open
Abstract
Objective Nocturnal animals forage and eat during the night and sleep during the day. When food is available only for a short period during the day, animals develop a catabolic state and exhibit locomotor behavior before accessing food, termed food anticipatory activity . Consequently, there is a disruption in the sleep pattern. The present study aimed to explore how anticipatory arousal emerges under circadian exposure to a palatable meal (PM) and disrupts sleep architecture. Materials and Methods Adult male Wistar rats were implanted with electrodes for continuous sleep recording and housed under a light/dark 12/12-hour cycle with free access to food and water. After basal recordings, the rats had access to a PM during the light period for eight days. Results The anticipatory arousal started on the third day. On the eighth day, we found an increase in wake time and a decrease in the non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) times 45 minutes before the PM compared with the basal recordings. The REMS transitions (events from NREMS to REMS) showed a significant reduction during the light period of the eighth day of PM. In contrast, the number of NREMS transitions (events from wakefulness to NREMS) remained unchanged. Conclusion The results suggest that palatable food induces a motivational timing that leads the rat to wake by altering the sleep quota.
Collapse
Affiliation(s)
- Carolina Peña-Escudero
- Departament of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Sergio Priego-Fernández
- Departament of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Mario Caba
- Biomedical Research Center, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Juan Carlos Rodríguez-Alba
- Departament of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
| | | | - Fabio García-García
- Departament of Biomedicine, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
2
|
Xu YX, Liu GY, Jiang Q, Bi HQ, Wang SC, Zhang PP, Gao CB, Chen GH, Cheng WH, Chen GJ, Zhu DF, Zhong MK, Xu Q. Effect of Restricted Feeding on Metabolic Health and Sleep-Wake Rhythms in Aging Mice. Front Neurosci 2021; 15:745227. [PMID: 34557073 PMCID: PMC8453873 DOI: 10.3389/fnins.2021.745227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Aging, an irreversible and unavoidable physiological process in all organisms, is often accompanied by obesity, diabetes, cardiovascular diseases, sleep disorders, and fatigue. Thus, older adults are more likely to experience metabolic symptoms and sleep disturbances than are younger adults. Restricted feeding (RF) is a dietary regimen aimed at improving metabolic health and extending longevity, as well as reorganizing sleep-wake cycles. However, the potential of RF to improve metabolic health and sleep quality in older adults who are known to show a tendency toward increased weight gain and decreased sleep is unknown. To elucidate this issue, aged mice were assigned to an RF protocol during the active phase for 2 h per day for 2 weeks. Sleep-wake cycles were recorded during the RF regime in RF group and control mice. At the end of this period, body weight and blood biochemistry profiles, including blood glucose, cholesterol, and enzyme activity, in addition to dopamine concentrations in the brain, were measured in the RF group and age-matched controls. RF for 2 weeks improved the metabolic health of aged mice by reducing their body weights and blood glucose and cholesterol levels. At the beginning of the RF regime, sleep decreased in the dark period but not in the light period. After stable food entrainment was achieved (7 days post-RF commencement), the amount of time spent in wakefulness during the light period dramatically increased for 2 h before food availability, thereby increasing the mean duration of awake episodes and decreasing the number of wakefulness episodes. There was no significant difference in the sleep-wake time during the dark period in the RF group, with similar total amounts of wakefulness and sleep in a 24-h period to those of the controls. During the RF regime, dopamine levels in the midbrain increased in the RF group, pointing to its potential as the mechanism mediating metabolic symptoms and sleep-wake regulation during RF. In conclusion, our study suggested that RF during aging might prohibit or delay the onset of age-related diseases by improving metabolic health, without having a severe deleterious effect on sleep.
Collapse
Affiliation(s)
- Yong-Xia Xu
- Department of Geriatric Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guo-Ying Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qian Jiang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Han-Qi Bi
- Department of Geriatric Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shi-Chan Wang
- Department of Geriatric Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping-Ping Zhang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chao-Bing Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gui-Hai Chen
- Department of Sleep Disorders and Neurology, The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Wen-Hui Cheng
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guan-Jun Chen
- Center for Scientific Research, Anhui Medical University, Hefei, China
| | - De-Fa Zhu
- Department of Geriatric Endocrinology, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming-Kui Zhong
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qi Xu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Ocampo-Garcés A, Bassi A, Brunetti E, Estrada J, Vivaldi EA. REM sleep-dependent short-term and long-term hourglass processes in the ultradian organization and recovery of REM sleep in the rat. Sleep 2021; 43:5734991. [PMID: 32052056 DOI: 10.1093/sleep/zsaa023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES To evaluate the contribution of long-term and short-term REM sleep homeostatic processes to REM sleep recovery and the ultradian organization of the sleep wake cycle. METHODS Fifteen rats were sleep recorded under a 12:12 LD cycle. Animals were subjected during the rest phase to two protocols (2T2I or 2R2I) performed separately in non-consecutive experimental days. 2T2I consisted of 2 h of total sleep deprivation (TSD) followed immediately by 2 h of intermittent REM sleep deprivation (IRD). 2R2I consisted of 2 h of selective REM sleep deprivation (RSD) followed by 2 h of IRD. IRD was composed of four cycles of 20-min RSD intervals alternating with 10 min of sleep permission windows. RESULTS REM sleep debt that accumulated during deprivation (9.0 and 10.8 min for RSD and TSD, respectively) was fully compensated regardless of cumulated NREM sleep or wakefulness during deprivation. Protocol 2T2I exhibited a delayed REM sleep rebound with respect to 2R2I due to a reduction of REM sleep transitions related to enhanced NREM sleep delta-EEG activity, without affecting REM sleep consolidation. Within IRD permission windows there was a transient and duration-dependent diminution of REM sleep transitions. CONCLUSIONS REM sleep recovery in the rat seems to depend on a long-term hourglass process activated by REM sleep absence. Both REM sleep transition probability and REM sleep episode consolidation depend on the long-term REM sleep hourglass. REM sleep activates a short-term REM sleep refractory period that modulates the ultradian organization of sleep states.
Collapse
Affiliation(s)
- Adrián Ocampo-Garcés
- Laboratorio de Sueño y Cronobiología, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandro Bassi
- Laboratorio de Sueño y Cronobiología, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Enzo Brunetti
- Instituto de Neurocirugía e Investigaciones Cerebrales Doctor Alfonso Asenjo, Santiago, Chile
| | - Jorge Estrada
- Laboratorio de Sueño y Cronobiología, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ennio A Vivaldi
- Laboratorio de Sueño y Cronobiología, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Atmore KH, Stein DJ, Harvey BH, Russell VA, Howells FM. Differential effects of social isolation rearing on glutamate- and GABA-stimulated noradrenaline release in the rat prefrontal cortex and hippocampus. Eur Neuropsychopharmacol 2020; 36:111-120. [PMID: 32553548 DOI: 10.1016/j.euroneuro.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 04/25/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022]
Abstract
Social isolation rearing (SIR) provides an excellent model of early life adversity to investigate alterations in brain function. Few studies have investigated the effects of SIR on noradrenaline (NE) projections which arise from the locus coeruleus (LC), a system which regulates arousal and attentional processes, including the processing of novelty. In addition, there is a paucity of information on the effects of SIR in females. In this study we investigated the behavioural response to attentional processing of novelty and glutamate- and GABA-stimulated release of noradrenaline in the prefrontal cortex (PFC) and hippocampus (HC) of male and female rats. Sprague Dawley pups were reared in isolated or socialised housing conditions from weaning on postnatal day 21 (P21). At P78-83 animal behaviour was recorded from the three phases of the novel object recognition (NOR) task. Then at P90-94, NE release was measured in the PFC and HC after stimulating the tissue in vitro with either glutamate or GABA. Behaviourally SIR decreased novelty-related behaviour, male isolates showed effects of SIR during the NOR Test phase while female isolates showed effects of SIR during the Habituation phase. SIR PFC NE release was decreased when glutamate stimulation followed GABA stimulation and tended to increase when GABA stimulation followed glutamate stimulation, differences were predominantly due to male isolates. No SIR differences were found for HC. Early life adversity differentially affects the function of the LCNE system in males and females, evidenced by changes in attentional processing of novelty and stimulated noradrenaline release in the PFC.
Collapse
Affiliation(s)
- Katie H Atmore
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Neuroscience Institute, University of Cape Town, South Africa
| | - Brian H Harvey
- SU/UCT MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, South Africa; Center of Excellence for Pharmaceutical Sciences, Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, 2520, South Africa
| | - Vivienne A Russell
- Neuroscience Institute, University of Cape Town, South Africa; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Fleur M Howells
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; Neuroscience Institute, University of Cape Town, South Africa.
| |
Collapse
|
5
|
|
6
|
Northeast RC, Vyazovskiy VV, Bechtold DA. Eat, sleep, repeat: the role of the circadian system in balancing sleep-wake control with metabolic need. CURRENT OPINION IN PHYSIOLOGY 2020; 15:183-191. [PMID: 32617440 PMCID: PMC7323618 DOI: 10.1016/j.cophys.2020.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Feeding and sleep are behaviours fundamental to survival, and as such are subject to powerful homeostatic control. Of course, these are mutually exclusive behaviours, and therefore require coordinated temporal organisation to ensure that both energy demands and sleep need are met. Under optimal conditions, foraging/feeding and sleep can be simply partitioned to appropriate phases of the circadian cycle so that they are in suitable alignment with the external environment. However, under conditions of negative energy balance, increased foraging activity must be balanced against sleep requirements and energy conservation. In mammals and many other species, neural circuits that regulate sleep and energy balance are intimately and reciprocally linked. Here, we examine this circuitry, discuss how homeostatic regulation and temporal patterning of sleep are modulated by altered food availability, and describe the role of circadian system in adaptation to metabolic stress.
Collapse
Affiliation(s)
- Rebecca C Northeast
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
7
|
Northeast RC, Huang Y, McKillop LE, Bechtold DA, Peirson SN, Piggins HD, Vyazovskiy VV. Sleep homeostasis during daytime food entrainment in mice. Sleep 2020; 42:5536856. [PMID: 31329251 PMCID: PMC6802571 DOI: 10.1093/sleep/zsz157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/27/2019] [Indexed: 02/03/2023] Open
Abstract
Twenty-four hour rhythms of physiology and behavior are driven by the environment and an internal endogenous timing system. Daily restricted feeding (RF) in nocturnal rodents during their inactive phase initiates food anticipatory activity (FAA) and a reorganization of the typical 24-hour sleep-wake structure. Here, we investigate the effects of daytime feeding, where food access was restricted to 4 hours during the light period ZT4-8 (Zeitgeber time; ZT0 is lights on), on sleep-wake architecture and sleep homeostasis in mice. Following 10 days of RF, mice were returned to ad libitum feeding. To mimic the spontaneous wakefulness associated with FAA and daytime feeding, mice were then sleep deprived between ZT3-6. Although the amount of wake increased during FAA and subsequent feeding, total wake time over 24 hours remained stable as the loss of sleep in the light phase was compensated for by an increase in sleep in the dark phase. Interestingly, sleep that followed spontaneous wake episodes during the dark period and the extended period of wake associated with FAA, exhibited lower levels of slow-wave activity (SWA) when compared to baseline or after sleep deprivation, despite a similar duration of waking. This suggests an evolutionary mechanism of reducing sleep drive during negative energy balance to enable greater arousal for food-seeking behaviors. However, the total amount of sleep and SWA accumulated during the 24 hours was similar between baseline and RF. In summary, our study suggests that despite substantial changes in the daily distribution and quality of wake induced by RF, sleep homeostasis is maintained.
Collapse
Affiliation(s)
- Rebecca C Northeast
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Yige Huang
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford
| | - Laura E McKillop
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford
| | - David A Bechtold
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Hugh D Piggins
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, United Kingdom
| |
Collapse
|
8
|
Guillaumin MCC, McKillop LE, Cui N, Fisher SP, Foster RG, de Vos M, Peirson SN, Achermann P, Vyazovskiy VV. Cortical region-specific sleep homeostasis in mice: effects of time of day and waking experience. Sleep 2019; 41:4985519. [PMID: 29697841 PMCID: PMC6047413 DOI: 10.1093/sleep/zsy079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
Sleep–wake history, wake behaviors, lighting conditions, and circadian time influence sleep, but neither their relative contribution nor the underlying mechanisms are fully understood. The dynamics of electroencephalogram (EEG) slow-wave activity (SWA) during sleep can be described using the two-process model, whereby the parameters of homeostatic Process S are estimated using empirical EEG SWA (0.5–4 Hz) in nonrapid eye movement sleep (NREMS), and the 24 hr distribution of vigilance states. We hypothesized that the influence of extrinsic factors on sleep homeostasis, such as the time of day or wake behavior, would manifest in systematic deviations between empirical SWA and model predictions. To test this hypothesis, we performed parameter estimation and tested model predictions using NREMS SWA derived from continuous EEG recordings from the frontal and occipital cortex in mice. The animals showed prolonged wake periods, followed by consolidated sleep, both during the dark and light phases, and wakefulness primarily consisted of voluntary wheel running, learning a new motor skill or novel object exploration. Simulated SWA matched empirical levels well across conditions, and neither waking experience nor time of day had a significant influence on the fit between data and simulation. However, we consistently observed that Process S declined during sleep significantly faster in the frontal than in the occipital area of the neocortex. The striking resilience of the model to specific wake behaviors, lighting conditions, and time of day suggests that intrinsic factors underpinning the dynamics of Process S are robust to extrinsic influences, despite their major role in shaping the overall amount and distribution of vigilance states across 24 hr.
Collapse
Affiliation(s)
| | - Laura E McKillop
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nanyi Cui
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Simon P Fisher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Maarten de Vos
- Department of Engineering Science, University of Oxford, Headington, United Kingdom
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Insomnia in Adolescence. Med Sci (Basel) 2018; 6:medsci6030072. [PMID: 30200388 PMCID: PMC6164454 DOI: 10.3390/medsci6030072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
Adolescent insomnia is a common condition that negatively impacts a developing young adult's mental and physical health. While the treatment of adult insomnia has been standardized, the treatment of pediatric insomnia is very practitioner-dependent and few large-scale studies are available to determine a standard recommended practice. There is great hope that as the adolescent medicine and sleep medicine fields flourish, larger cohort analyses will be performed to determine the prevalence and precipitating factors of adolescent insomnia, allowing for standardized treatment recommendations and systematic efforts to make these recommendations available to all adolescents.
Collapse
|
10
|
Envelope analysis links oscillatory and arrhythmic EEG activities to two types of neuronal synchronization. Neuroimage 2018; 172:575-585. [DOI: 10.1016/j.neuroimage.2018.01.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/11/2018] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
|
11
|
Henderson F, Vialou V, El Mestikawy S, Fabre V. Effects of Social Defeat Stress on Sleep in Mice. Front Behav Neurosci 2017. [PMID: 29234278 DOI: 10.3389/fnbeh.2017.00227/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Stress plays a key role in the development of psychiatric disorders and has a negative impact on sleep integrity. In mice, chronic social defeat stress (CSDS) is an ethologically valid model of stress-related disorders but little is known about its effects on sleep regulation. Here, we investigated the immediate and long-term effects of 10 consecutive days of social defeat (SD) on vigilance states in C57Bl/6J male mice. Social behavior was assessed to identify susceptible mice, i.e., mice that develop long-lasting social avoidance, and unsusceptible mice. Sleep-wake stages in mice of both groups were analyzed by means of polysomnographic recordings at baseline, after the first, third, and tenth stress sessions and on the 5th recovery day (R5) following the 10-day CSDS. In susceptible mice, each SD session produced biphasic changes in sleep-wake states that were preserved all along 10-day CSDS. These sessions elicited a short-term enhancement of wake time while rapid eye-movement (REM) sleep was strongly inhibited. Concomitantly, delta power was increased during non REM (NREM) sleep. During the following dark period, an increase in total sleep time, as well as wake fragmentation, were observed after each analyzed SD session. Similar changes were observed in unsusceptible mice. At R5, elevated high-frequency EEG activity, as observed in insomniacs, emerged during NREM sleep in both susceptible and unsusceptible groups suggesting that CSDS impaired sleep quality. Furthermore, susceptible but not unsusceptible mice displayed stress-anticipatory arousal during recovery, a common feature of anxiety disorders. Altogether, our findings show that CSDS has profound impacts on vigilance states and further support that sleep is tightly regulated by exposure to stressful events. They also revealed that susceptibility to chronic psychological stress is associated with heightened arousal, a physiological feature of stress vulnerability.
Collapse
Affiliation(s)
- Fiona Henderson
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Vincent Vialou
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Salah El Mestikawy
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Véronique Fabre
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| |
Collapse
|
12
|
Henderson F, Vialou V, El Mestikawy S, Fabre V. Effects of Social Defeat Stress on Sleep in Mice. Front Behav Neurosci 2017; 11:227. [PMID: 29234278 PMCID: PMC5712311 DOI: 10.3389/fnbeh.2017.00227] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022] Open
Abstract
Stress plays a key role in the development of psychiatric disorders and has a negative impact on sleep integrity. In mice, chronic social defeat stress (CSDS) is an ethologically valid model of stress-related disorders but little is known about its effects on sleep regulation. Here, we investigated the immediate and long-term effects of 10 consecutive days of social defeat (SD) on vigilance states in C57Bl/6J male mice. Social behavior was assessed to identify susceptible mice, i.e., mice that develop long-lasting social avoidance, and unsusceptible mice. Sleep-wake stages in mice of both groups were analyzed by means of polysomnographic recordings at baseline, after the first, third, and tenth stress sessions and on the 5th recovery day (R5) following the 10-day CSDS. In susceptible mice, each SD session produced biphasic changes in sleep-wake states that were preserved all along 10-day CSDS. These sessions elicited a short-term enhancement of wake time while rapid eye-movement (REM) sleep was strongly inhibited. Concomitantly, delta power was increased during non REM (NREM) sleep. During the following dark period, an increase in total sleep time, as well as wake fragmentation, were observed after each analyzed SD session. Similar changes were observed in unsusceptible mice. At R5, elevated high-frequency EEG activity, as observed in insomniacs, emerged during NREM sleep in both susceptible and unsusceptible groups suggesting that CSDS impaired sleep quality. Furthermore, susceptible but not unsusceptible mice displayed stress-anticipatory arousal during recovery, a common feature of anxiety disorders. Altogether, our findings show that CSDS has profound impacts on vigilance states and further support that sleep is tightly regulated by exposure to stressful events. They also revealed that susceptibility to chronic psychological stress is associated with heightened arousal, a physiological feature of stress vulnerability.
Collapse
Affiliation(s)
- Fiona Henderson
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Vincent Vialou
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Salah El Mestikawy
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Véronique Fabre
- INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| |
Collapse
|