1
|
Strohmayer NJ, Camarillo IA, Choi H, Ottman R. Information on epilepsy genetics available online for people with epilepsy and their families. Epilepsy Behav 2025; 166:110361. [PMID: 40043599 PMCID: PMC11972876 DOI: 10.1016/j.yebeh.2025.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE To evaluate and compare the types of information available online about epilepsy genetics to people with epilepsy and their family members on websites and social media platforms. METHODS To identify websites, we used the search terms "epilepsy," "genetic epilepsy," and "epilepsy genetics" in Google, using Incognito mode. We selected the first ten English, non-sponsored websites for analysis. Websites were then classified according to their target audience (healthcare professionals vs. lay persons), and as epilepsy-specific or not and genetic-focused or not. On YouTube, X, Facebook, and TikTok, we searched using the terms "epilepsy" and "genetic epilepsy." Posts were assessed for genetic-related themes, and the frequency of discussion was recorded. RESULTS Among 31 websites assessed, only one did not discuss genetics in any capacity. However, many sources did not expand upon the potential role of genetics in epilepsy, and genetic testing was not frequently discussed. On social media, epilepsy genetics was more frequently discussed using a more specific search term, "genetic epilepsy" than using "epilepsy." In posts that addressed genetics, the importance of genetic testing was the most frequent topic discussed. Other complexities, including offspring epilepsy risk, mode of inheritance, genetic heterogeneity, and variable expressivity, were very seldom discussed. Genetics was more frequently addressed in posts on YouTube and X than in those on Facebook or TikTok. SIGNIFICANCE Online information about epilepsy genetics is difficult to encounter by chance; users must actively seek out this information. While information is available, accessibility and depth of the discussion is limited.
Collapse
Affiliation(s)
- Natalie J Strohmayer
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, United States.
| | - Itzel A Camarillo
- Gertrude H. Sergievsky Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, United States; Teacher's College, Columbia University, 525 West 120th Street, New York, NY 10027, United States.
| | - Hyunmi Choi
- Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, United States.
| | - Ruth Ottman
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, United States; Gertrude H. Sergievsky Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, United States; Department of Neurology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY 10032, United States; Division of Translational Epidemiology and Mental Health Equity, New York State Psychiatric Institute, New York, NY 10032, United States.
| |
Collapse
|
2
|
Cokyaman T, Özcan EG, Akbaş NE. High Genetic Diagnostic Yield of Whole Exome Sequencing in Children with Epilepsy and Neurodevelopmental Disorders. Fetal Pediatr Pathol 2025; 44:25-39. [PMID: 39648350 DOI: 10.1080/15513815.2024.2434919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Introduction: Nowadays, the diagnostic rate of childhood epilepsies is increasing rapidly in parallel with the advances in genetic technology. In this study, it was aimed to reveal the diagnostic yield of whole exome sequencing (WES) in children with epilepsy and neurodevelopmental disorders (NDDs). Methods: Children aged 1 to 17 years with epilepsy and NDD who underwent WES were included in this retrospective study. Demographic, epilepsy and NDD characteristics, and WES results were recorded. Results: WES was performed in 36.6% of cases. Various single nucleotide variants were detected in 86.3% of cases tested by WES, and the diagnostic yield on a case-by-case basis was found to be 50%. Discussion: The diagnostic yield of WES is quite high in children with epilepsy and NDDs without a definitive diagnosis. Revealing the genetic causes of childhood epilepsy brings up effective and individualized treatment options.
Collapse
Affiliation(s)
- Turgay Cokyaman
- Division of Pediatric Neurology, Department of Pediatrics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Eda Gül Özcan
- Department of Pediatrics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Nihan Ecmel Akbaş
- Department of Medical Genetics, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| |
Collapse
|
3
|
Rimmasch M, Wilson CA, Walton NA, Huynh K, Bonkowsky JL, Palmquist R. Factors impacting time to genetic diagnosis for children with epilepsy. Epilepsia Open 2024; 9:2495-2504. [PMID: 39467089 PMCID: PMC11633687 DOI: 10.1002/epi4.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 10/30/2024] Open
Abstract
Molecular diagnosis for pediatric epilepsy patients can impact treatment and health supervision recommendations. However, there is little known about factors affecting the time to receive a diagnosis. Our objective was to characterize factors affecting the time from first seizure to molecular diagnosis in children with epilepsy. A retrospective, population-based review was used to analyze data from pediatric patients with a genetic etiology for epilepsy over a 5 year period. A subgroup of patients with seizure onset after 2016 was evaluated for recent trends. We identified 119 patients in the main cohort and 62 in a more recent (contemporaneous) subgroup. Sex, race, and ethnicity were not significantly associated with time to molecular diagnosis. A greater number of hospitalizations was associated with a shorter time to diagnosis (p < 0.001). Developmental delay was associated with a longer time to diagnosis (p = 0.002). We found no association for time to diagnosis with a diagnosis of autism, utilization of free genetic testing, or epilepsy type. In the recent subgroup analysis, commercial insurance was associated with decreased time to diagnosis (p = 0.02). Developmental delay, public insurance, or patients in the outpatient setting had longer times to molecular diagnosis. These findings suggest that there may be opportunities to implement interventions aimed at accelerating the provision of genetic testing in pediatric epilepsy. PLAIN LANGUAGE SUMMARY: Genetic diagnosis for pediatric epilepsy patients can impact treatment and care. This study looked at factors that affect how long it takes a pediatric epilepsy patient to receive a genetic diagnosis. We found that sex, race and ethnicity, epilepsy type, and whether the patient had autism did not affect how long it took the patient to receive a diagnosis. However, we found that patients with developmental delay, fewer hospitalizations, and public insurance took a longer time to receive a diagnosis. Our findings suggest potential strategies for reducing the time to receive a genetic diagnosis.
Collapse
Affiliation(s)
- Megan Rimmasch
- Graduate Program in Genetic CounselingUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Intermountain Heart Institute, Heart Failure and Transplant TeamIntermountain HealthSalt Lake CityUtahUSA
| | - Carey A. Wilson
- Division of Pediatric Neurology, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Nephi A. Walton
- National Human Genome Research InstituteNational Institute of HealthBethesdaMarylandUSA
| | - Kelly Huynh
- Pediatric Analytics, Intermountain Children's HealthIntermountain HealthSalt Lake CityUtahUSA
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
- Center for Personalized MedicinePrimary Children's HospitalSalt Lake CityUtahUSA
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
- Center for Personalized MedicinePrimary Children's HospitalSalt Lake CityUtahUSA
| |
Collapse
|
4
|
Dwivedi R, Kaushik M, Tripathi M, Dada R, Tiwari P. Unraveling the genetic basis of epilepsy: Recent advances and implications for diagnosis and treatment. Brain Res 2024; 1843:149120. [PMID: 39032529 DOI: 10.1016/j.brainres.2024.149120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Epilepsy, affecting approximately 1% of the global population, manifests as recurring seizures and is heavily influenced by genetic factors. Recent advancements in genetic technologies have revolutionized our understanding of epilepsy's genetic landscape. Key studies, such as the discovery of mutations in ion channels (e.g., SCN1A and SCN2A), neurotransmitter receptors (e.g., GABRA1), and synaptic proteins (e.g., SYNGAP1, KCNQ2), have illuminated critical pathways underlying epilepsy susceptibility and pathogenesis. Genome-wide association studies (GWAS) have identified specific genetic variations linked to epilepsy risk, such as variants near SCN1A and PCDH7, enhancing diagnostic accuracy and enabling personalized treatment strategies. Moreover, epigenetic mechanisms, including DNA methylation (e.g., MBD5), histone modifications (e.g., HDACs), and non-coding RNAs (e.g., miR-134), play pivotal roles in altering gene expression and synaptic plasticity, contributing to epileptogenesis. These discoveries offer promising avenues for therapeutic interventions aimed at improving outcomes for epilepsy patients. Genetic testing has become essential in clinical practice, facilitating precise diagnosis and tailored management approaches based on individual genetic profiles. Furthermore, insights into epigenetic regulation suggest novel therapeutic targets for developing more effective epilepsy treatments. In summary, this review highlights significant progress in understanding the genetic and epigenetic foundations of epilepsy. By integrating findings from key studies and specifying genes involved in epigenetic modifications, we underscore the potential for advanced therapeutic strategies in this complex neurological disorder, emphasizing the importance of personalized medicine approaches in epilepsy management.
Collapse
Affiliation(s)
- Rekha Dwivedi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Meenakshi Kaushik
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rima Dada
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Prabhakar Tiwari
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
5
|
Srivastava S, Koh HY, Smith L, Poduri A. Cerebral Palsy Phenotypes in Genetic Epilepsies. Pediatr Neurol 2024; 157:79-86. [PMID: 38901369 PMCID: PMC11418751 DOI: 10.1016/j.pediatrneurol.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Although there are established connections between genetic epilepsies and neurodevelopmental disorders like intellectual disability, the presence of cerebral palsy (CP) in genetic epilepsies is undercharacterized. We performed a retrospective chart review evaluating the motor phenotype of patients with genetic epilepsies. METHODS Patients were ascertained through a research exome sequencing study to identify genetic causes of epilepsy. We analyzed data from the first 100 individuals with molecular diagnoses. We determined motor phenotype by reviewing medical records for muscle tone and motor function data. We characterized patients according to CP subtypes: spastic diplegic, spastic quadriplegic, spastic hemiplegic, dyskinetic, hypotonic-ataxic. RESULTS Of 100 individuals with genetic epilepsies, 14% had evidence of possible CP, including 5% characterized as hypotonic-ataxic CP, 5% spastic quadriplegic CP, 3% spastic diplegic CP, and 1% hemiplegic CP. Presence of CP did not correlate with seizure onset age (P = 0.63) or seizure control (P = 0.07). CP occurred in 11% (n = 3 of 27) with focal epilepsy, 9% (n = 5 of 54) with generalized epilepsy, and 32% (n = 6 of 19) with combined focal/generalized epilepsy (P = 0.06). CONCLUSIONS In this retrospective analysis of patients with genetic epilepsies, we identified a substantial portion with CP phenotypes, representing an under-recognized comorbidity. These findings underscore the many neurodevelopmental features associated with neurogenetic conditions, regardless of the feature for which they were ascertained for sequencing. Detailed motor phenotyping is needed to determine the prevalence of CP and its subtypes among genetic epilepsies. These motor phenotypes require clinical management and represent important targeted outcomes in trials for patients with genetic epilepsies.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts; Cerebral Palsy and Spasticity Center, Boston Children's Hospital, Boston, Massachusetts
| | - Hyun Yong Koh
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Neurogenetics Program and Epilepsy Genetics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Lacey Smith
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Neurogenetics Program and Epilepsy Genetics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts; Neurogenetics Program and Epilepsy Genetics Program, Boston Children's Hospital, Boston, Massachusetts.
| |
Collapse
|
6
|
Karakis I. Genetic Testing in the Presurgical Evaluation of Drug-Resistant Epilepsy: Bells and Whistles or Nuts and Bolts? Epilepsy Curr 2024; 24:248-250. [PMID: 39309044 PMCID: PMC11412404 DOI: 10.1177/15357597241250161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Genetic Testing in Children Enrolled in Epilepsy Surgery Program. A Real-Life Study Straka B, Splitkova B, Vlckova M, Tesner P, Rezacova H, Krskova L, Koblizek M, Kyncl M, Maulisova A, Bukacova K, Uhrova-Meszarosova A, Musilova A, Kudr M, Ebel M, Belohlavkova A, Jahodova A, Liby P, Tichy M, Jezdik P, Zamecnik J, Aronica E, Krsek P. Eur J Paediatr Neurol . 2023;47:80-87. doi:10.1016/j.ejpn.2023.09.009 . PMID: 37812946 Objective: Although genetic causes of drug-resistant focal epilepsy and selected focal malformations of cortical development (MCD) have been described, a limited number of studies comprehensively analysed genetic diagnoses in patients undergoing pre-surgical evaluation, their outcomes and the effect of genetic diagnosis on surgical strategy. Methods: We analysed a prospective cohort of children enrolled in epilepsy surgery program over January 2018-July 2022. The majority of patients underwent germline and/or somatic genetic testing. We searched for predictors of surgical outcome and positive result of germline genetic testing. Results: Ninety-five patients were enrolled in epilepsy surgery program and 64 underwent resective epilepsy surgery. We ascertained germline genetic diagnosis in 13/74 patients having underwent germline gene testing (pathogenic or likely pathogenic variants in CHRNA4, NPRL3, DEPDC5, FGF12, GRIA2, SZT2, STXBP1) and identified three copy number variants. Thirty-five patients underwent somatic gene testing; we detected 10 pathogenic or likely pathogenic variants in genes SLC35A2, PTEN, MTOR, DEPDC5, NPRL3. Germline genetic diagnosis was significantly associated with the diagnosis of focal epilepsy with unknown seizure onset. Significance: Germline and somatic gene testing can ascertain a definite genetic diagnosis in a significant subgroup of patients in epilepsy surgery programs. Diagnosis of focal genetic epilepsy may tip the scales against the decision to proceed with invasive EEG study or surgical resection; however, selected patients with genetic focal epilepsies associated with MCD may benefit from resective epilepsy surgery and therefore, a genetic diagnosis does not disqualify patients from presurgical evaluation and epilepsy surgery. Utility of Genetic Testing in the Pre-Surgical Evaluation of Children With Drug-Resistant Epilepsy Alsubhi S, Berrahmoune S, Dudley RWR, Dufresne D, Simard Tremblay E, Srour M, Myers KA. J Neurol . 2024. doi:10.1007/s00415-023-12174-3 . PMID: 38261030 We evaluated the utility of genetic testing in the pre-surgical evaluation of pediatric patients with drug-resistant focal epilepsy. This single-center retrospective study reviewed the charts of all pediatric patients referred for epilepsy surgery evaluation over a 5-year period. We extracted and analyzed results of genetic testing as well as clinical, EEG, and neuroimaging data. Of 125 patients referred for epilepsy surgical evaluation, 86 (69%) had some form of genetic testing. Of these, 18 (21%) had a pathogenic or likely pathogenic variant identified. Genes affected included NPRL3 (3 patients, all related), TSC2 (3 patients), KCNH1, CHRNA4, SPTAN1, DEPDC5, SCN2A, ARX, SCN1A, DLG4, and ST5. One patient had ring chromosome 20, one a 7.17p12 duplication, and one a 15q13 deletion. In six patients, suspected epileptogenic lesions were identified on brain MRI that were thought to be unrelated to the genetic finding. A specific medical therapy choice was allowed due to genetic diagnosis in three patients who did not undergo surgery. Obtaining a molecular diagnosis may dramatically alter management in pediatric patients with drug-resistant focal epilepsy. Genetic testing should be incorporated as part of standard investigations in the pre-surgical work-up of pediatric patients with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Ioannis Karakis
- Department of Neurology, Emory University School of Medicine; University of Crete School of Medicine
| |
Collapse
|
7
|
Grew E, Reddy M, Reichner H, Kim J, Salam M, Hashim A. Yield and Utility of Routine Epilepsy Panel Genetic Testing Among Young Patients With Seizures. J Child Neurol 2024; 39:138-146. [PMID: 38528770 DOI: 10.1177/08830738241240516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Objective: We examined the yield of routine epilepsy panel genetic testing in pediatric patients. Methods: We retrospectively reviewed epilepsy genetic panel results routinely performed in the hospital or clinic on patients <8 years old from July 2021 to July 2023. We evaluated demographics, family history, seizure type, severity, and frequency, development, tone and movement abnormalities, dysmorphism, and electroencephalography (EEG) or magnetic resonance imaging (MRI) results as predictors of results. Results: 65 patients were included with mean age 4.5 years. Sixty percent of patients were male; 11 patients had pathogenic variants (16.9%), 7 were carriers for autosomal recessive conditions (10.8%), 36 had variants of uncertain significance (55.4%), and 11 tested negative (16.9%). Pathogenic variants and variants of uncertain significance were unassociated with demographics, clinical features, imaging, or family history. Conclusion: Variants identified have potential implications for treatment (SCN1), comorbidity screening (TSC1), reproduction (ATAD1, PSAT1, and CLN8), and prognostication (FOXG1). Patients not routinely screened for a genetic cause of epilepsy by our standard practices had clinically relevant results.
Collapse
Affiliation(s)
- Emily Grew
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mayuri Reddy
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Jinsoo Kim
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Misbah Salam
- Department of Pediatric Neurology, Children's Hospital of New Jersey at Newark Beth Israel Medical Center, Newark, NJ, USA
| | - Anjum Hashim
- Department of Pediatric Neurology, Children's Hospital of New Jersey at Newark Beth Israel Medical Center, Newark, NJ, USA
| |
Collapse
|
8
|
Papadopoulou E, Pepe G, Konitsiotis S, Chondrogiorgi M, Grigoriadis N, Kimiskidis VK, Tsivgoulis G, Mitsikostas DD, Chroni E, Domouzoglou E, Tsaousis G, Nasioulas G. The evolution of comprehensive genetic analysis in neurology: Implications for precision medicine. J Neurol Sci 2023; 447:120609. [PMID: 36905813 DOI: 10.1016/j.jns.2023.120609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Technological advancements have facilitated the availability of reliable and thorough genetic analysis in many medical fields, including neurology. In this review, we focus on the importance of selecting the appropriate genetic test to aid in the accurate identification of disease utilizing currently employed technologies for analyzing monogenic neurological disorders. Moreover, the applicability of comprehensive analysis via NGS for various genetically heterogeneous neurological disorders is reviewed, revealing its efficiency in clarifying a frequently cloudy diagnostic picture and delivering a conclusive and solid diagnosis that is essential for the proper management of the patient. The feasibility and effectiveness of medical genetics in neurology require interdisciplinary cooperation among several medical specialties and geneticists, to select and perform the most relevant test according to each patient's medical history, using the most appropriate technological tools. The prerequisites for a comprehensive genetic analysis are discussed, highlighting the utility of appropriate gene selection, variant annotation, and classification. Moreover, genetic counseling and interdisciplinary collaboration could improve diagnostic yield further. Additionally, a sub-analysis is conducted on the 1,502,769 variation records with submitted interpretations in the Clinical Variation (ClinVar) database, with a focus on neurology-related genes, to clarify the value of suitable variant categorization. Finally, we review the current applications of genetic analysis in the diagnosis and personalized management of neurological patients and the advances in the research and scientific knowledge of hereditary neurological disorders that are evolving the utility of genetic analysis towards the individualization of the treatment strategy.
Collapse
Affiliation(s)
| | - Georgia Pepe
- GeneKor Medical SA, Spaton 52, Gerakas 15344, Greece
| | - Spiridon Konitsiotis
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Maria Chondrogiorgi
- Department of Neurology, University of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | - Nikolaos Grigoriadis
- Second Department of Neurology, "AHEPA" University Hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Vasilios K Kimiskidis
- First Department of Neurology, "AHEPA" University hospital, Aristotle University of Thessaloniki, St. Kiriakidis 1, Thessaloniki 54636, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, "Attikon" University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimos D Mitsikostas
- First Department of Neurology, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Rio-Patras, Greece
| | - Eleni Domouzoglou
- Department of Pediatrics, University Hospital of Ioannina, Stavrou Niarchou Avenue, Ioannina 45500, Greece
| | | | | |
Collapse
|
9
|
Bensken WP, Alberti PM, Khan OI, Williams SM, Stange KC, Vaca GFB, Jobst BC, Sajatovic M, Koroukian SM. A framework for health equity in people living with epilepsy. Epilepsy Res 2022; 188:107038. [PMID: 36332544 PMCID: PMC9797034 DOI: 10.1016/j.eplepsyres.2022.107038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022]
Abstract
Epilepsy is a disease where disparities and inequities in risk and outcomes are complex and multifactorial. While most epilepsy research to date has identified several key areas of disparities, we set out to provide a multilevel life course model of epilepsy development, diagnosis, treatment, and outcomes to highlight how these disparities represent true inequities. Our piece also presents three hypothetical cases that highlight how the solutions to address inequities may vary across the lifespan. We then identify four key domains (structural, socio-cultural, health care, and physiological) that contribute to the persistence of inequities in epilepsy risk and outcomes in the United States. Each of these domains, and their core components in the context of epilepsy, are reviewed and discussed. Further, we highlight the connection between domains and key areas of intervention to strive towards health equity. The goal of this work is to highlight these domains while also providing epilepsy researchers and clinicians with broader context of how their work fits into health equity.
Collapse
Affiliation(s)
- Wyatt P Bensken
- Department of Population and Quantitative Health Sciences, School of Medicine Case Western Reserve University, Cleveland, OH, USA.
| | - Philip M Alberti
- AAMC Center for Health Justice, Association of American Medical Colleges, Washington, DC, USA
| | - Omar I Khan
- Epilepsy Center of Excellence, Baltimore VA Medical Center US Department of Veterans Affairs, Baltimore, MD, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine Case Western Reserve University, Cleveland, OH, USA; Department of Genetics and Genome Sciences, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Kurt C Stange
- Department of Population and Quantitative Health Sciences, School of Medicine Case Western Reserve University, Cleveland, OH, USA; Center for Community Health Integration, Departments of Family Medicine & Community Health, and Sociology Case Western Reserve University, Cleveland, OH, USA
| | - Guadalupe Fernandez-Baca Vaca
- Department of Neurology, University Hospitals Cleveland Medical Center, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Barbara C Jobst
- Department of Neurology, Geisel School of Medicine Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Martha Sajatovic
- Department of Neurology, University Hospitals Cleveland Medical Center, School of Medicine Case Western Reserve University, Cleveland, OH, USA; Department Psychiatry, University Hospitals Cleveland Medical Center, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Siran M Koroukian
- Department of Population and Quantitative Health Sciences, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
10
|
A Multi-Disciplinary Team Approach to Genomic Testing for Drug-Resistant Epilepsy Patients—The GENIE Study. J Clin Med 2022; 11:jcm11144238. [PMID: 35888005 PMCID: PMC9319736 DOI: 10.3390/jcm11144238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background. The genomic era has led to enormous progress in clinical care and a multi-disciplinary team (MDT) approach is imperative for integration of genomics into epilepsy patient care. Methods. The MDT approach involved patient selection, genomic testing choice, variant discussions and return of results. Genomics analysis included cytogenomic testing and whole exome sequencing (WES). Neurologist surveys were undertaken at baseline and after genomic testing to determine if genomic diagnoses would alter their management, and if there was a change in confidence in genomic testing and neurologist perceptions of the MDT approach. Results. The total diagnostic yield from all genomic testing was 17% (11/66), with four diagnoses from cytogenomic analyses. All chromosomal microarray (CMA) diagnoses were in patients seen by adult neurologists. Diagnostic yield for WES was 11% (7/62). The most common gene with pathogenic variants was DCX, reported in three patients, of which two were mosaic. The genomic diagnosis impacted management in 82% (9/11). There was increased confidence with integrating genomics into clinical care (Pearson chi square = 83, p = 0.004) and qualitative comments were highly supportive of the MDT approach. Conclusions. We demonstrated diagnostic yield from genomic testing, and the impact on management in a cohort with drug-resistant epilepsy. The MDT approach increased confidence in genomic testing and neurologists valued the input from this approach. The utility of CMA was demonstrated in epilepsy patients seen by adult neurologists as was the importance of considering mosaicism for previously undiagnosed patients.
Collapse
|
11
|
Phenotypic and Genotypic Spectrum of Early-Onset Developmental and Epileptic Encephalopathies-Data from a Romanian Cohort. Genes (Basel) 2022; 13:genes13071253. [PMID: 35886038 PMCID: PMC9322987 DOI: 10.3390/genes13071253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Early-onset developmental epileptic encephalopathy (DEE) refers to an age-specific, diverse group of epilepsy syndromes with electroclinical anomalies that are associated with severe cognitive, behavioral, and developmental impairments. Genetic DEEs have heterogeneous etiologies. This study includes 36 Romanian patients referred to the Regional Centre for Medical Genetics Dolj for genetic testing between 2017 and 2020. The patients had been admitted to and clinically evaluated at Doctor Victor Gomoiu Children’s Hospital and Prof. Dr. Alexandru Obregia Psychiatry Hospital in Bucharest. Panel testing was performed using the Illumina® TruSight™ One “clinical exome” (4811 genes), and the analysis focused on the known genes reported in DEEs and clinical concordance. The overall diagnostic rate was 25% (9/36 cases). Seven cases were diagnosed with Dravet syndrome (likely pathogenic/pathogenic variants in SCN1A) and two with Genetic Epilepsy with Febrile Seizures Plus (SCN1B). For the diagnosed patients, seizure onset was <1 year, and the seizure type was generalized tonic-clonic. Four additional plausible variants of unknown significance in SCN2A, SCN9A, and SLC2A1 correlated with the reported phenotype. Overall, we are reporting seven novel variants. Comprehensive clinical phenotyping is crucial for variant interpretation. Genetic assessment of patients with severe early-onset DEE can be a powerful diagnostic tool for clinicians, with implications for the management and counseling of the patients and their families.
Collapse
|
12
|
McTague A, Brunklaus A, Barcia G, Varadkar S, Zuberi SM, Chatron N, Parrini E, Mei D, Nabbout R, Lesca G. Defining causal variants in rare epilepsies: an essential team effort between biomedical scientists, geneticists and epileptologists. Eur J Med Genet 2022; 65:104531. [PMID: 35618197 DOI: 10.1016/j.ejmg.2022.104531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
In the last few years, with the advent of next generation sequencing (NGS), our knowledge of genes associated with monogenic epilepsies has significantly improved. NGS is also a powerful diagnostic tool for patients with epilepsy, through gene panels, exomes and genomes. This has improved diagnostic yield, reducing the time between the first seizure and a definitive molecular diagnosis. However, these developments have also increased the complexity of data interpretation, due to the large number of variants identified in a given patient and due to the phenotypic variability associated with many of the epilepsy-related genes. In this paper, we present examples of variant classification in "real life" clinic situations. We emphasize the importance of accurate phenotyping of the epilepsies including recognising variable/milder phenotypes and expansion of previously described phenotypes. There are some important issues specific to rare epilepsies - mosaicism and reduced penetrance - which affect genetic counselling. These challenges may be overcome through multidisciplinary meetings including epileptologists, pediatric neurologists, and clinical and molecular geneticists, in which every specialist learns from the others in a process which leads to for rapid and accurate diagnosis. This is an important milestone to achieve as targeted therapiesbased on the functional effects of pathogenic variants become available.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK; Department of Neurology, Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK.
| | - Andreas Brunklaus
- The Pediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK; Institute of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Member of the ERN EpiCARE, Paris, France
| | - Sophia Varadkar
- Department of Neurology, Great Ormond Street Institute of Child Health, Member of the ERN EpiCARE, London, UK
| | - Sameer M Zuberi
- The Pediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK; Institute of Health and Wellbeing, University of Glasgow, Member of the ERN EpiCARE, Glasgow, UK
| | - Nicolas Chatron
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Member of the ERN EpiCARE, Lyon, France
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital - University of Florence, Member of the ERN EpiCARE, Florence, Italy
| | - Davide Mei
- Pediatric Neurology, Neurogenetics, and Neurobiology Unit and Laboratories, Meyer Children's Hospital - University of Florence, Member of the ERN EpiCARE, Florence, Italy
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Member of the ERN EpiCARE, Paris, France
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Université Claude Bernard Lyon 1, Member of the ERN EpiCARE, Lyon, France
| |
Collapse
|
13
|
Duan R, Li HM, Hu WB, Hong CG, Chen ML, Cao J, Wang ZX, Chen CY, Yin F, Hu ZH, Li JD, Xie H, Liu ZZ. Recurrent de novo single point variant on the gene encoding Na +/K + pump results in epilepsy. Prog Neurobiol 2022; 216:102310. [PMID: 35724808 DOI: 10.1016/j.pneurobio.2022.102310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
The etiology of epilepsy remains undefined in two-thirds of patients. Here, we identified a de novo variant of ATP1A2 (c.2426 T > G, p.Leu809Arg), which encodes the α2 subunit of Na+/K+-ATPase, from a family with idiopathic epilepsy. This variant caused epilepsy with hemiplegic migraine in the study patients. We generated the point variant mouse model Atp1a2L809R, which recapitulated the epilepsy observed in the study patients. In Atp1a2L809R/WT mice, convulsions were observed and cognitive and memory function was impaired. This variant affected the potassium binding function of the protein, disabling its ion transport ability, thereby increasing the frequency of nerve impulses. Valproate (VPA) and Carbamazepine (CBZ) have limited therapeutic efficacy in ameliorating the epileptic syndromes of Atp1a2L809R/WT mice. Our work revealed that ATP1A2L809R variants cause a predisposition to epilepsy. Moreover, we provide a point variant mouse model for epilepsy research and drug screening.
Collapse
Affiliation(s)
- Ran Duan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong-Ming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wen-Bao Hu
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Meng-Lu Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhen-Xing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Yuan Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhong-Hua Hu
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jia-Da Li
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Hui Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China; Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China.
| | - Zheng-Zhao Liu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China.
| |
Collapse
|
14
|
The Benefit of Multigene Panel Testing for the Diagnosis and Management of the Genetic Epilepsies. Genes (Basel) 2022; 13:genes13050872. [PMID: 35627257 PMCID: PMC9141259 DOI: 10.3390/genes13050872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
With the increasing use of genetic testing in pediatric epilepsy, it is important to describe the diagnostic outcomes as they relate to clinical care. The goal of this study was to assess the diagnostic yield and impact on patient care of genetic epilepsy panel testing. We conducted a retrospective chart review of patients at the Children’s Hospital of Eastern Ontario (CHEO) who had genetic testing between the years of 2013–2020. We identified 227 patients that met criteria for inclusion. The majority of patients had their testing performed as “out-of-province” tests since province-based testing during this period was limited. The diagnostic yield for multi-gene epilepsy panel testing was 17% (39/227) and consistent with the literature. Variants of unknown significance (VUS) were reported in a significant number of undiagnosed individuals (77%; 128/163). A higher diagnostic rate was observed in patients with a younger age of onset of seizures (before one year of age; 32%; 29/90). A genetic diagnosis informed prognosis, recurrence risk counselling and expedited access to resources in all those with a diagnosis. A direct change in clinical management as a result of the molecular diagnosis was evident for 9% (20/227) of patients. The information gathered in this study provides evidence of the clinical benefits of genetic testing in epilepsy and serves as a benchmark for comparison with the current provincial Ontario Epilepsy Genetic Testing Program (OEGTP) that began in 2020.
Collapse
|
15
|
Current Trends in Genetics and Neonatal Care. Adv Neonatal Care 2021; 21:473-481. [PMID: 33538495 DOI: 10.1097/anc.0000000000000834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Genetic and genomic health applications are rapidly changing. A clear and updated description of these applications for the neonatal population is needed to guide current nursing practice. PURPOSE To provide scientific evidence and guidance on the current genetic and genomic applications pertinent to neonatal care. METHODS A search of CINAHL and PubMed was conducted using the search terms "newborn/neonatal" and "genetics," "genomics," "newborn screening," "pharmacogenomics," "ethical," and "legal." Google searches were also conducted to synthesize professional guidelines, position statements, and current genetic practices. FINDINGS/RESULTS Components of the newborn genetic assessment, including details on the newborn physical examination, family history, and laboratory tests pertinent to the newborn, are reported. The history and process of newborn screening are described, in addition to the impact of advancements, such as whole exome and genome sequencing, on newborn screening. Pharmacogenomics, a genomic application that is currently utilized primarily in the research context for neonates, is described and future implications stated. Finally, the specific ethical and legal implications for these genetic and genomic applications are detailed, along with genetic/genomic resources for nurses. IMPLICATIONS FOR PRACTICE Providing nurses with the most up-to-date evidence on genetic and genomic applications ensures their involvement and contributions to quality neonatal care. IMPLICATIONS FOR RESEARCH Ongoing genetic/genomic research is needed to understand the implications of genetic/genomic applications on the neonatal population and how these new applications will change neonatal care.
Collapse
|
16
|
Jukkarwala A, Menon RN, Sunesh ER, Radhakrishnan A. Electroclinical Phenotype-Genotype Homogeneity in Drug-Resistant "Generalized" Tonic-Clonic Seizures of Early Childhood. Clin EEG Neurosci 2021; 52:371-375. [PMID: 32880473 DOI: 10.1177/1550059420953735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Children with refractory focal to bilateral tonic-clonic seizures, despite normal high-resolution imaging, are often not subjected to genetic tests due to the costs involved and instead undergo multimodality presurgical evaluation targeted at delineating a focal onset. The objective of this study was to ascertain genotype-phenotype correlations in this group of patients. METHOD An online hospital database search was conducted for children who presented in 2019 with drug-resistant epilepsy dominated by nonlateralizing focal-onset/rapid generalized (bilateral) tonic-clonic seizures (GTCS), subjected to presurgical evaluation and subsequent genetic testing due to absence of a clear focus hypothesis. RESULTS Phenotypic homogeneity was apparent in 3 children who had onset in infancy with drug-resistant GTCS (predominantly unprovoked and occasionally fever provoked) and subsequent delayed development. 3-Tesla magnetic resonance imaging (MRI) scans were negative and video EEG documented a homogeneous pattern of multifocal and/or generalized epileptiform discharges with phenomenology favoring probable focal-onset/generalized-onset bilateral tonic-clonic seizures. All 3 tested positive for SCN1A gene variants (heterozygous missense substitution variants in 2 children, one of which was novel and a novel duplication in one that led to frameshift and premature truncation of the protein), suggestive of SCN1A-mediated epilepsy. This electroclinical profile constituted 3 out of 25 patients with SCN1A-epilepsy phenotypes at our center. CONCLUSIONS These cases suggest that children with early-onset drug-resistant "generalized" epilepsy are likely to have a genetic basis although the presentation may not be typical of Dravet syndrome. Hence, genetic testing for SCN1A variants is recommended in children with drug-resistant MRI negative focal-onset/generalized-onset bilateral tonic-clonic seizures before subjecting them to exhaustive presurgical workup and to guide appropriate treatment and prognostication.
Collapse
Affiliation(s)
- Anis Jukkarwala
- Geetanjali Medical College & Hospital, Udaipur, Rajasthan, India
| | - Ramshekhar N Menon
- Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala, India
| | - E R Sunesh
- Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala, India
| | | |
Collapse
|
17
|
Walker MJ, Nielsen J, Goddard E, Harris A, Hutchison K. Induced Pluripotent Stem Cell-Based Systems for Personalising Epilepsy Treatment: Research Ethics Challenges and New Insights for the Ethics of Personalised Medicine. AJOB Neurosci 2021; 13:120-131. [PMID: 34324412 DOI: 10.1080/21507740.2021.1949404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ABSTRACTThis paper examines potential ethical and legal issues arising during the research, development and clinical use of a proposed strategy in personalized medicine (PM): using human induced pluripotent stem cell (iPSC)-derived tissue cultures as predictive models of individual patients to inform treatment decisions. We focus on epilepsy treatment as a likely early application of this strategy, for which early-stage stage research is underway. In relation to the research process, we examine issues associated with biological samples; data; health; vulnerable populations; neural organoids; and what level of accuracy justifies using the iPSC-derived neural tissue system. In relation to clinical use, we examine potential uses in pre-natal screening, and effects on clinical decision-making. Although our focus is providing recommendations for researchers developing work in this area, we identify the novel issue of deciding on an acceptable accuracy level for the system. We also emphasize an issue thus far neglected in the ethics of PM: PM tends to represent treatment decisions as though they should be directed solely by biomedical information, but this in itself could be detrimental to best personalizing treatment decisions in the clinic.
Collapse
Affiliation(s)
- Mary Jean Walker
- La Trobe University.,ARC Centre of Excellence for Electromaterials Science, University of Wollongong
| | - Jane Nielsen
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong.,University of Tasmania
| | - Eliza Goddard
- La Trobe University.,ARC Centre of Excellence for Electromaterials Science, University of Wollongong
| | - Alex Harris
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong.,University of Melbourne
| | - Katrina Hutchison
- ARC Centre of Excellence for Electromaterials Science, University of Wollongong.,Macquarie University
| |
Collapse
|
18
|
Nakamura J, Sorge ST, Winawer MR, Phelan JC, Chung WK, Ottman R. Reproductive decision-making in families containing multiple individuals with epilepsy. Epilepsia 2021; 62:1220-1230. [PMID: 33813741 DOI: 10.1111/epi.16889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study evaluated factors influencing reproductive decision-making in families containing multiple individuals with epilepsy. METHODS One hundred forty-nine adults with epilepsy and 149 adult biological relatives without epilepsy from families containing multiple affected individuals completed a self-administered questionnaire. Participants answered questions regarding their belief in a genetic cause of epilepsy (genetic attribution) and estimated risk of epilepsy in offspring of an affected person. Participants rated factors for their influence on their reproductive plans, with responses ranging from "much more likely" to "much less likely" to want to have a child. Those with epilepsy were asked, "Do you think you would have wanted more (or any) children if you had not had epilepsy?" RESULTS Participants with epilepsy had fewer offspring than their unaffected relatives (mean = 1.2 vs. 1.9, p = .002), and this difference persisted among persons who had been married. Estimates of risk of epilepsy in offspring of an affected parent were higher among participants with epilepsy than among relatives without epilepsy (mean = 27.2 vs. 19.6, p = .002). Nineteen percent of participants with epilepsy responded that they would have wanted more children if they had not had epilepsy. Twenty-five percent of participants with epilepsy responded that "the chance of having a child with epilepsy" or "having epilepsy in your family" made them less likely to want to have a child. Having these genetic concerns was significantly associated with greater genetic attribution and estimated risk of epilepsy in offspring of an affected parent. SIGNIFICANCE People with epilepsy have fewer children than their biological relatives without epilepsy. Beliefs about genetic causes of epilepsy contribute to concerns and decisions to limit childbearing. These beliefs should be addressed in genetic counseling to ensure that true risks to offspring and reproductive options are well understood.
Collapse
Affiliation(s)
- Jacquelyn Nakamura
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Shawn T Sorge
- G. H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Clinical Psychology, Long Island University, Brooklyn, New York, USA.,Psychology Division, Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | - Melodie R Winawer
- G. H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jo C Phelan
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Wendy K Chung
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Ruth Ottman
- G. H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA.,Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
19
|
Rahim F, Azizimalamiri R, Sayyah M, Malayeri A. Experimental Therapeutic Strategies in Epilepsies Using Anti-Seizure Medications. J Exp Pharmacol 2021; 13:265-290. [PMID: 33732031 PMCID: PMC7959000 DOI: 10.2147/jep.s267029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/10/2021] [Indexed: 02/02/2023] Open
Abstract
Epilepsies are among the most common neurological problems. The disease burden in patients with epilepsy is significantly high, and epilepsy has a huge negative impact on patients' quality of life with epilepsy and their families. Anti-seizure medications are the mainstay treatment in patients with epilepsy, and around 70% of patients will ultimately control with a combination of at least two appropriately selected anti-seizure medications. However, in one-third of patients, seizures are resistant to drugs, and other measures will be needed. The primary goal in using experimental therapeutic medication strategies in patients with epilepsy is to prevent recurrent seizures and reduce the rate of traumatic events that may occur during seizures. So far, various treatments using medications have been offered for patients with epilepsies, which have been classified according to the type of epilepsy, the effectiveness of the medications, and the adverse effects. Medications such as Levetiracetam, valproic acid, and lamotrigine are at the forefront of these patients' treatment. Epilepsy surgery, neuro-stimulation, and the ketogenic diet are the main measures in patients with medication-resistant epilepsies. In this paper, we will review the therapeutic approach using anti-seizure medications in patients with epilepsy. However, it should be noted that some of these patients still do not respond to existing treatments; therefore, the limited ability of current therapies has fueled research efforts for the development of novel treatment strategies. Thus, it seems that in addition to surgical measures, we should look for more specific agents that have less adverse events and have a greater effect in stopping seizures.
Collapse
Affiliation(s)
- Fakher Rahim
- Molecular Medicine and Bioinformatics, Research Center of Thalassemia & Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Azizimalamiri
- Department of Pediatrics, Division of Pediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Sayyah
- Education Development Center (EDC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Morrison-Levy N, Borlot F, Jain P, Whitney R. Early-Onset Developmental and Epileptic Encephalopathies of Infancy: An Overview of the Genetic Basis and Clinical Features. Pediatr Neurol 2021; 116:85-94. [PMID: 33515866 DOI: 10.1016/j.pediatrneurol.2020.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Our current knowledge of genetically determined forms of epilepsy has shortened the diagnostic pathway usually experienced by the families of infants diagnosed with early-onset developmental and epileptic encephalopathies. Genetic causes can be found in up to 80% of infants presenting with early-onset developmental and epileptic encephalopathies, often in the context of an uneventful perinatal history and with no clear underlying brain abnormalities. Although current disease-specific therapies remain limited and patient outcomes are often guarded, a genetic diagnosis may lead to early therapeutic intervention using new and/or repurposed therapies. In this review, an overview of epilepsy genetics, the indications for genetic testing in infants, the advantages and limitations of each test, and the challenges and ethical implications of genetic testing are discussed. In addition, the following causative genes associated with early-onset developmental and epileptic encephalopathies are discussed in detail: KCNT1, KCNQ2, KCNA2, SCN2A, SCN8A, STXBP1, CDKL5, PIGA, SPTAN1, and GNAO1. The epilepsy phenotypes, comorbidities, electroencephalgraphic findings, neuroimaging findings, and potential targeted therapies for each gene are reviewed.
Collapse
Affiliation(s)
| | - Felippe Borlot
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
21
|
Abstract
Neurodevelopmental disorders are the most prevalent chronic medical conditions encountered in pediatric primary care. In addition to identifying appropriate descriptive diagnoses and guiding families to evidence-based treatments and supports, comprehensive care for individuals with neurodevelopmental disorders includes a search for an underlying etiologic diagnosis, primarily through a genetic evaluation. Identification of an underlying genetic etiology can inform prognosis, clarify recurrence risk, shape clinical management, and direct patients and families to condition-specific resources and supports. Here we review the utility of genetic testing in patients with neurodevelopmental disorders and describe the three major testing modalities and their yields - chromosomal microarray, exome sequencing (with/without copy number variant calling), and FMR1 CGG repeat analysis for fragile X syndrome. Given the diagnostic yield of genetic testing and the potential for clinical and personal utility, there is consensus that genetic testing should be offered to all patients with global developmental delay, intellectual disability, and/or autism spectrum disorder. Despite this recommendation, data suggest that a minority of children with autism spectrum disorder and intellectual disability have undergone genetic testing. To address this gap in care, we describe a structured but flexible approach to facilitate integration of genetic testing into clinical practice across pediatric specialties and discuss future considerations for genetic testing in neurodevelopmental disorders to prepare pediatric providers to care for patients with such diagnoses today and tomorrow.
Collapse
Affiliation(s)
- Juliann M. Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States
| | | |
Collapse
|
22
|
Aledo-Serrano A, García-Morales I, Toledano R, Jiménez-Huete A, Parejo B, Anciones C, Mingorance A, Ramos P, Gil-Nagel A. Diagnostic gap in genetic epilepsies: A matter of age. Epilepsy Behav 2020; 111:107266. [PMID: 32610249 DOI: 10.1016/j.yebeh.2020.107266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to evaluate the access to advanced diagnostic tests in patients with epilepsy and intellectual disability, with special focus on genetics. METHODS Patients with epilepsy and intellectual disability evaluated between 2016 and 2018 at the Epilepsy Unit of two hospitals in Madrid, Spain were included. The main inclusion criterion was an undetermined etiological diagnosis after clinical assessment, neuroimaging, and electroencephalogram (EEG). RESULTS Two hundred and five patients with epilepsy and intellectual disability were evaluated, with 124 fulfilling the inclusion criteria (mean age: 33.9 years). Regarding the etiological workup, advanced neuroimaging, prolonged video-EEG, and any type of genetic test had been performed in 58%, 41%, and 40%, respectively. An etiological diagnosis was reached in 18.5%. The workup was considered incomplete in 67%. Variables that showed the strongest association with an incomplete diagnostic workup in the multivariate analysis were current age and seizure freedom. CONCLUSIONS Despite the multiple implications of modern diagnostic techniques, especially genetic testing, there is a large proportion of patients with epilepsy and intellectual disability who do not have access to them. Older age and seizure freedom seem to be associated with the highest diagnostic gap.
Collapse
Affiliation(s)
- Angel Aledo-Serrano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain.
| | - Irene García-Morales
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain; Epilepsy Unit, Neurology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Rafael Toledano
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain; Epilepsy Unit, Neurology Department, Hospital Ramón y Cajal, Madrid, Spain
| | - Adolfo Jiménez-Huete
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | - Beatriz Parejo
- Epilepsy Unit, Neurology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Carla Anciones
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| | | | | | - Antonio Gil-Nagel
- Epilepsy Unit, Neurology Department, Hospital Ruber Internacional, Madrid, Spain
| |
Collapse
|
23
|
A comparison of genomic diagnostics in adults and children with epilepsy and comorbid intellectual disability. Eur J Hum Genet 2020; 28:1066-1077. [PMID: 32238909 DOI: 10.1038/s41431-020-0610-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/13/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Next generation sequencing provides an important opportunity for improved diagnosis in epilepsy. To date, the majority of diagnostic genetic testing is conducted in the paediatric arena, while the utility of such testing is less well understood in adults with epilepsy. We conducted whole exome sequencing (WES) and copy number variant analyses in an Irish cohort of 101 people with epilepsy and co-morbid intellectual disability to compare the diagnostic yield of genomic testing between adult and paediatric patients. Variant interpretation followed American College of Medical Genetics and Genomics (ACMG) guidelines. We demonstrate that WES, in combination with array-comparative genomic hybridisation, provides a diagnostic rate of 27% in unrelated adult epilepsy patients and 42% in unrelated paediatric patients. We observe a 2.7% rate of ACMG-defined incidental findings. Our findings indicate that WES has similar utility in both adult and paediatric cohorts and is appropriate for diagnostic testing in both epilepsy patient groups.
Collapse
|
24
|
Garofalo DC, Sorge ST, Hesdorffer DC, Winawer MR, Phelan JC, Chung WK, Ottman R. Genetic attribution and perceived impact of epilepsy in multiplex epilepsy families. Epilepsia 2019; 60:2286-2293. [PMID: 31587270 PMCID: PMC7144879 DOI: 10.1111/epi.16352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/09/2019] [Accepted: 09/04/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Studies have found that affected individuals who believe the cause of their disorder is genetic may react in various ways, including optimism for improved treatments and pessimism due to perceived permanence of the condition. This study assessed the psychosocial impact of genetic attribution among people with epilepsy. METHODS Study participants were 165 persons with epilepsy from multiplex epilepsy families who completed a self-administered survey. Psychosocial impact of epilepsy was assessed with the Impact of Epilepsy Scale, containing items about relationships, employment, overall health, self-esteem, and standard of living. Genetic attribution was assessed using a scale derived from three items asking about the role of genetics in causing epilepsy in the family, the chance of having an epilepsy-related mutation, and the influence of genetics in causing the participant's epilepsy. We estimated prevalence ratios (PRs) for impact of epilepsy above the median using Poisson regression with robust standard errors, adjusting for number of lifetime seizures and time since last seizure. RESULTS Participants' age averaged 51 years; 87% were non-Hispanic white, 63% were women, and 54% were college graduates. The genetic attribution scale was significantly associated with having a high impact of epilepsy (adjusted PR = 1.4, 95% confidence interval = 1.07-1.91, P = .02). One of the three genetic attribution questions was also significantly associated with a high impact of epilepsy (belief that genetics had a big role in causing epilepsy in the family, adjusted PR = 1.8). SIGNIFICANCE These findings reflect an association between the psychosocial impact of epilepsy and the belief that epilepsy has a genetic cause, among people with epilepsy in families containing multiple affected individuals. This association could arise either because belief in a genetic cause leads to increased psychosocial impacts, or because a greater psychosocial impact of epilepsy leads some to believe their epilepsy is genetic.
Collapse
Affiliation(s)
- Diana C. Garofalo
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Shawn T. Sorge
- G. H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Clinical Psychology, Long Island University, Brooklyn, New York
| | - Dale C. Hesdorffer
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
- G. H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Melodie R. Winawer
- G. H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jo C. Phelan
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Wendy K. Chung
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Ruth Ottman
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
- G. H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York
| |
Collapse
|
25
|
Abstract
Abstract:Background:Epilepsy is a common neurological condition that shows a marked genetic predisposition. The advent of next-generation sequencing (NGS) has transformed clinical genetic testing by allowing the rapid screen for causative variants in multiple genes. There are currently no NGS-based multigene panel diagnostic tests available for epilepsy as a licensed clinical diagnostic test in Ontario, Canada. Eligible patient samples are sent out of country for testing by commercial laboratories, which incurs significant cost to the public healthcare system.Objective:An expert Working Group of medical geneticists, pediatric neurologists/epileptologists, biochemical geneticists, and clinical molecular geneticists from Ontario was formed by the Laboratories and Genetics Branch of the Ontario Ministry of Health and Long-Term Care to develop a programmatic approach to implementing epilepsy panel testing as a provincial service.Results:The Working Group made several recommendations for testing to support the clinical delivery of care in Ontario. First, an extension of community healthcare outcomes-based program should be incorporated to inform and educate ordering providers when requesting and interpreting a genetic panel test. Second, any gene panel testing must be “evidence-based” and takes into account varied clinical indications to reduce the chance of uncertain and secondary results. Finally, an ongoing evaluative process was recommended to ensure continued test improvement for the future.Conclusion:This epilepsy panel testing implementation plan will be a model for genetic care directed toward a specific set of conditions in the province and serve as a prototype for genetic testing for other genetically heterogeneous diseases.
Collapse
|
26
|
Truty R, Patil N, Sankar R, Sullivan J, Millichap J, Carvill G, Entezam A, Esplin ED, Fuller A, Hogue M, Johnson B, Khouzam A, Kobayashi Y, Lewis R, Nykamp K, Riethmaier D, Westbrook J, Zeman M, Nussbaum RL, Aradhya S. Possible precision medicine implications from genetic testing using combined detection of sequence and intragenic copy number variants in a large cohort with childhood epilepsy. Epilepsia Open 2019; 4:397-408. [PMID: 31440721 PMCID: PMC6698688 DOI: 10.1002/epi4.12348] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/19/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Molecular genetic etiologies in epilepsy have become better understood in recent years, creating important opportunities for precision medicine. Building on these advances, detailed studies of the complexities and outcomes of genetic testing for epilepsy can provide useful insights that inform and refine diagnostic approaches and illuminate the potential for precision medicine in epilepsy. METHODS We used a multi-gene next-generation sequencing (NGS) panel with simultaneous sequence and exonic copy number variant detection to investigate up to 183 epilepsy-related genes in 9769 individuals. Clinical variant interpretation was performed using a semi-quantitative scoring system based on existing professional practice guidelines. RESULTS Molecular genetic testing provided a diagnosis in 14.9%-24.4% of individuals with epilepsy, depending on the NGS panel used. More than half of these diagnoses were in children younger than 5 years. Notably, the testing had possible precision medicine implications in 33% of individuals who received definitive diagnostic results. Only 30 genes provided 80% of molecular diagnoses. While most clinically significant findings were single-nucleotide variants, ~15% were other types that are often challenging to detect with traditional methods. In addition to clinically significant variants, there were many others that initially had uncertain significance; reclassification of 1612 such variants with parental testing or other evidence contributed to 18.5% of diagnostic results overall and 6.1% of results with precision medicine implications. SIGNIFICANCE Using an NGS gene panel with key high-yield genes and robust analytic sensitivity as a first-tier test early in the diagnostic process, especially for children younger than 5 years, can possibly enable precision medicine approaches in a significant number of individuals with epilepsy.
Collapse
Affiliation(s)
| | - Nila Patil
- Departments of Pediatrics and NeurologyUniversity of California Los AngelesLos AngelesCalifornia
| | - Raman Sankar
- Departments of Pediatrics and NeurologyUniversity of California Los AngelesLos AngelesCalifornia
| | - Joseph Sullivan
- Pediatric Epilepsy CenterUniversity of California San FranciscoSan FranciscoCalifornia
| | - John Millichap
- Lurie Children's Hospital and Northwestern UniversityChicagoIllinois
| | - Gemma Carvill
- Ken and Ruth Davee Department of NeurologyNorthwestern UniversityChicagoIllinois
| | | | | | | | | | | | | | | | | | | | | | | | | | - Robert L. Nussbaum
- InvitaeSan FranciscoCalifornia
- Volunteer FacultyUniversity of California San FranciscoSan FranciscoCalifornia
| | | |
Collapse
|
27
|
Mesraoua B, Deleu D, Kullmann DM, Shetty AK, Boon P, Perucca E, Mikati MA, Asadi-Pooya AA. Novel therapies for epilepsy in the pipeline. Epilepsy Behav 2019; 97:282-290. [PMID: 31284159 DOI: 10.1016/j.yebeh.2019.04.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 02/06/2023]
Abstract
Despite the availability of many antiepileptic drugs (AEDs) (old and newly developed) and, as recently suggested, their optimization in the treatment of patients with uncontrolled seizures, more than 30% of patients with epilepsy continue to experience seizures and have drug-resistant epilepsy; the management of these patients represents a real challenge for epileptologists and researchers. Resective surgery with the best rates of seizure control is not an option for all of them; therefore, research and discovery of new methods of treating resistant epilepsy are of extreme importance. In this article, we will discuss some innovative approaches, such as P-glycoprotein (P-gp) inhibitors, gene therapy, stem cell therapy, traditional and novel antiepileptic devices, precision medicine, as well as therapeutic advances in epileptic encephalopathy in children; these treatment modalities open up new horizons for the treatment of patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Boulenouar Mesraoua
- Hamad Medical Corporation and Weill Cornell Medical College-Qatar, Doha, Qatar.
| | - Dirk Deleu
- Hamad Medical Corporation and Weill Cornell Medical College-Qatar, Doha, Qatar.
| | | | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Paul Boon
- Reference Center for Refractory Epilepsy, Ghent University Hospital Belgium - Academic Center for Epileptology, Heeze-Maastricht, the Netherlands.
| | - Emilio Perucca
- Unit of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, and Clinical Trial Center, IRCCS Mondino Foundation, Pavia, Italy.
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, USA.
| | - Ali A Asadi-Pooya
- Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran; Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
28
|
Naimo GD, Guarnaccia M, Sprovieri T, Ungaro C, Conforti FL, Andò S, Cavallaro S. A Systems Biology Approach for Personalized Medicine in Refractory Epilepsy. Int J Mol Sci 2019; 20:E3717. [PMID: 31366017 PMCID: PMC6695675 DOI: 10.3390/ijms20153717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 02/01/2023] Open
Abstract
Epilepsy refers to a common chronic neurological disorder that affects all age groups. Unfortunately, antiepileptic drugs are ineffective in about one-third of patients. The complex interindividual variability influences the response to drug treatment rendering the therapeutic failure one of the most relevant problems in clinical practice also for increased hospitalizations and healthcare costs. Recent advances in the genetics and neurobiology of epilepsies are laying the groundwork for a new personalized medicine, focused on the reversal or avoidance of the pathophysiological effects of specific gene mutations. This could lead to a significant improvement in the efficacy and safety of treatments for epilepsy, targeting the biological mechanisms responsible for epilepsy in each individual. In this review article, we focus on the mechanism of the epilepsy pharmacoresistance and highlight the use of a systems biology approach for personalized medicine in refractory epilepsy.
Collapse
Affiliation(s)
- Giuseppina Daniela Naimo
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Teresa Sprovieri
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Carmine Ungaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Contrada Burga, Piano Lago, 87050 Mangone (CS) and Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
29
|
Borlot F, de Almeida BI, Combe SL, Andrade DM, Filloux FM, Myers KA. Clinical utility of multigene panel testing in adults with epilepsy and intellectual disability. Epilepsia 2019; 60:1661-1669. [PMID: 31273778 DOI: 10.1111/epi.16273] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To determine the diagnostic yield of a commercial epilepsy gene panel in adults with chronic epilepsy and accompanying intellectual disability, given that genetic evaluation is often overlooked in this group of patients. METHODS This is a cross-sectional study analyzing the results of epilepsy gene panels including up to 185 genes in adult epilepsy patients with intellectual disability, according to Diagnostic and Statistical Manual of Mental Disorders, fifth edition. Patients with acquired structural brain abnormalities or known chromosomal abnormalities were excluded. RESULTS From approximately 600 patients seen from January 2017 to June 2018 at a single academic epilepsy center, 64 probands and two affected relatives (32 males, mean age = 31 years ± 10) were selected and clinically tested. Fourteen probands (14/64 = 22%; four males, mean age = 32 years ± 10) were found to have pathogenic or likely pathogenic variants in the following genes: SCN1A, GABRB3, UBE3A, KANSL1, SLC2A1, KCNQ2, SLC6A1, HNRNPU, STX1B, SCN2A, PURA, and CHD2. Six variants arose de novo, and the inheritance was not determined in eight. Nine probands (64%) had severe or profound intellectual disability, and five (35%) had autistic features. Eight patients (57%) had a diagnostic change from presumptive clinical diagnosis prior to genetic testing. SIGNIFICANCE We were able to demonstrate that a commercial epilepsy gene panel can be an important resource in clinical practice, identifying the etiology in 22% of adults with epilepsy and intellectual disability. The diagnostic yield is similar to previously reported pediatric cohorts. Larger samples would be required to evaluate the more prevalent genotypes among adult epilepsy patients.
Collapse
Affiliation(s)
- Felippe Borlot
- Department of Neurology, University of Utah, Salt Lake City, Utah.,Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bruno Ivo de Almeida
- Department of Neurology, University of Utah, Salt Lake City, Utah.,Faculty of Biology, University of Bordeaux, Talence, France
| | - Shari L Combe
- Department of Neurology, University of Utah, Salt Lake City, Utah
| | - Danielle M Andrade
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada.,Epilepsy Genetics Program, Krembil Neuroscience Centre, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Neurology, Krembil Neuroscience Centre, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Kenneth A Myers
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.,Montreal Children's Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
30
|
Yuskaitis CJ, Sheidley BR, Poduri A. Variability Among Next-Generation Sequencing Panels for Early-Life Epilepsies. JAMA Pediatr 2018; 172:779-780. [PMID: 29868823 PMCID: PMC6142924 DOI: 10.1001/jamapediatrics.2018.0769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This study compares the potential diagnostic yield of commercially available epilepsy panels to detect the genetic findings identified in a recently published cohort of early-life epilepsy.
Collapse
Affiliation(s)
- Christopher J. Yuskaitis
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Beth Rosen Sheidley
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| |
Collapse
|
31
|
Abstract
Epilepsy affects all age groups and is one of the most common and most disabling neurological disorders. The accurate diagnosis of seizures is essential as some patients will be misdiagnosed with epilepsy, whereas others will receive an incorrect diagnosis. Indeed, errors in diagnosis are common, and many patients fail to receive the correct treatment, which often has severe consequences. Although many patients have seizure control using a single medication, others require multiple medications, resective surgery, neuromodulation devices or dietary therapies. In addition, one-third of patients will continue to have uncontrolled seizures. Epilepsy can substantially impair quality of life owing to seizures, comorbid mood and psychiatric disorders, cognitive deficits and adverse effects of medications. In addition, seizures can be fatal owing to direct effects on autonomic and arousal functions or owing to indirect effects such as drowning and other accidents. Deciphering the pathophysiology of epilepsy has advanced the understanding of the cellular and molecular events initiated by pathogenetic insults that transform normal circuits into epileptic circuits (epileptogenesis) and the mechanisms that generate seizures (ictogenesis). The discovery of >500 genes associated with epilepsy has led to new animal models, more precise diagnoses and, in some cases, targeted therapies.
Collapse
Affiliation(s)
- Orrin Devinsky
- Departments of Neurology, Neuroscience, Neurosurgery and Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Annamaria Vezzani
- Laboratory of Experimental Neurology, Department of Neuroscience, IRCCS 'Mario Negri' Institute for Pharmacological Research, Milan, Italy
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathalie Jette
- Department of Neurology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, and Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
|
33
|
Hoffman-Zacharska D, Górka-Skoczylas P. [Trends and expectations the research on the molecular background of epileptic encephalopathies - state of the art in 2017]. DEVELOPMENTAL PERIOD MEDICINE 2018; 21. [PMID: 29291359 PMCID: PMC8522928 DOI: 10.34763/devperiodmed.20172104.317327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epilepsy is common neurological condition affecting 0.8-1% of the human population. Since 80% of patients are under 20 years of age, it is mainly a disease of the developmental period. The causes of epilepsy are heterogeneous, but the disease has always been considered a genetic disorder, which no longer doubted. Epilepsy genetics has undergone a revolution since the discovery of the first gene responsible for epilepsy. This is mainly because of introduction of the next generation sequencing as research and diagnostic tool, and transition from studies of pedigrees with epilepsy to the analysis of cases of epileptic encephalopathies. In a short time more than 50 early infantile epileptic encephalopathies were recognized due to the causative genes. Whole exome or targeted panel sequencing has been used as a diagnostic tool with a diagnostic yield of about 30-40%. The "genetic diagnosis" that is obtained makes it possible to introduce targeted treatment in an increasing number of cases. Since epileptic encephalopaties are often regarded as the model disease for epilepsy, these therapeutic strategies can provide treatment for patients with common epilepsies.
Collapse
Affiliation(s)
- Dorota Hoffman-Zacharska
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska, Dorota Hoffman-Zacharska Zakład Genetyki Medycznej Instytut Matki i Dziecka ul. Kasprzaka 17A, 01-211 Warszawa tel. (22) 32-77-313, fax (22) 32-77-200
| | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Optimal treatment of a possible first seizure depends on the determination if the paroxysmal event was an epileptic seizure and was on an accurate assessment of the recurrence risk. This review summarizes evidence from the last 5 years addressing the following questions: Is it an epileptic seizure? Is it a first seizure? When does a first seizure indicate epilepsy? RECENT FINDINGS The acts of taking and interpreting the history from patients and witnesses continue to be the most important tools in the diagnosis of first seizures. Assessment tools based on factual questions and the observation of patients' conversational behaviour can contribute to the differentiation of patients with epileptic seizures from those who have experienced other types of transient loss of consciousness (TLOC). At present, only about 40% of patients are seen after their very first seizure. Tests have a limited role in the initial diagnosis of a seizure but help to determine the recurrence risk based on the cause. A remote symptomatic cause and detection of epileptiform discharges are associated with a recurrence risk of at least 60% and allow a diagnosis of epilepsy after a first seizure. The risk of recurrence after an acute symptomatic first seizure is well below 60%. SUMMARY Expert history-taking continues to be the most important tool in the diagnosis of a first seizure. Cause is the most important determinant of the recurrence risk. Unfortunately, there is currently no formula enabling a precise calculation of an individualized recurrence risk.
Collapse
|