1
|
Distribution analysis of epertinib in brain metastasis of HER2-positive breast cancer by imaging mass spectrometry and prospect for antitumor activity. Sci Rep 2018; 8:343. [PMID: 29321587 PMCID: PMC5762859 DOI: 10.1038/s41598-017-18702-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
Epertinib (S-222611) is a potent, reversible, and selective tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR), human EGFR2 (HER2), and human EGFR4. We developed experimental brain metastasis models by intraventricular injection (intraventricular injection mouse model; IVM) of HER2-positive breast cancer (MDA-MB-361-luc-BR2/BR3) or T790M-EGFR-positive lung cancer (NCI-H1975-luc) cells. After a single oral administration, epertinib and lapatinib concentrations in brain metastatic regions were analyzed by quantitative imaging mass spectrometry. In the NCI-H1975 lung cancer IVM, the concentration of epertinib in brain metastasis was comparable to that of lapatinib. However, in the MDA-MB-361 breast cancer IVM, the concentration of epertinib in brain metastasis was >10 times higher than that of lapatinib. Furthermore, the epertinib tumor-to-normal brain ratio was ~4 times higher than that of lapatinib. Blood-tumor barrier (BTB) permeability was assessed in each brain metastatic region. In the lung cancer model, fluorescently labeled dextran was more highly detected in brain metastatic regions than in brain parenchyma. However, in breast cancer models, dextran fluorescence intensity in brain metastatic regions and brain parenchyma were comparable, suggesting that the BTB remained largely intact. Epertinib would be promised as a therapeutic agent for HER2-positive breast cancer with brain metastasis.
Collapse
|
2
|
Ishikawa K, Hori M. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s2010194514603184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.
Collapse
Affiliation(s)
- Kenji Ishikawa
- Nagoya University, Furo-cho Chikusa, Nagoya, Aichi 464-8603, Japan
| | - Masaru Hori
- Nagoya University, Furo-cho Chikusa, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
3
|
MALDI Mass Spectrometry Imaging for Visualizing In Situ Metabolism of Endogenous Metabolites and Dietary Phytochemicals. Metabolites 2014; 4:319-46. [PMID: 24957029 PMCID: PMC4101509 DOI: 10.3390/metabo4020319] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/17/2014] [Accepted: 05/04/2014] [Indexed: 01/28/2023] Open
Abstract
Understanding the spatial distribution of bioactive small molecules is indispensable for elucidating their biological or pharmaceutical roles. Mass spectrometry imaging (MSI) enables determination of the distribution of ionizable molecules present in tissue sections of whole-body or single heterogeneous organ samples by direct ionization and detection. This emerging technique is now widely used for in situ label-free molecular imaging of endogenous or exogenous small molecules. MSI allows the simultaneous visualization of many types of molecules including a parent molecule and its metabolites. Thus, MSI has received much attention as a potential tool for pathological analysis, understanding pharmaceutical mechanisms, and biomarker discovery. On the other hand, several issues regarding the technical limitations of MSI are as of yet still unresolved. In this review, we describe the capabilities of the latest matrix-assisted laser desorption/ionization (MALDI)-MSI technology for visualizing in situ metabolism of endogenous metabolites or dietary phytochemicals (food factors), and also discuss the technical problems and new challenges, including MALDI matrix selection and metabolite identification, that need to be addressed for effective and widespread application of MSI in the diverse fields of biological, biomedical, and nutraceutical (food functionality) research.
Collapse
|
4
|
Fungal iron availability during deep seated candidiasis is defined by a complex interplay involving systemic and local events. PLoS Pathog 2013; 9:e1003676. [PMID: 24146619 PMCID: PMC3798425 DOI: 10.1371/journal.ppat.1003676] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022] Open
Abstract
Nutritional immunity – the withholding of nutrients by the host – has long been recognised as an important factor that shapes bacterial-host interactions. However, the dynamics of nutrient availability within local host niches during fungal infection are poorly defined. We have combined laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS), MALDI imaging and immunohistochemistry with microtranscriptomics to examine iron homeostasis in the host and pathogen in the murine model of systemic candidiasis. Dramatic changes in the renal iron landscape occur during disease progression. The infection perturbs global iron homeostasis in the host leading to iron accumulation in the renal medulla. Paradoxically, this is accompanied by nutritional immunity in the renal cortex as iron exclusion zones emerge locally around fungal lesions. These exclusion zones correlate with immune infiltrates and haem oxygenase 1-expressing host cells. This local nutritional immunity decreases iron availability, leading to a switch in iron acquisition mechanisms within mature fungal lesions, as revealed by laser capture microdissection and qRT-PCR analyses. Therefore, a complex interplay of systemic and local events influences iron homeostasis and pathogen-host dynamics during disease progression. Microbial pathogens must assimilate essential micronutrients to establish infections. During bacterial infection, mammals limit the availability of micronutrients to inhibit the growth of the pathogen – a phenomenon termed ‘nutrient immunity.’ Nutrient immunity has not been examined during disseminated candidiasis. Yet micronutrient assimilation, and iron assimilation in particular, is required for fungal virulence, and life-threatening disseminated fungal infections are recognised as a major medical threat for patients with compromised immune systems. We show that nutrient immunity operates during disseminated Candida albicans infections in mice. Over time immune cells congregate around the fungal lesions in the kidney cortex, driving nutrient immunity and reducing iron availability for the pathogen. The fungus responds by tuning its iron assimilation strategies to the reduced iron levels. Paradoxically, iron levels increase in other parts of the kidney as Candida infections progress. We show that the fungal infection disturbs global iron homeostasis in the host by perturbing red blood cell recycling in the spleen and this is associated with increased iron storage in the kidney medulla. Therefore, fungal infection exerts system-wide effects upon iron homeostasis in the mammalian host, whilst triggering local nutrient immunity to limit the infection.
Collapse
|
5
|
Ye H, Gemperline E, Venkateshwaran M, Chen R, Delaux PM, Howes-Podoll M, Ané JM, Li L. MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:130-145. [PMID: 23551619 DOI: 10.1111/tpj.12191] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/19/2013] [Accepted: 03/25/2013] [Indexed: 05/21/2023]
Abstract
Symbiotic associations between leguminous plants and nitrogen-fixing rhizobia culminate in the formation of specialized organs called root nodules, in which the rhizobia fix atmospheric nitrogen and transfer it to the plant. Efficient biological nitrogen fixation depends on metabolites produced by and exchanged between both partners. The Medicago truncatula-Sinorhizobium meliloti association is an excellent model for dissecting this nitrogen-fixing symbiosis because of the availability of genetic information for both symbiotic partners. Here, we employed a powerful imaging technique - matrix-assisted laser desorption/ionization (MALDI)/mass spectrometric imaging (MSI) - to study metabolite distribution in roots and root nodules of M. truncatula during nitrogen fixation. The combination of an efficient, novel MALDI matrix [1,8-bis(dimethyl-amino) naphthalene, DMAN] with a conventional matrix 2,5-dihydroxybenzoic acid (DHB) allowed detection of a large array of organic acids, amino acids, sugars, lipids, flavonoids and their conjugates with improved coverage. Ion density maps of representative metabolites are presented and correlated with the nitrogen fixation process. We demonstrate differences in metabolite distribution between roots and nodules, and also between fixing and non-fixing nodules produced by plant and bacterial mutants. Our study highlights the benefits of using MSI for detecting differences in metabolite distributions in plant biology.
Collapse
Affiliation(s)
- Hui Ye
- School of Pharmacy, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Erin Gemperline
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | | | - Ruibing Chen
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Maegen Howes-Podoll
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin - Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
6
|
In situ metabolomic mass spectrometry imaging: Recent advances and difficulties. J Proteomics 2012; 75:5052-5060. [DOI: 10.1016/j.jprot.2012.02.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022]
|
7
|
Careri M, Mangia A. Trends in analytical atomic and molecular mass spectrometry in biology and the life sciences. Anal Bioanal Chem 2010; 399:2585-95. [DOI: 10.1007/s00216-010-4585-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 12/06/2010] [Indexed: 12/30/2022]
|
8
|
Organ‐Specific Distributions of Lysophosphatidylcholine and Triacylglycerol in Mouse Embryo. Lipids 2009; 44:837-48. [DOI: 10.1007/s11745-009-3331-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
9
|
Sugiura Y, Setou M. Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes. J Neuroimmune Pharmacol 2009; 5:31-43. [PMID: 19513855 DOI: 10.1007/s11481-009-9162-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/12/2009] [Indexed: 11/28/2022]
Abstract
It is important to determine how a candidate drug is distributed and metabolized within the body in early phase of drug discovery. Recently, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS; also referred to as mass spectrometry imaging) has attracted great interest for monitoring drug delivery and metabolism. Since this emerging technique enables simultaneous imaging of many types of metabolite molecules, MALDI-IMS can visualize and distinguish the parent drug and its metabolites. As another important advantage, changes in endogenous metabolites in response to drug administration can be mapped and evaluated in tissue sections. In this review, we discuss the capabilities of current IMS techniques for imaging metabolite molecules and summarize representative studies on imaging of both endogenous and exogenous metabolites. In addition, current limitations and problems with the technique are discussed, and reports of progress toward solving these problems are summarized. With this new tool, the pharmacological research community can begin to map the in situ pharmacometabolome.
Collapse
Affiliation(s)
- Yuki Sugiura
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | |
Collapse
|
10
|
Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M. Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res 2009; 50:1776-88. [PMID: 19417221 DOI: 10.1194/jlr.m900047-jlr200] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that MALDI-imaging mass spectrometry (IMS) can be used to visualize the distribution of various biomolecules, especially lipids, in the cells and tissues. In this study, we report the cell-selective distribution of PUFA-containing glycerophospholipids (GPLs) in the mouse brain. We established a practical experimental procedure for the IMS of GPLs. We demonstrated that optimization of the composition of the matrix solution and spectrum normalization to the total ion current (TIC) is critical. Using our procedure, we simultaneously differentiated and visualized the localizations of specific molecular species of GPLs in mouse brain sections. The results showed that PUFA-containing phosphatidylcholines (PCs) were distributed in a cell-selective manner: arachidonic acid- and docosahexaenoic acid-containing PCs were seen in the hippocampal neurons and cerebellar Purkinje cells, respectively. Furthermore, these characteristic localizations of PUFA-PCs were formed during neuronal maturation. The phenomenon of brain cell-selective production of specific PUFA-GPLs will help elucidate the potential physiological functions of PUFAs in specific brain regions.
Collapse
Affiliation(s)
- Yuki Sugiura
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Ageta H, Asai S, Sugiura Y, Goto-Inoue N, Zaima N, Setou M. Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol 2009; 42:16-23. [PMID: 19294488 DOI: 10.1007/s00795-008-0427-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 10/29/2008] [Indexed: 12/11/2022]
Abstract
Lipids are major structural component of the brain and play key roles in signaling functions in the central nervous system (CNS), such as the hippocampus. In particular, sulfatide is an abundant glycosphingolipid component of both the central and the peripheral nervous system and is an essential lipid component of myelin membranes. Lack of sulfatide is observed in myelin deformation and neurological deficits. Previous studies with antisulfatide antibody have investigated distribution of sulfatide expression in neurons; however, this method cannot distinguish the differences of sulfatide lipid species raised by difference of carbon-chain length in the ceramide portion in addition to the differences of sulfatide and seminolipid. In this study, we solved the problem by our recently developed nanoparticle-assisted laser desorption/ionization (nano-PALDI)-based imaging mass spectrometry (IMS). We revealed that the level of sulfatide in the middle molecular layer was significantly higher than that in granule cell layers and the inner molecular layer in the dentate gyrus of rat hippocampus.
Collapse
Affiliation(s)
- Hiroshi Ageta
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Yuki SUGIURA
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology
- Mitsubishi Kagaku Institute of Life Sciences
| | - Mitsutoshi SETOU
- Mitsubishi Kagaku Institute of Life Sciences
- Hamamatsu University School of Medicine, Department of Molecular Anatomy
| |
Collapse
|
13
|
Hayasaka T, Goto-Inoue N, Sugiura Y, Zaima N, Nakanishi H, Ohishi K, Nakanishi S, Naito T, Taguchi R, Setou M. Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3415-3426. [PMID: 18837478 DOI: 10.1002/rcm.3751] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We recently developed a matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry (IMS) system. This system enables us to perform structural analyses using tandem mass spectrometry (MS/MS), as well as to visualize phospholipids and peptides in frozen sections. In the retina, phototransduction is regulated by the light-sensitive interaction between visual pigment-coupled receptor proteins, such as rhodopsin, and G proteins, such as transducin. There are some reports that the conformation of rhodopsin is influenced by the composition of phospholipids in the lipid bilayer membrane. However, these results were based on in vitro experiments and have not been analyzed in vivo. In this study, we visualized and identified phospholipids in mouse retinal sections with the MALDI-QIT-TOF-based IMS system. From a spectrum obtained by raster-scanned analysis of the sections, ions with high signal intensities were selected and analyzed by MS/MS. As a result, sixteen ions were identified as being from four diacyl-phosphatidylcholine (PC) species, i.e., PC (16:0/16:0), PC (16:0/18:1), PC (16:0/22:6), and PC (18:0/22:6), with different ion forms. The ion images revealed different distributions on the retinal sections: PC (16:0/18:1) was distributed in the inner nuclear layer and outer plexiform layer, PC (16:0/16:0) in the outer nuclear layer and inner segment, and both PC (16:0/22:6) and PC (18:0/22:6) in the outer segment and pigment epithelium. In conclusion, our in vivo IMS analyses demonstrated a three-zone distribution of PC species on the retinal sections. This approach may be useful for analyzing lipid changes and their contribution to phototransduction in the retina.
Collapse
Affiliation(s)
- Takahiro Hayasaka
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One 2008; 3:e3232. [PMID: 18800170 PMCID: PMC2532745 DOI: 10.1371/journal.pone.0003232] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 08/25/2008] [Indexed: 12/28/2022] Open
Abstract
Gangliosides are particularly abundant in the central nervous system (CNS) and thought to play important roles in memory formation, neuritogenesis, synaptic transmission, and other neural functions. Although several molecular species of gangliosides have been characterized and their individual functions elucidated, their differential distribution in the CNS are not well understood. In particular, whether the different molecular species show different distribution patterns in the brain remains unclear. We report the distinct and characteristic distributions of ganglioside molecular species, as revealed by imaging mass spectrometry (IMS). This technique can discriminate the molecular species, raised from both oligosaccharide and ceramide structure by determining the difference of the mass-to-charge ratio, and structural analysis by tandem mass spectrometry. Gangliosides in the CNS are characterized by the structure of the long-chain base (LCB) in the ceramide moiety. The LCB of the main ganglioside species has either 18 or 20 carbons (i.e., C18- or C20-sphingosine); we found that these 2 types of gangliosides are differentially distributed in the mouse brain. While the C18-species was widely distributed throughout the frontal brain, the C20-species selectively localized along the entorhinal-hippocampus projections, especially in the molecular layer (ML) of the dentate gyrus (DG). We revealed development- and aging-related accumulation of the C-20 species in the ML-DG. Thus it is possible to consider that this brain-region specific regulation of LCB chain length is particularly important for the distinct function in cells of CNS.
Collapse
|
15
|
Goto-Inoue N, Hayasaka T, Sugiura Y, Taki T, Li YT, Matsumoto M, Setou M. High-sensitivity analysis of glycosphingolipids by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight imaging mass spectrometry on transfer membranes. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 870:74-83. [PMID: 18571485 DOI: 10.1016/j.jchromb.2008.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/28/2008] [Accepted: 06/02/2008] [Indexed: 11/18/2022]
Abstract
Glycosphingolipids are ubiquitous constituents of cells. Yet there is still room for improvement in the techniques for analyzing glycosphingolipids. Here we report our highly sensitive and convenient analytical technology with imaging mass spectrometry for detailed structural analysis of glycosphingolipids. We were able to determine detailed ceramide structures; i.e., both the sphingosine base and fatty acid, by MS/MS/MS analysis on a PVDF membrane with 10 pmol of GM1, with which only faint bands were visible by primuline staining. The limit of detection was approximately 1 pmol of GM1, which is lower than the value in the conventional reports (10 pmol).
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | |
Collapse
|