1
|
Chen Q, Yu B, Zhu Y, Xiong H, Guo Y, Liu D, Sun B. Effects of different concentrations of Lactiplantibacillus plantarum and Bacillus licheniformis on silage fermentation parameter, chemical composition and microbial community of Pennisetum sinese. Front Microbiol 2025; 16:1532060. [PMID: 40231240 PMCID: PMC11994720 DOI: 10.3389/fmicb.2025.1532060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
The purpose of the experiment was to study the effects of different concentrations of Lactiplantibacillus plantarum (LP) and Bacillus licheniformis (BL) on the quality of Pennisetum sinese (PS) silage. The experiment consisted of seven treatment groups. The control group did not use additives, and the experimental groups were added with LP or BL of 1 × 105 CFU/g fresh weight (FW), 1 × 106 CFU/g FW and 1 × 107 CFU/g FW, respectively. The nutritional value of Pennisetum sinese silage was comprehensively evaluated using CNCPS 6.5 system and 16sDNA sequencing technology. The results showed that the ammonia nitrogen content and pH of each experimental group were significantly lower than those of the control group (p < 0.05). The starch content gradually decreased and the water-soluble carbohydrate (WSC) content increased in both LP and BL groups with the increase of addition concentration. The LP7 group could significantly increase the true protein content in protein (p < 0.05), and CP in BL groups decreased gradually with the increase of concentration. Compared with the control group, the content of neutral detergent fiber (NDF) and acid detergent fiber (ADF) was significantly lower in LP7 group (p < 0.05) and the ADF content was significantly lower in BL5 group (p < 0.05). In addition, LP and BL were able to change the proportion of each component in CNCPS system for Pennisetum sinese silage. The use of LP and BL can reduce the relative abundance of harmful microorganisms in silage such as Sediminibacterium and Nitrospira, and significantly change the microbial community structure in silage (p < 0.05). In conclusion, LP and BL have significant effects on silage quality and nutritional value. The nutritional value of Pennisetum sinese in LP groups showed a dose-dependent effect, and adding 1 × 107 CFU/g LP have the best effect in silage. The best effect was achieved by adding 1 × 105 CFU/g BL in BL groups, and the effect of LP7 group was better than that of BL5 group.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Teng M, Li Y, Qi J, Wu W, Sun X, Gao C, Zhang X, Mamtimin T, Wan J. Effects of Grape Pomace Complete Pellet Feed on Growth Performance, Fatty Acid Composition, and Rumen Fungal Composition in Beef Cattle. Animals (Basel) 2025; 15:930. [PMID: 40218324 PMCID: PMC11988095 DOI: 10.3390/ani15070930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Grape pomace, a winemaking byproduct, is nutrient- and polyphenol-rich, but research on its use in beef cattle is limited. This study explored the impact of grape pomace-based complete pellet feed on growth, serum biochemistry, fatty acid profile, and rumen microbiota in beef cattle. Fifteen healthy Simmental cattle were randomly divided into three groups (G0, G15, and G20) and fed a complete pelleted ration containing 0%, 15%, and 20% of grape pomace, respectively, for 60 days. The results showed that the addition of grape pomace to the ration markedly increased the average daily feed intake and average daily weight gain in beef cattle. In terms of biochemistry, the levels of total protein (TP) and albumin (ALB) in the G20 group were higher than in the G0 group (p > 0.05). The levels of oleic acid, linoleic acid, and behenic acid were higher in the G20 group than in the G0 group. Grape pomace had no significant effect on rumen fungal diversity and total volatile fatty acids (TVFAs) in beef cattle. The pH and ammonia nitrogen content in the G15 and G20 groups were significantly higher than that in the G0 group. This indicates that grape pomace can be used as feed raw material for beef cattle.
Collapse
Affiliation(s)
- Meimei Teng
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Yuanqiu Li
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Jiangjiao Qi
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Wenda Wu
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Xinchang Sun
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Chengze Gao
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Xia Zhang
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
| | - Tursunay Mamtimin
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
- Postdoctoral Station of Grassland Science, Urumqi 830052, China
| | - Jiangchun Wan
- Xinjiang Key Laboratory of Grassland Resources and Ecology, College of Grassland Science, Urumqi 830052, China; (M.T.); (Y.L.); (J.Q.); (W.W.); (X.S.); (C.G.); (X.Z.)
- Postdoctoral Station of Grassland Science, Urumqi 830052, China
| |
Collapse
|
3
|
Xiang X, Zhao C, Zhang R, Zeng J, Wang L, Zhang S, Cristos D, Liu B, Xu S, Yi X. Beef Traceability Between China and Argentina Based on Various Machine Learning Models. Molecules 2025; 30:880. [PMID: 40005191 PMCID: PMC11858054 DOI: 10.3390/molecules30040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Beef, as a nutrient-rich food, is widely favored by consumers. The production region significantly influences the nutritional value and quality of beef. However, current methods for tracing the origin of beef are still under development, necessitating effective approaches to ensure food safety and meet consumer demand for high-quality beef. This study aims to establish a classification model for beef origin prediction by analyzing elemental content and stable isotopes in beef samples from two countries. The concentrations of elements in beef were analyzed using ICP-MS and ICP-OES, while the stable carbon isotope ratio was determined using EA-IRMS. Machine learning algorithms were employed to construct classification prediction models. A total of 83 beef samples were analyzed for the concentrations of 52 elements and the stable carbon isotope ratio. The classification accuracy of the PLS-DA model built on these results was 98.8%, while the prediction accuracy was 94.12% for the convolutional neural network (CNN) and 82.35% for the Random Forest algorithm. The PLS-DA model demonstrated higher classification accuracy compared to CNN and Random Forest, with an explanatory power (R2) of 0.924 and predictive ability (Q2) of 0.787. Combining the analysis of 52 elements and the stable carbon isotope ratio with machine learning algorithms enables effective tracing and origin prediction of beef from different regions. Key factors influencing beef origin were identified as Fe, Cs, As, δ13C, Co, V, Sc, Rb, and Ru.
Collapse
Affiliation(s)
- Xiaomeng Xiang
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai 200438, China (S.X.)
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 201210, China
| | - Chaomin Zhao
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 201210, China
- Shanghai Entry and Exit Food and Feed Safety Professional Service Platform, Shanghai 201210, China
| | - Runhe Zhang
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 201210, China
- Shanghai Entry and Exit Food and Feed Safety Professional Service Platform, Shanghai 201210, China
| | - Jing Zeng
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 201210, China
- Shanghai Entry and Exit Food and Feed Safety Professional Service Platform, Shanghai 201210, China
| | - Liangzi Wang
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 201210, China
- Shanghai Entry and Exit Food and Feed Safety Professional Service Platform, Shanghai 201210, China
| | - Shuran Zhang
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 201210, China
- Shanghai Entry and Exit Food and Feed Safety Professional Service Platform, Shanghai 201210, China
| | - Diego Cristos
- Food Technology Institute-Agroindustry Research Center, Hurlingham 1686, Buenos Aires, Argentina
- Institute of Science and Technology of Sustainable Food Systems, Hurlingham 1686, Buenos Aires, Argentina
| | - Bing Liu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai 200438, China (S.X.)
| | - Siyan Xu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai 200438, China (S.X.)
| | - Xionghai Yi
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 201210, China
- Shanghai Entry and Exit Food and Feed Safety Professional Service Platform, Shanghai 201210, China
| |
Collapse
|
4
|
Yang X, Wen D, Liu Z, Zhang Y, Danzengjicha, Yixiduoji, Huang X, Li B. Biofermentation of aquatic plants: Potential novel feed ingredients for dairy cattle production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175955. [PMID: 39222819 DOI: 10.1016/j.scitotenv.2024.175955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The study assessed the impacts of aquatic plant silages on feeding efficiency and dairy cattle health as an alternative to conventional corn silage under high altitude conditions. Mid-lactation Holstein cows were assigned to treatment groups according to a randomized complete block design of parity, previous 105-d milk yield, and body weight. Cows (n = 8 per group) were fed with aquatic plant silage inoculated with Bacillus subtilis (BS), Yeast (YS), or conventional corn silage without inoculants (control) in addition to [standard grain feed] for 75 consecutive days. BS and YS had higher protein contents than control silage (111.20 ± 7.68, 112.10 ± 6.83 vs 76.94 ± 3.48 g/kg DM), while feeding efficiency was comparable between treatments (1.07, 0.99, and 0.90, respectively). In addition, the addition of aquatic plant silage in ruminant diets enhanced immunity and antioxidant capacity when compared with control group. Metagenomic analysis showed similar composition in rumen microbiota between YS and control groups, with higher enrichment for energy and nitrogen utilization pathways in YS-treated cows. This study highlights the use of aquatic plant silage as an alternative feed for dairy cattle with higher protein than corn silage. Our results suggest YS or BS could potentially boost immune and antioxidant functions, improving adaptation to high-altitudes and reducing demand for high input corn production on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Xugang Yang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; Lanzhou University, Lanzhou 730033, Gansu, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ying Zhang
- Lanzhou University, Lanzhou 730033, Gansu, China
| | - Danzengjicha
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Yixiduoji
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Xiaodan Huang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China; Lanzhou University, Lanzhou 730033, Gansu, China.
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China.
| |
Collapse
|
5
|
Abebe BK, Wang J, Guo J, Wang H, Li A, Zan L. A review of emerging technologies, nutritional practices, and management strategies to improve intramuscular fat composition in beef cattle. Anim Biotechnol 2024; 35:2388704. [PMID: 39133095 DOI: 10.1080/10495398.2024.2388704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Yang Y, Huang K, Jiang H, Wang S, Xu X, Liu Y, Liu Q, Wei M, Li Z. Unveiling the role of circRBBP7 in myoblast proliferation and differentiation: A novel regulator of muscle development. FASEB J 2024; 38:e23808. [PMID: 38994637 DOI: 10.1096/fj.202302599rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.
Collapse
Affiliation(s)
- Yufeng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Guangxi Agricultural Vocational University, Nanning, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hancai Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuwan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaoxian Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yang Liu
- Guangxi Zhuang Autonomous Region Center for Analysis and Test Research, Nanning, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingsong Wei
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Guangxi Agricultural Vocational University, Nanning, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Song X, Yao Z, Zhang Z, Lyu S, Chen N, Qi X, Liu X, Ma W, Wang W, Lei C, Jiang Y, Wang E, Huang Y. Whole-genome sequencing reveals genomic diversity and selection signatures in Xia'nan cattle. BMC Genomics 2024; 25:559. [PMID: 38840048 PMCID: PMC11151506 DOI: 10.1186/s12864-024-10463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.
Collapse
Affiliation(s)
- Xingya Song
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Zhi Yao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Shijie Lyu
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Xingshan Qi
- Biyang County Xiananniu Technology Development Co., Ltd, Zhumadian, 463700, People's Republic of China
| | - Xian Liu
- Henan Provincial Livestock Technology Promotion Station, Zhengzhou, 450008, Henan, People's Republic of China
| | - Weidong Ma
- Shaanxi Agricultural and Animal Husbandry Seed Farm, Shaanxi Fufeng, 722203, People's Republic of China
| | - Wusheng Wang
- Shaanxi Agricultural and Animal Husbandry Seed Farm, Shaanxi Fufeng, 722203, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China.
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Timm TG, Amâncio BR, Loregian KE, Magnani E, Helm CV, de Lima EA, Marcondes MI, Branco RH, de Paula EM, Benedeti PDB, Tavares LBB. Peach palm shells (Bactris gasipaes Kunth) bioconversion by Lentinula edodes: Potential as new bioproducts for beef cattle feeding. BIORESOURCE TECHNOLOGY 2024; 394:130292. [PMID: 38185450 DOI: 10.1016/j.biortech.2023.130292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
This paper aims to develop and assess the in vitro effects on ruminal fermentation and greenhouse gas parameters of new bioproducts for beef cattle diets, carried out by solid-state fermentation of peach palm shells colonized by Lentinula edodes (SSF) and after Shiitake mushroom cultivation in axenic blocks (SMS). In vitro experiments were performed to assess the in vitro gas production, digestibility, and fiber degradation of formulated total diets. Bioproducts presented high β-glucans (9.44---11.27 %) and protein (10.04---8.35 %) contents, as well as similar digestibility to conventional diets. SMS diet had the lowest methane and carbon dioxide (19.1 and 84.1 mM/g OM) production, and the SSF diet presented lower carbon dioxide production (98.9 mM/g OM) than other diets, whereas methane was similar. This study highlighted a sustainable use of byproducts for beef cattle diets, promising for digestibility, nutritional value, β-glucans incorporation, and environmental impact mitigation, favoring the circular bioeconomy.
Collapse
Affiliation(s)
- Thaynã Gonçalves Timm
- Regional University of Blumenau, Environmental Engineering Graduate Program, Blumenau, Santa Catarina 89030-000, Brazil.
| | - Bruna Roberta Amâncio
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo 14160-970, Brazil.
| | - Kalista Eloisa Loregian
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo 14160-970, Brazil.
| | - Elaine Magnani
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo 14160-970, Brazil.
| | - Cristiane Vieira Helm
- Brazilian Agricultural Research Corporation, Research Center of Forestry, Embrapa Florestas, Colombo, Paraná 83411-000, Brazil.
| | - Edson Alves de Lima
- Brazilian Agricultural Research Corporation, Research Center of Forestry, Embrapa Florestas, Colombo, Paraná 83411-000, Brazil.
| | | | - Renata Helena Branco
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, São Paulo 14160-970, Brazil.
| | | | - Pedro Del Bianco Benedeti
- Santa Catarina State University, Department of Animal Sciences, Chapecó, Santa Catarina 89815-630, Brazil.
| | - Lorena Benathar Ballod Tavares
- Regional University of Blumenau, Environmental Engineering Graduate Program, Blumenau, Santa Catarina 89030-000, Brazil.
| |
Collapse
|
9
|
Adiwinarti R, Rianto E, Purbowati E, Restitrisnani V, Purnomoadi A. Comparative feed management system in sheep fed different physical forms of ration containing Ipomoea aquatica on the performance, rumen characteristics, and chewing activity. J Adv Vet Anim Res 2023; 10:677-684. [PMID: 38370891 PMCID: PMC10868691 DOI: 10.5455/javar.2023.j723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
Objective This study investigated the effectiveness of different physical forms of feed containing Ipomoea aquatica waste and concentrate feed on the rumen characteristics, chewing activity, and performance of sheep. Materials and Methods Twenty-four rams (19.87 ± 2.19 kg) were arranged in a completely randomized design. Rams were fed dried I. aquatica waste and concentrate feed provided separately (RCF) (conventional feeding system), and total mixed ration consisted of mash complete feed (MCF), and pelleted complete feed (PCF). The data were analyzed using a one-way analysis of variance. Results The dry matter intake (DMI), average daily gain, and feed conversion ratio of rams fed different physical forms of feed containing I. aquatica waste in their diet were similar between the treatments, ranging from 4.08% to 4.29% of body weight, 120-180 gm, and 6.32-9.17, respectively. Different physical feeds did not affect microbial synthesis in the rumen. Methane emissions per unit of production were similar between the groups. The PCF sheep ate faster (0.24 min/gm DMI) than the MCF sheep (0.38 min/gm DMI), but similar to the RCF sheep (0.31 min/gm DMI). Conclusion Dried I. aquatica waste was useful as an alternative lamb feed roughage during the dry season. The pelleted mixed ration was more efficient than mash in increasing DMI. The dried I. aquatica waste was environmentally friendly for mitigating enteric methane emissions by sheep.
Collapse
Affiliation(s)
- Retno Adiwinarti
- Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Edy Rianto
- Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Endang Purbowati
- Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Vita Restitrisnani
- Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Agung Purnomoadi
- Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| |
Collapse
|