1
|
|
2
|
Urbanization alters the abundance and composition of predator communities and leads to aphid outbreaks on urban trees. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01061-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractUrbanization can affect arthropod abundance in different ways. While species with narrow habitat range and low dispersal ability often respond negatively to urban environments, many habitat generalist species with good dispersal ability reach high densities in city centers. This filtering effect of urban habitats can strongly influence predator-prey-mutualist interactions and may therefore affect the abundance of predatory and phytophagous species both directly and indirectly. Here, we assessed the effect of urbanization on aphids, predatory arthropods, and ants on field maple (Acer campestre) trees in and around the city of Budapest, Hungary. We used the percentage of impervious surfaces within a 500 m radius of each site as an index of the degree of urbanization. We found that the abundance of aphids increased with increasing level of urbanization. However, abundance of predatory arthropods and occurrence of poorly dispersing species within the predator community were negatively related to urbanization, and we identified these two independent factors as significant predictors of aphid abundances. The abundance of ants decreased with urbanization, and contrary to our expectations, did not affect the abundance pattern of aphids. Our results suggest that urbanization, by altering the abundance and composition of predator communities, can disrupt biological control of aphid populations, and thus may contribute to the aphid outbreaks on urban trees.
Collapse
|
3
|
Landscape Context Influences the Abundance and Richness of Native Lady Beetles Occupying Urban Vacant Land. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-01000-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Vegetated roofs in boreal climate support mobile open habitat arthropods, with differentiation between meadow and succulent roofs. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-00978-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractVegetated roofs are hoped to benefit urban wildlife, yet there are few empirical results regarding the conservation potential of such roofs. In this paper, we focus on arthropods on vegetated roofs. We vacuum sampled 17 succulent, meadow or succulent-meadow roofs, in Helsinki, Finland, and used order to species level information together with trait data to describe the communities. We evaluated the importance of biophysical roof characteristics on shaping arthropod assemblages to provide information concerning roof designs that promote rich arthropod fauna. Arthropod communities differed between the three roof types and the influence of roof variables varied between and within arthropod orders. The main local drivers of arthropod abundance across the individually analysed taxa were roof height and vegetation, with mainly positive effects of height (up to 11 m) and litter cover, and mainly negative effects of grass cover. Based on trait data from true bugs, spiders and ants, the roofs consisted mainly of common dispersive species that are generalist feeders and associated with dry open habitats or have wide habitat tolerance. We found one true bug species new to the country and assume that it arrived with imported vegetation. Based on these findings, vegetated roofs of varying height and size benefit common generalists and fauna of open dry habitats, but seem to lack rare native specialists and may introduce non-natives if imported plant material is used. Because the responses to vegetation characteristics are taxon-specific, high diversity of roof vegetation types would benefit arthropod conservation.
Collapse
|
5
|
Three categories of urban green areas and the effect of their different management on the communities of ants, spiders and harvestmen. Urban Ecosyst 2020. [DOI: 10.1007/s11252-020-00949-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractUrban green areas have become an important tool for biodiversity conservation in cities. However, land use and the different management practices applied to these areas determine their effectiveness as biodiversity refuges within cities. In our study, we compare the biodiversity of three bioindicator groups of arthropods (ants, spiders and harvestmen) found in eleven urban green sites in Warsaw (Poland). The studied sites represent three categories of management: botanical gardens, public parks and urban woodlands. Our aim was to determine the effect of the type of management (as urban green categories) on arthropod communities in urban areas.
Collapse
|
6
|
Khimoun A, Doums C, Molet M, Kaufmann B, Peronnet R, Eyer PA, Mona S. Urbanization without isolation: the absence of genetic structure among cities and forests in the tiny acorn ant Temnothorax nylanderi. Biol Lett 2020; 16:20190741. [PMID: 31992150 DOI: 10.1098/rsbl.2019.0741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urban alteration of neutral and adaptive evolutionary processes is still underexplored. Using a genome-wide SNP dataset, we investigated (i) urban-induced modifications of population demography, genetic diversity and population structure and (ii) signature of divergent selection between urban and forest populations in the ant species, Temnothorax nylanderi. Our results did not reveal an impact of urbanization on neutral processes since we observed: (i) analogous genetic diversity among paired urban/forest sites and two control populations; (ii) weak population genetic structure explained neither by habitat (urban versus forest) nor by geography; (iii) a remarkably similar demographic history across populations with an ancestral growth followed by a recent decline, regardless of their current habitat or geographical location. The micro-geographical home range of ants may explain their resilience to urbanization. Finally, we detected 19 candidate loci discriminating urban/forest populations and associated with core cellular components, molecular function or biological process. Two of these loci were associated with a gene ontology term that was previously found to belong to a module of co-expressed genes related to caste phenotype. These results call for transcriptomics analyses to identify genes associated with ant social traits and to infer their potential role in urban adaptation.
Collapse
Affiliation(s)
- A Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - C Doums
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE, Sorbonne Université, 75005 Paris, France.,EPHE, PSL University, 75005 Paris, France
| | - M Molet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 7618, Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, INRA, IRD, 75005 Paris, France
| | - B Kaufmann
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, Villeurbanne 69622, France
| | - R Peronnet
- Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), UMR 7618, Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, INRA, IRD, 75005 Paris, France
| | - P A Eyer
- Department of Entomology, Texas A&M University, 2143 TAMU, College Station, TX 77843-2143, USA
| | - S Mona
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR 7205, MNHN, CNRS, EPHE, Sorbonne Université, 75005 Paris, France.,EPHE, PSL University, 75005 Paris, France
| |
Collapse
|
7
|
Miguelena JG, Baker PB. Effects of Urbanization on the Diversity, Abundance, and Composition of Ant Assemblages in an Arid City. ENVIRONMENTAL ENTOMOLOGY 2019; 48:836-846. [PMID: 31201775 DOI: 10.1093/ee/nvz069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Cities within arid regions make up a significant but understudied subset of the urban ecosystems of the world. To assess the effects of urbanization, fragmentation, and land-use change in an arid city, we sampled the ant assemblages in three habitat types in Tucson, Arizona: irrigated neighborhood parks, urban desert remnants, and preserved desert. We analyzed the abundance, species richness, evenness, as well as the species and functional group composition of ant assemblages. We found no significant differences in species richness or evenness. However, irrigated parks had significantly greater ant abundances. Although some exotic species were present in the urban habitats, they did not have significant effects on ant diversity. Ant assemblages from all three habitat types were distinct from each other in their composition. Irrigated parks included a significantly higher proportion of species typically found in cooler and wetter climates. The differences in abundance and species composition between irrigated parks and the other habitats are likely the effect of irrigation removing water as a limiting factor for colony growth and increasing resource availability, as well as producing a localized cooling effect. Our results show that arid urban ecosystems may include considerable biodiversity, in part thanks to increased landscape heterogeneity resulting from the irrigation of green areas.
Collapse
Affiliation(s)
| | - Paul B Baker
- Department of Entomology, University of Arizona, Forbes, Tucson, AZ
| |
Collapse
|
8
|
Santos MN, Delabie JHC, Queiroz JM. Biodiversity conservation in urban parks: a study of ground-dwelling ants (Hymenoptera: Formicidae) in Rio de Janeiro City. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00872-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Blinova SV, Dobrydina TI. The Study of Bioindicators Possibilities of Ants (Hymenoptera: Formicidae) Under the Conditions of Industrial Pollution. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/224/1/012034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Chen W, Adams ES. The Distribution and Habitat Affinities of the Invasive Ant Myrmica rubra (Hymenoptera: Formicidae) in Southern New England. ENVIRONMENTAL ENTOMOLOGY 2018; 47:527-534. [PMID: 29659763 DOI: 10.1093/ee/nvy042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Eurasian ant Myrmica rubra (L.) (Hymenoptera: Formicidae) was first discovered in North America in the early 1900s in Massachusetts. Populations have since appeared in at least seven states within the United States and in seven Canadian provinces. We conducted a systematic search for the ant across southern New England-the states of Connecticut, Massachusetts, and Rhode Island-where M. rubra is spreading from multiple loci. The species occurs in two large regions in Massachusetts, each spanning approximately 75 km, and in several smaller populations in Massachusetts and Rhode Island. No populations were discovered anywhere in Connecticut or across large expanses of central Massachusetts and northern Rhode Island, despite the presence of apparently favorable habitat. This pattern of distribution suggests a combination of long-distance dispersal by human transport coupled with slow local spread. Resurveys of sites previously known to support M. rubra showed that populations persist for decades. Within invaded areas, M. rubra was strongly associated with particular habitats. Colonies were most prevalent in freshwater wetlands and in moist forests near wetlands and water; they were uncommon in drier forests and were rare in open habitats outside of wetlands. The slow rate of spread over the last 110 yr suggests that the ants do not easily disperse between patches of suitable habitat.
Collapse
Affiliation(s)
- Wen Chen
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT
| | - Eldridge S Adams
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT
| |
Collapse
|
11
|
Stukalyuk SV. Changes in the structure of ant assemblages in broad-leafed forests with domination of Impatiens parviflora Dc. (Balsaminaceae) in herbaceous layer. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2016. [DOI: 10.1134/s2075111716040081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
I’m not like everybody else: urbanization factors shaping spatial distribution of native and invasive ants are species-specific. Urban Ecosyst 2016. [DOI: 10.1007/s11252-016-0576-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Grześ IM, Okrutniak M. Pre-adaptive cadmium tolerance in the black garden ant. CHEMOSPHERE 2016; 148:316-321. [PMID: 26820778 DOI: 10.1016/j.chemosphere.2016.01.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
The black garden ant Lasius niger is a common component of habitats subjected to anthropological stress. The species can develop very abundant populations in metal-polluted areas. In this study, we raised the question of its tolerance to Cd pollution. Workers of L. niger were collected from 54 colonies, originating from 19 sites located along an increasing gradient of Cd pollution in Poland. Ants were exposed to a range of dietary Cd concentrations in a controlled 14-day laboratory experiment in order to test Cd-sensitivity in the investigated ants. The level of ant mortality was recorded as the endpoint of the experiment. We used much higher concentrations of dietary Cd than those the ants are most likely exposed to in field conditions. The investigated ants were highly Cd-tolerant; even a very high dietary Cd concentration of approx. 1300 mg/kg did not affect mortality of workers when compared to the control. Mortality was unrelated to Cd-pollution along the pollution gradient, meaning that high Cd-tolerance can be found even in ants from unpolluted areas. The results stress the importance of pre-adaptive mechanisms in the development of metal tolerance in ants.
Collapse
Affiliation(s)
- Irena M Grześ
- Department of Environmental Zoology, Institute of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| | - Mateusz Okrutniak
- Department of Environmental Zoology, Institute of Animal Science, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
14
|
Effects of overwintering temperature on the survival of the black garden ant (Lasius niger). J Therm Biol 2015; 49-50:112-8. [PMID: 25774034 DOI: 10.1016/j.jtherbio.2015.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022]
Abstract
The overwintering temperatures of ants might well be elevated due to climate change. We studied whether the overwintering temperature affects the survival of the queens and whole colonies of the black garden ant, Lasius niger (Linnaeus, 1758). In two consecutive years (2009, 2010) we collected mated, colony founding queens (n = 280) from the urban area of Turku, Finland. Half of the queens overwintered in +7 to +8 °C and the other half in +2 °C. After the overwintering period, we determined their survival rate and measured the body fat content, body size and immune defence (encapsulation rate) of overwintering queens. Using the same setup, we studied the survival of 1-year-old L. niger colonies (queen & workers). Overwintering at a lower temperature (+2 °C) decreased the survival of workers. The survival of colony founding queens differed between years, but unlike with workers, the overwintering temperature did not affect their survival: neither in the colony experiment nor in the single queen experiment. All of the surviving queens managed to produce their worker offspring at the same rate. The relative amount of body fat of queens was higher for those who overwintered at a lower temperature, which is likely a result of lower energy consumption. We did not detect differences in the encapsulation rate between the temperature treatment groups. The ability of colony founding queens to tolerate wide overwintering temperature variations present in urban environments may explain the success of the colony in urban areas. As the colony grows, the overwintering chambers may extend more deeply into the ground. Thus, workers may not have to cope with such cold conditions as colony founding queens.
Collapse
|
15
|
Ihnatiuk OA, Stukalyuk SV. Degradation changes in the structure of multispecies associations of ants in urbanized areas. RUSS J ECOL+ 2015. [DOI: 10.1134/s1067413615010051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Urbanisation factors impacting on ant (Hymenoptera: Formicidae) biodiversity in the Perth metropolitan area, Western Australia: Two case studies. Urban Ecosyst 2012. [DOI: 10.1007/s11252-012-0257-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Urban areas may serve as habitat and corridors for dry-adapted, heat tolerant species; an example from ants. Urban Ecosyst 2010. [DOI: 10.1007/s11252-010-0150-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
|
19
|
Magura T, Hornung E, Tóthmérész B. Abundance patterns of terrestrial isopods along an urbanization gradient. COMMUNITY ECOL 2008. [DOI: 10.1556/comec.9.2008.1.13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|