1
|
Liguori TTA, Liguori GR, Sinkunas V, Correia CJ, Dos Santos Coutinho E Silva R, Zanoni FL, Aiello VD, Harmsen MC, Moreira LFP. Intrapericardial injection of hydrogels with ASC and their secretome to treat dilated cardiomyopathies. Sci Rep 2025; 15:3529. [PMID: 39875493 PMCID: PMC11775170 DOI: 10.1038/s41598-025-87939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/23/2025] [Indexed: 01/30/2025] Open
Abstract
Doxorubicin-induced cardiomyopathy (DOX-IC) is a significant and common complication in patients undergoing chemotherapy, leading to cardiac remodeling and reduced heart function. We hypothesized that the intrapericardial injection of hydrogels derived from the cardiac decellularized extracellular matrix (dECM) loaded with adipose tissue-derived stromal cells (ASC) and their secretome dampens or reverses the progression of DOX-IC. DOX-IC was induced in Wistar male rats through ten weekly intra-peritoneal injections of doxorubicin (cumulative dose: 18 mg/kg). We performed intrapericardial treatment in week five with dECM hydrogel loaded with ASC and their conditioned medium (CMed). The volume of intrapericardial injection was 2 ml/kg, the ASC density was 20 million/mL, while the hydrogel contained 100-fold concentrated CMed. Interstitial myocardial fibrosis was assessed by PicroSirius Red staining and hemodynamics parameters in pressure-volume loops. Compared to saline controls, interstitial myocardial fibrosis was reduced in ASC/CMed-loaded hydrogels treated animals (p = 0.0139). Ejection fraction and cardiac work efficiency improved in the ASC/CMed-treated rats compared to saline treatment (p = 0.0151 and p = 0.0655, respectively). The intrapericardial injection of dECM hydrogels loaded with ASC and their secretome warrants a novel therapeutic modality to improve ventricular hemodynamics and reduce cardiac remodeling in DOX-IC.
Collapse
Affiliation(s)
- Tácia Tavares Aquinas Liguori
- Instituto do Coração (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Gabriel Romero Liguori
- Instituto do Coração (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Viktor Sinkunas
- Instituto do Coração (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano Jesus Correia
- Instituto do Coração (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Fernando Luiz Zanoni
- Instituto do Coração (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Vera Demarchi Aiello
- Instituto do Coração (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Luiz Felipe Pinho Moreira
- Instituto do Coração (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Yuce K. The Application of Mesenchymal Stem Cells in Different Cardiovascular Disorders: Ways of Administration, and the Effectors. Stem Cell Rev Rep 2024; 20:1671-1691. [PMID: 39023739 DOI: 10.1007/s12015-024-10765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The heart is an organ with a low ability to renew and repair itself. MSCs have cell surface markers such as CD45-, CD34-, CD31-, CD4+, CD11a+, CD11b+, CD15+, CD18+, CD25+, CD49d+, CD50+, CD105+, CD73+, CD90+, CD9+, CD10+, CD106+, CD109+, CD127+, CD120a+, CD120b+, CD124+, CD126+, CD140a+, CD140b+, adherent properties and the ability to differentiate into cells such as adipocytes, osteoblasts and chondrocytes. Autogenic, allogeneic, normal, pretreated and genetically modified MSCs and secretomes are used in preclinical and clinical studies. MSCs and their secretomes (the total released molecules) generally have cardioprotective effects. Studies on cardiovascular diseases using MSCs and their secretomes include myocardial infraction/ischemia, fibrosis, hypertrophy, dilated cardiomyopathy and atherosclerosis. Stem cells or their secretomes used for this purpose are administered to the heart via intracoronary (Antegrade intracoronary and retrograde coronary venous injection), intramyocardial (Transendocardial and epicardial injection) and intravenous routes. The protective effects of MSCs and their secretomes on the heart are generally attributed to their differentiation into cardiomyocytes and endothelial cells, their immunomodulatory properties, paracrine effects, increasing blood vessel density, cardiac remodeling, and ejection fraction and decreasing apoptosis, the size of the wound, end-diastolic volume, end-systolic volume, ventricular myo-mass, fibrosis, matrix metalloproteins, and oxidative stress. The present review aims to assist researchers and physicians in selecting the appropriate cell type, secretomes, and technique to increase the chance of success in designing therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Kemal Yuce
- Physiology, Department of Basic Medical Sciences, Medicine Faculty, Selcuk University, Konya, Türkiye.
| |
Collapse
|
3
|
Chen C, Lou Y, Li XY, Lv ZT, Zhang LQ, Mao W. Mapping current research and identifying hotspots on mesenchymal stem cells in cardiovascular disease. Stem Cell Res Ther 2020; 11:498. [PMID: 33239082 PMCID: PMC7687818 DOI: 10.1186/s13287-020-02009-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have important research value and broad application prospects in the cardiovascular disease. This study provides information on the latest progress, evolutionary path, frontier research hotspots, and future research developmental trends in this field. METHODS A knowledge map was generated by CiteSpace and VOSviewer analysis software based on data obtained from the literature on MSCs in the cardiovascular field. RESULTS The USA and China ranked at the top in terms of the percentage of articles, accounting for 34.306% and 28.550%, respectively. The institution with the highest number of research publications in this field was the University of Miami, followed by the Chinese Academy of Medical Sciences and Harvard University. The research institution with the highest ACI value was Harvard University, followed by the Mayo Clinic and the University of Cincinnati. The top three subjects in terms of the number of published articles were cell biology, cardiovascular system cardiology, and research experimental medicine. The journal with the most publications in this field was Circulation Research, followed by Scientific Reports and Biomaterials. The direction of research on MSCs in the cardiovascular system was divided into four parts: (1) tissue engineering, scaffolds, and extracellular matrix research; (2) cell transplantation, differentiation, proliferation, and signal transduction pathway research; (3) assessment of the efficacy of stem cells from different sources and administration methods in the treatment of acute myocardial infarction, myocardial hypertrophy, and heart failure; and (4) exosomes and extracellular vesicles research. Tissue research is the hotspot and frontier in this field. CONCLUSION MSC research has presented a gradual upward trend in the cardiovascular field. Multidisciplinary intersection is a characteristic of this field. Engineering and materials disciplines are particularly valued and have received attention from researchers. The progress in multidisciplinary research will provide motivation and technical support for the development of this field.
Collapse
Affiliation(s)
- Chan Chen
- Hangzhou Xiaoshan district Hospital of TCM, Jiangnan Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 311201, Zhejiang, China. .,Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| | - Yang Lou
- The first Affiliated Hospital Zhejiang Chinese Medical University, Hangzhou, 311006, Zhejiang, China
| | - Xin-Yi Li
- The first Affiliated Hospital Zhejiang Chinese Medical University, Hangzhou, 311006, Zhejiang, China
| | - Zheng-Tian Lv
- The first Affiliated Hospital Zhejiang Chinese Medical University, Hangzhou, 311006, Zhejiang, China
| | - Lu-Qiu Zhang
- The first Affiliated Hospital Zhejiang Chinese Medical University, Hangzhou, 311006, Zhejiang, China
| | - Wei Mao
- The first Affiliated Hospital Zhejiang Chinese Medical University, Hangzhou, 311006, Zhejiang, China.
| |
Collapse
|
4
|
RNA-Based Strategies for Cardiac Reprogramming of Human Mesenchymal Stromal Cells. Cells 2020; 9:cells9020504. [PMID: 32098400 PMCID: PMC7072829 DOI: 10.3390/cells9020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Multipotent adult mesenchymal stromal cells (MSCs) could represent an elegant source for the generation of patient-specific cardiomyocytes needed for regenerative medicine, cardiovascular research, and pharmacological studies. However, the differentiation of adult MSC into a cardiac lineage is challenging compared to embryonic stem cells or induced pluripotent stem cells. Here we used non-integrative methods, including microRNA and mRNA, for cardiac reprogramming of adult MSC derived from bone marrow, dental follicle, and adipose tissue. We found that MSC derived from adipose tissue can partly be reprogrammed into the cardiac lineage by transient overexpression of GATA4, TBX5, MEF2C, and MESP1, while cells isolated from bone marrow, and dental follicle exhibit only weak reprogramming efficiency. qRT-PCR and transcriptomic analysis revealed activation of a cardiac-specific gene program and up-regulation of genes known to promote cardiac development. Although we did not observe the formation of fully mature cardiomyocytes, our data suggests that adult MSC have the capability to acquire a cardiac-like phenotype when treated with mRNA coding for transcription factors that regulate heart development. Yet, further optimization of the reprogramming process is mandatory to increase the reprogramming efficiency.
Collapse
|
5
|
Brychtova M, Thiele JA, Lysak D, Holubova M, Kralickova M, Vistejnova L. Mesenchymal stem cells as the near future of cardiology medicine - truth or wish? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:8-18. [PMID: 30439932 DOI: 10.5507/bp.2018.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022] Open
Abstract
Cardiac damage is one of major cause of worldwide morbidity and mortality. Despite the development in pharmacotherapy, cardiosurgery and interventional cardiology, many patients remain at increased risk of developing adverse cardiac remodeling. An alternative treatment approach is the application of stem cells. Mesenchymal stem cells are among the most promising cell types usable for cardiac regeneration. Their homing to the damaged area, differentiation into cardiomyocytes, paracrine and/or immunomodulatory effect on cardiac tissue was investigated extensively. Despite promising preclinical reports, clinical trials on human patients are not convincing. Meta-analyses of these trials open many questions and show that routine clinical application of mesenchymal stem cells as a cardiac treatment may be not as helpful as expected. This review summarizes contemporary knowledge about mesenchymal stem cells role in cardiac tissue repair and discusses the problems and perspectives of this experimental therapeutical approach.
Collapse
Affiliation(s)
- Michaela Brychtova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jana-Aletta Thiele
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Daniel Lysak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Monika Holubova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Milena Kralickova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Lucie Vistejnova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
6
|
Hong L, Lai H, Fang Y, Tao Y, Qiu Y. Silencing CTGF/CCN2 inactivates the MAPK signaling pathway to alleviate myocardial fibrosis and left ventricular hypertrophy in rats with dilated cardiomyopathy. J Cell Biochem 2018; 119:9519-9531. [PMID: 30129221 DOI: 10.1002/jcb.27268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/26/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Lang Hong
- 2nd Department of Cardiology Jiangxi Provincial People’s Hospital Nanchang China
| | - Heng‐Li Lai
- 2nd Department of Cardiology Jiangxi Provincial People’s Hospital Nanchang China
| | - Yan Fang
- 2nd Department of Cardiology Jiangxi Provincial People’s Hospital Nanchang China
| | - Yu Tao
- 2nd Department of Cardiology Jiangxi Provincial People’s Hospital Nanchang China
| | - Yun Qiu
- 2nd Department of Cardiology Jiangxi Provincial People’s Hospital Nanchang China
| |
Collapse
|
7
|
Ku J, El-Hashash A. Stem Cell Roles and Applications in Genetic Neurodegenerative Diseases. STEM CELLS IN CLINICAL APPLICATIONS 2018. [DOI: 10.1007/978-3-319-98065-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Carmona MD, Cañadillas S, Romero M, Blanco A, Nogueras S, Herrera C. Intramyocardial bone marrow mononuclear cells versus bone marrow-derived and adipose mesenchymal cells in a rat model of dilated cardiomyopathy. Cytotherapy 2017; 19:947-961. [PMID: 28673775 DOI: 10.1016/j.jcyt.2017.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Effects of cell therapy on dilated cardiomyopathy (DCM) have been investigated in pre-clinical models using distinct cellular types in each study. A single study that compares the effectiveness of different cells is lacking. METHODS We have compared the effects of intramyocardial injection (IMI) of bone marrow (BM)-derived mononuclear cells (MNCs), BM and adipose tissue (AT) mesenchymal stromal cells (BM-MSCs and AT-MSCs) on heart function, histological changes and myocardial ultrastructure in a rat model of DCM. Isogenic Wistar rats were used to isolate the different cell types and to induce DCM by autoimmune myocarditis. Animals were randomly assigned to receive BM-MNCs, BM-MSCs, AT-MSCs or placebo at day 42 by IMI. Serial echocardiography was used to assess cardiac function and hearts obtained after sacrifice at day 70, were used for histological and ultrastructural analysis. Serum levels of type B-natriuretic peptide (BNP) and vascular endothelial growth-factor (VEGF) were determined at different time points. RESULTS BM-MSC treatment induced significant improvement in ejection fraction (EF), fractional shortening (FS), left ventricular systolic diameter (LVESD) and systolic volume (LVESV). In contrast, changes in echocardiographic parameters with respect to pre-treatment values in animals receiving placebo, AT-MSCs or BM-MNCs were not statistically significant. EF and FS in animals receiving AT-MSCs were superior to those receiving placebo. BM-MSC transplantation induced also improvement in cardiac fibers organization and capillary density, fibrotic tissue reduction, increase in final VEGF concentration and BNP decrease. DISCUSSION IMI of BM or AT-MSCs improves LV function and induces more angiogenesis processes than BM-MNCs. In addition, BM-MSCs showed more anti-fibrotic effects and more ability to reorganize myocardial tissue compared with the other cell types.
Collapse
Affiliation(s)
- M Dolores Carmona
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain.
| | - Sagrario Cañadillas
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Miguel Romero
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; University of Cordoba, Spain; Cardiology Department, Reina Sofia University Hospital, Cordoba, Spain
| | - Alfonso Blanco
- Anatomy and Comparative Pathology Department, University of Cordoba, Spain
| | - Sonia Nogueras
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain; Hematology Department, Reina Sofia University Hospital, Cordoba, Spain
| |
Collapse
|
9
|
Comella K, Parcero J, Bansal H, Perez J, Lopez J, Agrawal A, Ichim T. Effects of the intramyocardial implantation of stromal vascular fraction in patients with chronic ischemic cardiomyopathy. J Transl Med 2016; 14:158. [PMID: 27255774 PMCID: PMC4890248 DOI: 10.1186/s12967-016-0918-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/20/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Stromal vascular fraction (SVF) can easily be obtained from a mini-lipoaspirate procedure of fat tissue. The SVF contains a mixture of cells including ADSCs and growth factors and has been depleted of the adipocyte (fat cell) population. We evaluated the safety and efficacy of administering SVF intra-myocardially into patients with chronic ischemic cardiomyopathy. METHODS A total of 28 patients underwent a local tumescent liposuction procedure to remove approximately 60 ml of fat tissue. The fat was separated to isolate the SVF and the cells were delivered into the akinetic myocardial scar region using a transendocardial delivery system (MyoCath(®)) in patients who had experienced a previous myocardial infarct. The subjects were then monitored for adverse events, ejection fraction via echocardiogram and six-minute walk test (6MWT) over a period of 6 months. RESULTS The average EF was 29 % at baseline and significantly increased to 35 % at both 3 and 6 months. Patients walked an average of 349 m at baseline and demonstrated a statistically significant improvement at 3 and 6 months' post treatment of more than 80 m. CONCLUSIONS Overall, patients were pleased with the treatment results. More importantly, the procedure demonstrated a strong safety profile with no severe adverse events or complications linked to the therapy. Trial registration NCT01502514 Name of registry: http://www.clinicaltrials.gov URL: https://www.clinicaltrials.gov/ct2/show/NCT01502514?term=adipose+cells+heart&rank=4 Date of registration: December 27, 2011 Date of enrollment: January 2012.
Collapse
Affiliation(s)
| | - J. Parcero
- />Regenerative Medicine Institute, Tijuana, Mexico
| | - H. Bansal
- />Consultant Regenerative Medicine, Mother Cell Spinal Injury and Stem Cell Research, Anupam Hospital, Rudrapur, Uttarakhand 263153 India
| | - J. Perez
- />Regenerative Medicine Institute, Tijuana, Mexico
| | - J. Lopez
- />Regenerative Medicine Institute, Tijuana, Mexico
| | - A. Agrawal
- />Consultant Regenerative Medicine, Mother Cell Spinal Injury and Stem Cell Research, Anupam Hospital, Rudrapur, Uttarakhand 263153 India
| | - T. Ichim
- />Regenerative Medicine Institute, Tijuana, Mexico
| |
Collapse
|
10
|
|
11
|
Aboul-Fotouh GI, Zickri MB, Metwally HG, Ibrahim IR, Kamar SS, Sakr W. Therapeutic Effect of Adipose Derived Stem Cells versus Atorvastatin on Amiodarone Induced Lung Injury in Male Rat. Int J Stem Cells 2015; 8:170-80. [PMID: 26634065 PMCID: PMC4651281 DOI: 10.15283/ijsc.2015.8.2.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background and Objectives Amiodarone (AM), a class 3 antiarrhythmic drug, has been associated with variety of adverse effects, the most serious of which is pulmonary toxicity. Ator (A) is a statin, known for their immunomodulatory and anti-inflammatory activities. Recent studies provide evidence of potential therapeutic effect of statins on lung injury. Adipose derived stem cells (ADSCs) have shown great promise in the repair of various tissues. The present study aimed at investigating and comparing the possible therapeutic effect of A and ADSCs on AM induced lung injury in albino rats. Methods and Results 34 adult male albino rats were divided into 5 groups: control group (Gp I), A group (Gp II) received 10 mg/kg of A orally 6 days (d)/week (w) for 4 weeks (ws), AM group (Gp III) received 30 mg/kg of AM orally 6 d/w for 4 ws, AM&A group (Gp IV) received AM for 4ws then A for other 4 ws and AM&SCs group (Gp V) received AM for 4 ws then injected with 0.5 ml ADSCs on 2 successive days intravenously (IV). Histological, histochemical, immunohistochemical and morphometric studies were performed. Group III displayed bronchiolitis obliterans, thickened interalveolar septa (IAS) and thickened vascular wall which were proven morphometrically. Increased area% of collagen fibers and apoptotic changes were recorded. All findings regressed on A administration and ADSCs therapy. Conclusion Ator proved a definite ameliorating effect on the degenerative, inflammatory, apoptotic and fibrotic changes induced by AM. ADSCs administration denoted more remarkable therapeutic effect compared to A.
Collapse
Affiliation(s)
| | - Maha Baligh Zickri
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala Gabr Metwally
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ihab Refaat Ibrahim
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa Samir Kamar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Wael Sakr
- Department of Plastic Surgery, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Siciliano C, Chimenti I, Ibrahim M, Napoletano C, Mangino G, Scafetta G, Zoccai GB, Rendina EA, Calogero A, Frati G, De Falco E. Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells. Cell Transplant 2015; 24:2307-2322. [PMID: 26531290 DOI: 10.3727/096368914x685771] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nowadays, cardiac regenerative medicine is facing many limitations because of the complexity to find the most suitable stem cell source and to understand the regenerative mechanisms involved. Mesenchymal stem cells (MSCs) have shown great regenerative potential due to their intrinsic properties and ability to restore cardiac functionality, directly by transdifferentiation and indirectly by paracrine effects. Yet, how MSCs could respond to definite cardiac-committing microenvironments, such as that created by resident cardiac progenitor cells in the form of cardiospheres (CSs), has never been addressed. Recently, a putative MSC pool has been described in the mediastinal fat (hmADMSCs), but both its biology and function remain hitherto unexplored. Accordingly, we investigated the potential of hmADMSCs to be committed toward a cardiovascular lineage after preconditioning with CS-conditioned media (CCM). Results indicated that CCM affects cell proliferation. Gene expression levels of multiple cardiovascular and stemness markers (MHC, KDR, Nkx2.5, Thy-1, c-kit, SMA) are significantly modulated, and the percentage of hmADMSCs preconditioned with CCM and positive for Nkx2.5, MHC, and KDR is significantly higher relative to FBS and explant-derived cell conditioned media (EDCM, the unselected stage before CS formation). Growth factor-specific and survival signaling pathways (i.e., Erk1/2, Akt, p38, mTOR, p53) present in CCM are all equally regulated. Nonetheless, earlier BAD phosphorylation (Ser112) occurs associated with the CS microenvironment (and to a lesser extent to EDCM), whereas faster phosphorylation of PRAS40 in FBS, and of Akt (Ser473) in EDCM and 5-azacytidine occurs compared to CCM. For the first time, we demonstrated that the MSC pool held in the mediastinal fat is adequately plastic to partially differentiate in vitro toward a cardiac-like lineage. Besides, we have provided novel evidence of the potent inductive niche-like microenvironment that the CS structure can reproduce in vitro. hmADMSCs can represent an interesting tool in order to exploit their possible role in cardiovascular diseases and treatment.
Collapse
Affiliation(s)
- Camilla Siciliano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|